Technical Papers
Dec 26, 2020

Design and Performance of a Toluene-Degrading Differential Biotrickling Filter as an Alternative Research Tool to Column Reactors

Publication: Journal of Environmental Engineering
Volume 147, Issue 3

Abstract

A differential biotrickling filter (DBTF) was developed as a research tool to minimize radial and longitudinal gradients, which hinder analysis in integral (column) reactors. The main design modifications were a very high gas recycle rate and a low, uniform liquid addition rate via an aerosol generator. The elimination capacity (EC), uniformity of biofilm formation, and long-term reliability of the reactor were evaluated. The maximum toluene elimination capacity was approximately 430  g/m3h, which was higher than the EC in most previous reports. The high EC potentially was due to the thin liquid film over the biofilm generated by low liquid trickling rates. Moreover, the high gas recycle rate (2.5–100 times the feed flow rate) allowed uniform substrate and nutrients distribution throughout the bed hence promoting favorable growth and performance of the microbes. These findings can serve as a guide in improving performance of industrial biotrickling filters. Substrate inhibition was observed at loading rates (LRs) higher than 513±27  g/m3h. Despite operational issues that affected its long-term reliability, such as (1) unwanted growth of microbes on the pipes and in the aerosol reservoir, (2) a decline in the performance of the aerosol generator, and (3) limited fan capacity, the DBTF is a promising tool that can improve biofiltration research.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Altshuller, A. P., and I. R. Cohen. 1960. “Application of diffusion cells to the production of known concentrations of gaseous hydrocarbons.” Anal. Chem. 32 (7): 802–810. https://doi.org/10.1021/ac60163a021.
Beuger, A. L., and P. A. Gostomski. 2009. “Development of a biofilter with water content control for research purposes.” Chem. Eng. J. 151 (1–3): 89–96. https://doi.org/10.1016/j.cej.2009.01.045.
Burrhus, K. D., and S. R. Hart. 1972. “Constant-level liquid feed-control for high purity distillation apparatus.” Anal. Chem. 44 (2): 432. https://doi.org/10.1021/ac60310a005.
Cabrol, L., L. Malhautier, F. Poly, A.-S. Lepeuple, and J.-L. Fanlo. 2012. “Bacterial dynamics in steady-state biofilters: Beyond functional stability.” FEMS Microbiol. Ecol. 79 (1): 260–271. https://doi.org/10.1111/j.1574-6941.2011.01213.x.
Carberry, J. J. 1964. “Designing laboratory catalytic reactors.” Ind. Eng. Chem. 56 (11): 39–46. https://doi.org/10.1021/ie50659a007.
Cárdenas-González, B., S. J. Ergas, and M. S. Switzenbaum. 1999. “Characterization of compost biofiltration media.” J. Air Waste Manage. Assoc. 49 (7): 784–793. https://doi.org/10.1080/10473289.1999.10463847.
Chang, K., and C. Lu. 2003. “Biofiltration of toluene and acetone mixtures by a trickle-bed air biofilter.” World J. Microbiol. Biotechnol. 19 (8): 791–798. https://doi.org/10.1023/A:1026065206638.
Chen, R., Q. Liao, X. Tian, Y. Z. Wang, X. Zhu, and J. H. Miao. 2012. “Characterization of the start-up behavior and steady-state performance of biotrickling filter removing low concentration toluene waste gas.” Sci. China Technol. Sci. 55 (6): 1701–1710. https://doi.org/10.1007/s11431-012-4813-x.
Chen, Y.-S., F.-Y. Lin, C.-C. Lin, C.Y.-D. Tai, and H.-S. Liu. 2006. “Packing characteristics for mass transfer in a rotating packed bed.” Ind. Eng. Chem. Res. 45 (20): 6846–6853. https://doi.org/10.1021/ie060399l.
Cooper, A. R., and G. V. Jeffreys. 1971. Chemical kinetics and reactor design. Edinburgh, UK: Oliver & Boyd.
Cox, H. H. J., and M. A. Deshusses. 1999. “Biomass control in waste air biotrickling filters by protozoan predation.” Biotechnol. Bioeng. 62 (2): 216–224. https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2%3C216::AID-BIT12%3E3.0.CO;2-4.
Cox, H. H. J., and M. A. Deshusses. 2002. “Co-treatment of H2S and toluene in a biotrickling filter.” Chem. Eng. J. 87 (1): 101–110. https://doi.org/10.1016/S1385-8947(01)00222-4.
Cox, H. H. J., T. T. Nguyen, and M. A. Deshusses. 1998. “Elimination of toluene vapors in biotrickling filters: Performance and carbon balances.” In Proc., Annual Meeting and Exhibition of the Air and Waste Management Association, 15. Pittsburgh: Air and Waste Management Association.
Cox, H. H. J., T. T. Nguyen, and M. A. Deshusses. 2000. “Toluene degradation in the recycle liquid of biotrickling filters for air pollution control.” Appl. Microbiol. Biotechnol. 54 (1): 133–137. https://doi.org/10.1007/s002530000346.
Dedysh, S., and P. Dunfield. 2014. “Cultivation of methanotrophs.” In Hydrocarbon and lipid microbiology protocols, edited by T. J. Mcgenity, K. N. Timmis, and B. N. Fernandez. Berlin: Springer.
Detchanamurthy, S., and P. A. Gostomski. 2013. “Development of a modified differential biofiltration reactor with online sample and carbon dioxide monitoring system.” Asia-Pac. J. Chem. Eng. 8 (3): 414–424. https://doi.org/10.1002/apj.1674.
Giordano, C., F. Spennati, G. Mori, G. Munz, and C. Vannini. 2018. “The microbial community in a moving bed biotrickling filter operated to remove hydrogen sulfide from gas streams.” Syst. Appl. Microbiol. 41 (4): 399–407. https://doi.org/10.1016/j.syapm.2018.04.001.
Goto, S., and J. M. Smith. 1975. “Trickle-bed reactor performance. Part I: Holdup and mass transfer effects.” AIChE J. 21 (4): 706–713. https://doi.org/10.1002/aic.690210410.
He, Z., L. Zhou, G. Li, X. Zeng, T. An, G. Sheng, J. Fu, and Z. Bai. 2009. “Comparative study of the eliminating of waste gas containing toluene in twin biotrickling filters packed with molecular sieve and polyurethane foam.” J. Hazard. Mater. 167 (1–3): 275–281. https://doi.org/10.1016/j.jhazmat.2008.12.116.
Hwang, S.-J., and H.-M. Tang. 1997. “Kinetic behavior of the toluene biofiltration process.” J. Air Waste Manage. Assoc. 47 (6): 664–673. https://doi.org/10.1080/10473289.1997.10463926.
IEC (International Electrotechnical Commission). 2001. Degrees of protection provided by enclosures. IEC 60529:2001. Geneva: IEC.
Jiménez, L., S. Arriaga, and A. Aizpuru. 2016. “Assessing biofiltration repeatability: Statistical comparison of two identical toluene removal systems.” Environ. Technol. 37 (6): 681–693. https://doi.org/10.1080/09593330.2015.1077894.
Jorio, H., L. Bibeau, and M. Heitz. 2000. “Biofiltration of air contaminated by styrene: Effect of nitrogen supply, gas flow rate, and inlet concentration.” Environ. Sci. Technol. 34 (9): 1764–1771. https://doi.org/10.1021/es990911c.
Kim, S., and M. A. Deshusses. 2005. “Understanding the limits of H2S degrading biotrickling filters using a differential biotrickling filter.” Chem. Eng. J. 113 (2–3): 119–126. https://doi.org/10.1016/j.cej.2005.05.001.
Kim, S., and M. A. Deshusses. 2008. “Determination of mass transfer coefficients for packing materials used in biofilters and biotrickling filters for air pollution control. 1. Experimental results.” Chem. Eng. Sci. 63 (4): 841–855. https://doi.org/10.1016/j.ces.2007.10.011.
Krailas, S., Q. T. Pham, R. Amal, J. K. Jiang, and M. Heitz. 2000. “Effect of inlet mass loading, water and total bacteria count on methanol elimination using upward flow and downward flow biofilters.” J. Chem. Technol. Biotechnol. 75 (4): 299–305. https://doi.org/10.1002/(SICI)1097-4660(200004)75:4%3C299::AID-JCTB210%3E3.0.CO;2-P.
Kumar, M., B. S. Giri, K.-H. Kim, R. P. Singh, E. R. Rene, M. E. López, B. N. Rai, H. Singh, D. Prasad, and R. S. Singh. 2019. “Performance of a biofilter with compost and activated carbon based packing material for gas-phase toluene removal under extremely high loading rates.” Bioresour. Technol. 285 (Aug): 121317. https://doi.org/10.1016/j.biortech.2019.121317.
Lebrero, R., J. M. Estrada, R. Munoz, and G. Quijano. 2012. “Toluene mass transfer characterization in a biotrickling filter.” Biochem. Eng. J. 60 (Jan): 44–49. https://doi.org/10.1016/j.bej.2011.09.017.
Li, G. Y., Z. He, T. C. An, X. Y. Zeng, G. Y. Sheng, and J. Fu. 2008. “Comparative study of the elimination of toluene vapours in twin biotrickling filters using two microorganisms Bacillus cereus S1 and S2.” J. Chem. Technol. Biotechnol. 83 (7): 1019–1026. https://doi.org/10.1002/jctb.1908.
Liu, D., R. R. Andreasen, T. G. Poulsen, and A. Feilberg. 2015. “A comparative study of mass transfer coefficients of reduced volatile sulfur compounds for biotrickling filter packing materials.” Chem. Eng. J. 260 (Jan): 209–221. https://doi.org/10.1016/j.cej.2014.08.070.
López, M. E., E. R. Rene, L. Malhautier, J. Rocher, S. Bayle, M. C. Veiga, and C. Kennes. 2013. “One-stage biotrickling filter for the removal of a mixture of volatile pollutants from air: Performance and microbial community analysis.” Bioresour. Technol. 138 (Jun): 245–252. https://doi.org/10.1016/j.biortech.2013.03.136.
López de León, L. R., K. E. Deaton, and M. A. Deshusses. 2019. “Miniaturized biotrickling filters and capillary microbioreactors for process intensification of voc treatment with intended application to indoor air.” Environ. Sci. Technol. 53 (3): 1518–1526. https://doi.org/10.1021/acs.est.8b05209.
Maiti, R. N., P. K. Sen, and K. D. P. Nigam. 2004. “Trickle-bed reactors: Liquid distribution and flow texture.” Rev. Chem. Eng. 20 (1–2): 57–109. https://doi.org/10.1515/REVCE.2004.20.1-2.57.
McKelvey, J. M., and H. E. Hoelscher. 1957. “Apparatus for preparation of very dilute gas mixtures.” Anal. Chem. 29 (1): 123. https://doi.org/10.1021/ac60121a036.
Mederos, F. S., J. Ancheyta, and J. Chen. 2009. “Review on criteria to ensure ideal behaviors in trickle-bed reactors.” Appl. Catal., A 355 (1–2): 1–19. https://doi.org/10.1016/j.apcata.2008.11.018.
Mirpuri, R., W. Jones, and J. D. Bryers. 1997. “Toluene degradation kinetics for planktonic and biofilm-grown cells of Pseudomonas putida 54G.” Biotechnol. Bioeng. 53 (6): 535–546. https://doi.org/10.1002/(SICI)1097-0290(19970320)53:6%3C535::AID-BIT1%3E3.0.CO;2-N.
Misiaczek, O., J. Paca, M. Halecky, A. M. Gerrard, M. Sobotka, and C. R. Soccol. 2007. “Start-up and performance characteristics of a trickle bed reactor degrading toluene.” Braz. Arch. Biol. Technol. 50 (5): 871–877. https://doi.org/10.1590/S1516-89132007000500015.
Mohammed, I., T. Bauer, M. Schubert, and R. Lange. 2015. “Gas–liquid distribution in tubular reactors with solid foam packings.” Chem. Eng. Process. 88 (Feb): 10–18. https://doi.org/10.1016/j.cep.2014.11.016.
Nelson, G. O. 1971. Controlled test atmospheres: Principles and techniques. Ann Arbor, MI: Ann Arbor Science.
Ottengraf, S. P. P., and A. H. C. Van Den Oever. 1983. “Kinetics of organic-compound removal from waste gases with a biological filter.” Biotechnol. Bioeng. 25 (12): 3089–3102. https://doi.org/10.1002/bit.260251222.
Perez, J., J. L. Montesinos, and F. Godia. 2006. “Gas–liquid mass transfer in an up-flow cocurrent packed-bed biofilm reactor.” Biochem. Eng. J. 31 (3): 188–196. https://doi.org/10.1016/j.bej.2006.07.006.
Ranasinghe, M. A., and P. A. Gostomski. 2003. “A novel reactor for exploring the effect of water content on biofilter degradation rates.” Environ. Prog. 22 (2): 103–109. https://doi.org/10.1002/ep.670220212.
Rene, E. R., D. V. S. Murthy, and T. Swaminathan. 2005. “Performance evaluation of a compost biofilter treating toluene vapours.” Process Biochem. 40 (8): 2771–2779. https://doi.org/10.1016/j.procbio.2004.12.010.
Rocha-Rios, J., N. J. R. Kraakman, R. Kleerebezem, S. Revah, M. T. Kreutzer, and M. C. M. van Loosdrecht. 2013. “A capillary bioreactor to increase methane transfer and oxidation through Taylor flow formation and transfer vector addition.” Chem. Eng. J. 217 (Feb): 91–98. https://doi.org/10.1016/j.cej.2012.11.065.
Ryu, H. W., K.-S. Cho, and D. J. Chung. 2010. “Relationships between biomass, pressure drop, and performance in a polyurethane biofilter.” Bioresour. Technol. 101 (6): 1745–1751. https://doi.org/10.1016/j.biortech.2009.10.018.
Ryu, H. W., S. J. Kim, K.-S. Cho, and T. H. Lee. 2008. “Toluene degradation in a polyurethane biofilter at high loading.” Biotechnol. Bioprocess Eng. 13 (3): 360–365. https://doi.org/10.1007/s12257-008-0025-4.
Sander, R. 2015. “Compilation of Henry’s law constants (version 4.0) for water as solvent.” Atmos. Chem. Phys. 15 (8): 4399–4981. https://doi.org/10.5194/acp-15-4399-2015.
San-Valero, P., J. M. Penya-Roja, F. J. Alvarez-Hornos, and C. Gabaldon. 2014. “Modelling mass transfer properties in a biotrickling filter for the removal of isopropanol.” Chem. Eng. Sci. 108 (Apr): 47–56. https://doi.org/10.1016/j.ces.2013.12.033.
Shen, Y., L. G. Stehmeier, and G. Voordouw. 1998. “Identification of hydrocarbon-degrading bacteria in soil by reverse sample genome probing.” Appl. Environ. Microbiol. 64 (2): 637–645. https://doi.org/10.1128/AEM.64.2.637-645.1998.
Shukla, A. K., R. S. Singh, S. N. Upadhyay, and S. K. Dubey. 2011. “Substrate inhibition during bio-filtration of TCE using diazotrophic bacterial community.” Bioresour. Technol. 102 (3): 3561–3563. https://doi.org/10.1016/j.biortech.2010.09.037.
Singh, R. S., B. N. Rai, and S. N. Upadhyay. 2010. “Removal of toluene vapour from air stream using a biofilter packed with polyurethane foam.” Process Saf. Environ. Prot. 88 (5): 366–371. https://doi.org/10.1016/j.psep.2010.06.001.
Song, J. H., and K. A. Kinney. 2000. “Effect of vapor-phase bioreactor operation on biomass accumulation, distribution, and activity: Linking biofilm properties to bioreactor performance.” Biotechnol. Bioeng. 68 (5): 508–516. https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5%3C508::AID-BIT4%3E3.0.CO;2-P.
Sun, D. F., J. J. Li, M. Y. Xu, T. C. An, G. P. Sun, and J. Guo. 2013. “Toluene removal efficiency, process robustness, and bacterial diversity of a biotrickling filter inoculated with Burkholderia sp. Strain T3.” Biotechnol. Bioprocess Eng. 18 (1): 125–134. https://doi.org/10.1007/s12257-012-0253-5.
Thapa, C., P. Shakya, R. Shrestha, S. Pal, and P. Manandhar. 2019. “Isolation of polyhydroxybutyrate (PHB) producing bacteria, optimization of culture conditions for PHB production, extraction and characterization of PHB.” Nepal J. Biotechnol. 6 (1): 62–68. https://doi.org/10.3126/njb.v6i1.22339.
Tsuneda, S., H. Aikawa, H. Hayashi, A. Yuasa, and A. Hirata. 2003. “Extracellular polymeric substances responsible for bacterial adhesion onto solid surface.” FEMS Microbiol. Lett. 223 (2): 287–292. https://doi.org/10.1016/S0378-1097(03)00399-9.
Wang, L., C. Yang, Y. Cheng, J. Huang, H. Yang, G. Zeng, L. Lu, and S. He. 2014. “Enhanced removal of ethylbenzene from gas streams in biotrickling filters by Tween-20 and Zn(II).” J. Environ. Sci. 26 (12): 2500–2507. https://doi.org/10.1016/j.jes.2014.04.011.
Wang, Y.-F., Z.-S. Mao, and J. Chen. 1998. “Scale and variance of radial liquid maldistribution in trickle beds.” Chem. Eng. Sci. 53 (6): 1153–1162. https://doi.org/10.1016/S0009-2509(97)00403-X.
Weber, F. J., and S. Hartmans. 1996. “Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air.” Biotechnol. Bioeng. 50 (1): 91–97. https://doi.org/10.1002/(SICI)1097-0290(19960405)50:1%3C91::AID-BIT10%3E3.0.CO;2-A.
Zilli, M., E. Palazzi, L. Sene, A. Converti, and M. Del Borghi. 2001. “Toluene and styrene removal from air in biofilters.” Process Biochem. 37 (4): 423–429. https://doi.org/10.1016/S0032-9592(01)00228-X.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 3March 2021

History

Received: Aug 17, 2020
Accepted: Oct 19, 2020
Published online: Dec 26, 2020
Published in print: Mar 1, 2021
Discussion open until: May 26, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Agricultural and Biosystems Engineering, Camarines Norte State College, F. Pimentel Ave., Daet 4600, Camarines Norte, Philippines (corresponding author). ORCID: https://orcid.org/0000-0002-5370-1113. Email: [email protected]
Professor, Dept. of Chemical and Process Engineering, Univ. of Canterbury, 20 Kirkwood Ave., Ilam, Christchurch 8041, New Zealand. ORCID: https://orcid.org/0000-0001-6001-7128. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share