Abstract

Stable and efficient performance of biological treatment plants requires optimization of treatment system operating parameters. Among the various operating parameters, temperature is an important factor that influences the treatment system microbial community, which is responsible for the efficient removal of organic pollutants. This study investigated the effect of temperature on the microbiome of a submerged membrane bioreactor (SMBR) treating hospital wastewater (HWW). Specifically, the effect of temperatures (T=20°C, 15°C, and 10°C) on the removal of pharmaceuticals from HWW was examined. The maximum removal of chemical oxygen demand (70%) and ammoniacal nitrogen (75%) in the SMBR occurred at 20°C. The suspended solids (SS) concentration in the SMBR decreased from 8.5  gL1 SS at 20°C to 6.75  gL1 SS at 15°C and to 5.2  gL1 SS at 10°C. At the lowest temperature (10°C), there was moderate removal of ibuprofen, hydroxyl-ibuprofen estrone, and caffeine, but the removal of sulfamethoxazole, clarithromycin, diclofenac, hydroxy diclofenac, atenolol, venlafaxine, and desvenlafaxine was inhibited substantially relative to that at higher temperatures. The microbiome analysis indicated a reduction in the relative abundance of nitrifying bacteria (Nitrosospira, Rhodanobacter, and Sphingobium) at low temperatures, which appeared to be correlated with the decrease in performance. Analysis of the microeukaryote community revealed a massive decrease in the relative abundance of the ciliate population at the low temperature and an increase in the abundance of the fungal group (Basidiomycota and unclassified fungus). Despite the dominance of fungal groups at the lower temperature, the decreased SMBR performance suggests that those fungal groups did not play an important role in pharmaceutical degradation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC-STPGP-479160 Strategic Grant), Premier Tech, and Canada Research Chair for financial support.

References

Ahmed, Z., B. R. Lim, J. Cho, K. G. Song, K. P. Kim, and K. H. Ahn. 2008. “Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor: Effect of different carbon sources.” Water Res. 42 (1–2): 198–210. https://doi.org/10.1016/j.watres.2007.06.062.
Azzouz, A., and E. Ballesteros. 2013. “Influence of seasonal climate differences on the pharmaceutical, hormone and personal care product removal efficiency of a drinking water treatment plant.” Chemosphere 93 (9): 2046–2054. https://doi.org/10.1016/j.chemosphere.2013.07.037.
Buzzini, P., B. Turchetti, and A. Yurkov. 2018. “Extremophilic yeasts: The toughest yeasts around?” Yeast 35 (8): 487–497. https://doi.org/10.1002/yea.3314.
CEAEQ (Centre d'expertise en analyse environnementale du Québec). 2015. “Détermination des solides en suspension totaux et volatils: Méthode gravimétrique.” Accessed February 15, 2018. http://www.ceaeq.gouv.qc.ca/methodes/pdf/MA115SS12.pdf.
CEAEQ (Centre d'expertise en analyse environnementale du Québec). 2016. “Détermination de la demande chimique en oxygène: Méthode de reflux en système fermé suivi d’un dosage par colorimétrie avec le bichromate de potassium.” Accessed February 15, 2018. http://www.ceaeq.gouv.qc.ca/methodes/pdf/MA315DCO11.pdf.
Cetecioglu, Z., B. Ince, M. Gros, S. Rodriguez-Mozaz, D. Barceló, O. Ince, and D. Orhon. 2015. “Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater.” Sci. Total Environ. 536 (Dec): 667–674. https://doi.org/10.1016/j.scitotenv.2015.07.139.
Chen, Z., et al. 2020. “Performance of a novel multiple draft tubes airlift loop membrane bioreactor to treat ampicillin pharmaceutical wastewater under different temperatures.” Chem. Eng. J. 380 (Jan): 122521. https://doi.org/10.1016/j.cej.2019.122521.
Cirja, M., P. Ivashechkin, A. Schäffer, and P. F. Corvini. 2007. “Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR).” Rev. Environ. Sci. Biotechnol. 7 (1): 61–78. https://doi.org/10.1007/s11157-007-9121-8.
Cruz-Morato, C., D. Lucas, M. Llorca, S. Rodriguez-Mozaz, M. Gorga, M. Petrovic, D. Barcelo, T. Vicent, M. Sarra, and E. Marco-Urrea. 2014. “Hospital wastewater treatment by fungal bioreactor: Removal efficiency for pharmaceuticals and endocrine disruptor compounds.” Sci. Total Environ. 493 (Sep): 365–376. https://doi.org/10.1016/j.scitotenv.2014.05.117.
Daims, H., and M. Wagner. 2018. “Nitrospira.” Trends Microbiol. 26 (5): 462–463. https://doi.org/10.1016/j.tim.2018.02.001.
Frank, C. S., P. Langhammer, B. M. Fuchs, and J. Harder. 2011. “Ammonium and attachment of Rhodopirellula baltica.” Arch. Microbiol. 193 (5): 365–372. https://doi.org/10.1007/s00203-011-0681-1.
Gabet-Giraud, V. C., C. Miege, J. M. Choubert, S. M. Ruel, and M. Coquery. 2010. “Occurrence and removal of estrogens and beta blockers by various processes in wastewater treatment plants.” Sci. Total Environ. 408 (19): 4257–4269. https://doi.org/10.1016/j.scitotenv.2010.05.023.
Gao, J., J. Huang, W. Chen, B. Wang, Y. Wang, S. Deng, and G. Yu. 2016. “Fate and removal of typical pharmaceutical and personal care products in a wastewater treatment plant from Beijing: A mass balance study.” Front. Environ. Sci. Eng. 10 (3): 491–501. https://doi.org/10.1007/s11783-016-0837-y.
Guo, J., Y. Peng, H. Huang, S. Wang, S. Ge, J. Zhang, and Z. Wang. 2010. “Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater.” J. Hazard. Mater. 179 (1–3): 471–479. https://doi.org/10.1016/j.jhazmat.2010.03.027.
Hai, F. I., T. Karin, L. N. Nguyen, K. Jinguo, W. E. Price, and L. D. Nghiem. 2011. “Removal of micropollutants by membrane bioreactor under temperature variation.” J. Membr. Sci. 383 (1–2): 144–151. https://doi.org/10.1016/j.memsci.2011.08.047.
Hardy, C. M., E. S. Krull, D. M. Hartley, and R. L. Oliver. 2010. “Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool.” Mol. Ecol. 19 (1): 197–212. https://doi.org/10.1111/j.1365-294X.2009.04411.x.
Hemmati, A., M. M. Dolatabad, F. Naeimpoor, A. Pak, and T. Mohammdi. 2011. “Effect of hydraulic retention time and temperature on submerged membrane bioreactor (SMBR) performance.” Korean J. Chem. Eng. 29 (3): 369–376. https://doi.org/10.1007/s11814-011-0180-8.
Lajeunesse, A., S. A. Smyth, K. Barclay, S. Sauve, and C. Gagnon. 2012. “Distribution of antidepressant residues in wastewater and biosolids following different treatment processes by municipal wastewater treatment plants in Canada.” Water Res. 46 (17): 5600–5612. https://doi.org/10.1016/j.watres.2012.07.042.
Lin, A. Y.-C., C.-A. Lin, H.-H. Tung, and N. S. Chary. 2010. “Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments.” J. Hazard. Mater. 183 (1–3): 242–250. https://doi.org/10.1016/j.jhazmat.2010.07.017.
Nam, S.-W., D.-J. Choi, S.-K. Kim, N. Her, and K.-D. Zoh. 2014. “Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.” J. Hazard. Mater. 270 (Apr): 144–152. https://doi.org/10.1016/j.jhazmat.2014.01.037.
Okabe, K., H. Masuya, and N. Kanzaki. 2017. “Unintentional introductions of microscopic organisms associated with forest insects.” Biol. Invasions 19 (11): 3229–3242. https://doi.org/10.1007/s10530-017-1507-0.
Olicón-Hernández, D. R., J. González-López, and E. Aranda. 2017. “Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds.” Front. Microbiol. 8 (Sep): 1792. https://doi.org/10.3389/fmicb.2017.01792.
Park, N., B. J. Vanderford, S. A. Snyder, S. Sarp, S. D. Kim, and J. Cho. 2009. “Effective controls of micropollutants included in wastewater effluent using constructed wetlands under anoxic condition.” Ecol. Eng. 35 (3): 418–423. https://doi.org/10.1016/j.ecoleng.2008.10.004.
Pauli, W., K. Jax, and S. Berger. 2001. “Protozoa in wastewater treatment: Function and importance.” In Biodegradation and persistence, 203–252. New York: Springer.
Piché-Choquette, S., M. Khdhiri, and P. Constant. 2018. “Dose-response relationships between environmentally-relevant H2 concentrations and the biological sinks of H2, CH4 and CO in soil.” Soil Biol. Biochem. 123 (Aug): 190–199. https://doi.org/10.1016/j.soilbio.2018.05.008.
Prasertkulsak, S., C. Chiemchaisri, W. Chiemchaisri, T. Itonaga, and K. Yamamoto. 2016. “Removals of pharmaceutical compounds from hospital wastewater in membrane bioreactor operated under short hydraulic retention time.” Chemosphere 150 (May): 624–631. https://doi.org/10.1016/j.chemosphere.2016.01.031.
Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. Glöckner. 2012. “The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools.” Nucleic Acids Res. 41 (D1): D590–D596. https://doi.org/10.1093/nar/gks1219.
Ren, Y. X., K. Nakano, M. Nomura, N. Chiba, and O. Nishimura. 2007. “A thermodynamic analysis on adsorption of estrogens in activated sludge process.” Water Res. 41 (11): 2341–2348. https://doi.org/10.1016/j.watres.2007.01.058.
Rodriguez-Caballero, A., S. Hallin, C. Pahlson, M. Odlare, and E. Dahlquist. 2012. “Ammonia oxidizing bacterial community composition and process performance in wastewater treatment plants under low temperature conditions.” Water Sci. Technol. 65 (2): 197–204. https://doi.org/10.2166/wst.2012.643.
Sipma, J., B. Osuna, N. Collado, H. Monclús, G. Ferrero, J. Comas, and I. Rodriguez-Roda. 2010. “Comparison of removal of pharmaceuticals in MBR and activated sludge systems.” Desalination 250 (2): 653–659. https://doi.org/10.1016/j.desal.2009.06.073.
Sponza, D. T., and P. Demirden. 2007. “Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) processes.” Sep. Purif. Technol. 56 (1): 108–117. https://doi.org/10.1016/j.seppur.2006.07.013.
Suárez, S., R. Reif, J. M. Lema, and F. Omil. 2012. “Mass balance of pharmaceutical and personal care products in a pilot-scale single-sludge system: Influence of T, SRT and recirculation ratio.” Chemosphere 89 (2): 164–171. https://doi.org/10.1016/j.chemosphere.2012.05.094.
Sui, Q., J. Huang, S. Deng, W. Chen, and G. Yu. 2011. “Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in different biological wastewater treatment processes.” Environ. Sci. Technol. 45 (8): 3341–3348. https://doi.org/10.1021/es200248d.
Sun, Q., M. Lv, A. Hu, X. Yang, and C. P. Yu. 2014. “Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China.” J. Hazard. Mater. 277 (Jul): 69–75. https://doi.org/10.1016/j.jhazmat.2013.11.056.
Sundaresan, N., and L. Philip. 2008. “Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures.” Water Sci. Technol. 58 (4): 819–830. https://doi.org/10.2166/wst.2008.340.
Ten Hulscher, T. E. M., and G. Cornelissen. 1996. “Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants—A review.” Chemosphere 32 (4): 609–626. https://doi.org/10.1016/0045-6535(95)00345-2.
Tikariha, H., and H. J. Purohit. 2019. “Assembling a genome for novel nitrogen-fixing bacteria with capabilities for utilization of aromatic hydrocarbons.” Genomics 111 (6): 1824–1830. https://doi.org/10.1016/j.ygeno.2018.12.005.
Tiwari, B., B. Sellamuthu, Y. Ouarda, P. Drogui, R. D. Tyagi, and G. Buelna. 2017. “Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach.” Bioresour. Technol. 224 (Jan): 1–12. https://doi.org/10.1016/j.biortech.2016.11.042.
Tiwari, B., B. Sellamuthu, S. Piché-Choquette, P. Drogui, R. D. Tyagi, M. A. Vaudreuil, S. Sauvé, G. Buelna, and R. Dubé. 2019. “The bacterial community structure of submerged membrane bioreactor treating synthetic hospital wastewater.” Bioresour. Technol. 286 (Aug): 121362. https://doi.org/10.1016/j.biortech.2019.121362.
Tran, N. H., T. Urase, and O. Kusakabe. 2009. “The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds.” J. Hazard. Mater. 171 (1–3): 1051–1057. https://doi.org/10.1016/j.jhazmat.2009.06.114.
Větrovský, T., P. Baldrian, and D. Morais. 2018. “SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses.” Bioinformatics 34 (13): 2292–2294. https://doi.org/10.1093/bioinformatics/bty071.
Vieno, N., and M. Sillanpaa. 2014. “Fate of diclofenac in municipal wastewater treatment plant—A review.” Environ. Int. 69 (Aug): 28–39. https://doi.org/10.1016/j.envint.2014.03.021.
Vieno, N., T. Tuhkanen, and L. Kronberg. 2007. “Elimination of pharmaceuticals in sewage treatment plants in Finland.” Water Res. 41 (5): 1001–1012. https://doi.org/10.1016/j.watres.2006.12.017.
Wu, G., J. Geng, Y. Shi, L. Wang, K. Xu, and H. Ren. 2020. “Comparison of diclofenac transformation in enriched nitrifying sludge and heterotrophic sludge: Transformation rate, pathway, and role exploration.” Water Res. 184 (Oct): 116158. https://doi.org/10.1016/j.watres.2020.116158.
Xu, Y., X. Chen, Z. Yuan, and B.-J. Ni. 2018. “Modeling of pharmaceutical biotransformation by enriched nitrifying culture under different metabolic conditions.” Environ. Sci. Technol. 52 (5): 2835–2843. https://doi.org/10.1021/acs.est.8b00705.
Yang, M., D. Lu, B. Qin, Q. Liu, Y. Zhao, H. Liu, and J. Ma. 2018. “Highly efficient nitrogen removal of a coldness-resistant and low nutrient needed bacterium, Janthinobacterium sp. M-11.” Bioresour. Technol. 256 (May): 366–373. https://doi.org/10.1016/j.biortech.2018.02.049.
Yuan, J., W. Dong, F. Sun, and K. Zhao. 2018. “Low temperature effects on nitrification and nitrifier community structure in V-ASP for decentralized wastewater treatment and its improvement by bio-augmentation.” Environ. Sci. Pollut. Res. Int. 25 (7): 6584–6595. https://doi.org/10.1007/s11356-017-0927-9.
Zhang, C., G. Wang, and Z. Hu. 2014. “Changes in wastewater treatment performance and activated sludge properties of a membrane bioreactor at low temperature operation.” Environ. Sci. Processes Impacts 16 (9): 2199–2207. https://doi.org/10.1039/C4EM00174E.
Zhou, H., X. Li, G. Xu, and H. Yu. 2018. “Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature.” Sci. Total Environ. 643 (Dec): 225–237. https://doi.org/10.1016/j.scitotenv.2018.06.100.
Zhou, Q., H. Zhu, G. Bañuelos, B. Yan, Y. Liang, X. Yu, X. Cheng, and L. Chen. 2017. “Effects of vegetation and temperature on nutrient removal and microbiology in horizontal subsurface flow constructed wetlands for treatment of domestic sewage.” Water Air Soil Pollut. 228 (3): 95. https://doi.org/10.1007/s11270-017-3280-1.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 2February 2021

History

Received: Mar 4, 2020
Accepted: Sep 17, 2020
Published online: Dec 4, 2020
Published in print: Feb 1, 2021
Discussion open until: May 4, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Bhagyashree Tiwari, Ph.D. [email protected]
Institut National de la Recherche Scientifique-Eau, Terre et Environnement, 490, Rue de la Couronne, Québec, QC, Canada G1K9A9. Email: [email protected]
Départment de Radiologie, Radio-Oncologie et Médecine Nucléaire, Centre Hospitalier de l’Université de Montréal, 900, rue Saint-Denis, Local Pavillon R, Montréal, QC, Canada H2X 0A9. ORCID: https://orcid.org/0000-0002-7018-6854. Email: [email protected]
Institut National de la Recherche Scientifique-Institut Armand-Frappier, 531 Boul des Prairies, Laval, QC, Canada H7V 1B7. ORCID: https://orcid.org/0000-0002-7447-1177. Email: [email protected]
Patrick Drogui [email protected]
Professor, Institut National de la Recherche Scientifique-Eau, Terre et Environnement, 490, Rue de la Couronne, Québec, QC, Canada G1K9A9. Email: [email protected]
Rajeshwar D. Tyagi [email protected]
Professor, Institut National de la Recherche Scientifique-Eau, Terre et Environnement, 490, Rue de la Couronne, Québec, QC, Canada G1K9A9 (corresponding author). Email: [email protected]
Gerardo Buelna, Ph.D. [email protected]
Investissement Québec–Centre de Recherche Industrielle du Québec, 333 Franquet, Quebec City, QC, Canada G1P 4C7. Email: [email protected]
Marc Antoine Vaudreuil [email protected]
Dept. of Chemistry, Université de Montréal, Pavillon Roger-Gaudry, 2900, Blvd. Édouard-Montpetit, Montréal, QC, Canada H3C 3J7. Email: [email protected]
Sébastien Sauvé [email protected]
Professor, Dept. of Chemistry, Université de Montréal, Pavillon Roger-Gaudry 2900, Blvd. Édouard-Montpetit, Montréal, QC, Canada H3C 3J7. Email: [email protected]
Investissement Québec–Centre de Recherche Industrielle du Québec, 333 Franquet, Quebec City, QC, Canada G1P 4C7. Email: [email protected]
R. Y. Surampalli [email protected]
Professor, Dept. of Environmental, Global Institute for Energy, Environment and Sustainability, P.O. Box 14354, Lenexa, KS 66285. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share