Abstract

Nonaqueous phase liquids (NAPL) tend to be trapped within aquifers. The review first covers conventional technologies that rely on pumping water, hot water, and/or air sparging with vapor extraction. The review then addresses polymer and foam delivery, which are intended to directly add solutions to low-permeability zones, where NAPL resides. Based on data from the literature, the removal of hydrocarbons by any of the flushing techniques, including polymer and foams apply well for porous media whose hydraulic conductivity is greater than 104  m/s, excluding silt and clay materials. For those lower permeability soils, electrokinetics (EK) appears appropriate. EK relies on imposing a voltage of DC current across the soil, which would engender three types of flows: electromigration, which causes ions to move to the electrode of opposite sign; electrophoresis, which causes charged particles, such as negatively charged clay particles or bacteria (mostly negatively charged but also some positively charged) to the electrode of the opposite sign; and electroosmosis, which occurs only when a zeta potential exists in the soil (typical of clay and silt) that would cause the movement of water and potentially NAPL. EK could be used to deliver anionic surfactants through electromigration or nonionic surfactants through electroosmosis (in clay or silt). An emerging hydraulic technique is chaotic advection, and it maximizes the contact between the delivered solution and the soil region of interest. The main challenge of applying EK in field studies is the familiarity of operators and scalability, as the electrodes cannot be more than 15–20 m apart.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Acar, Y. B., and A. N. Alshawabkeh. 1993. “Principles of electrokinetic remediation” Environ. Sci. Technol. 27 (13): 2638–2647. https://doi.org/10.1021/es00049a002.
Acar, Y. B., M. F. Rabbi, and E. E. Ozsu. 1997. “Electrokinetic injection of ammonium and sulfate ions into sand and kaolinite beds.” J. Geotech. Geoenviron. Eng. 123 (3): 239–249. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(239).
Adeel, Z., and R. G. Luthy. 1995. “Sorption and transport kinetics of a nonionic surfactant through an aquifer sediment.” Environ. Sci. Technol. 29 (4): 1032–1042. https://doi.org/10.1021/es00004a025.
Aggelopoulos, C. A., A. Gkelios, M. I. Klapa, C. Kaltsonoudis, P. Svarnas, and C. D. Tsakiroglou. 2016. “Parametric analysis of the operation of a non-thermal plasma reactor for the remediation of NAPL-polluted soils.” Chem. Eng. J. 301 (Oct): 353–361. https://doi.org/10.1016/j.cej.2016.05.017.
Alshawabkeh, A. N. 2009. “Electrokinetic soil remediation: Challenges and opportunities.” Sep. Sci. Technol. 44 (10): 2171–2187. https://doi.org/10.1080/01496390902976681.
Alshawabkeh, A. N., and Y. B. Acar. 1996. “Electrokinetic remediation. II: Theoretical model.” J. Geotech. Eng. 122 (3): 186–196. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(186).
Asadollahfardi, G., and M. Rezaee. 2018. “Electrokinetic remediation of diesel-contaminated silty sand under continuous and periodic voltage application.” Environ. Eng. Res. 24 (3): 456–462. https://doi.org/10.4491/eer.2018.301.
ASTM. 2009. Standard test method for foaming properties of surface-active agents. ASTM D1173-1953. West Conshohocken, PA: ASTM.
ATSDR (Agency for Toxic Substances and Disease Registry). 1995. “Toxicological profile for polycyclic aromatic hydrocarbons.” Accessed August 1, 1995. https://www.atsdr.cdc.gov/toxprofiles/tp69.pdf.
ATSDR (Agency for Toxic Substances and Disease Registry). 2007. “Toxicological profile for xylene.” Accessed August 1, 2007. https://www.atsdr.cdc.gov/ToxProfiles/tp71.pdf.
ATSDR (Agency for Toxic Substances and Disease Registry). 2010. “Toxicological profile for ethylbenzene.” Accessed January 8, 2010. https://www.atsdr.cdc.gov/ToxProfiles/tp110.pdf.
ATSDR (Agency for Toxic Substances and Disease Registry). 2017. “Toxicological profile for toluene.” Accessed June 1, 2017. https://www.atsdr.cdc.gov/ToxProfiles/tp56.pdf.
Baghani, A. N., A. Sorooshian, M. Heydari, R. Sheikhi, S. Golbaz, Q. Ashournejad, M. Kermani, F. Golkhorshidi, A. Barkhordari, and A. J. Jafari. 2019. “A case study of BTEX characteristics and health effects by major point sources of pollution during winter in Iran.” Environ. Pollut. 247: 607–617. https://doi.org/10.1016/j.envpol.2019.01.070.
Bagtzoglou, A. C., and P. M. Oates. 2007. “Chaotic advection and enhanced groundwater remediation.” J. Mater. Civ. Eng. 19 (1): 75–83. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(75).
Balba, M. T., N. Al-Awadhi, and R. Al-Daher. 1998. “Bioremediation of oil-contaminated soil: Microbiological methods for feasibility assessment and field evaluation.” J. Microbiol. Methods 32 (2): 155–164. https://doi.org/10.1016/S0167-7012(98)00020-7.
Boufadel, M. C., S.-L. Lu, F. J. Molz, and D. Lavallee. 2000. “Multifractal scaling of the intrinsic permeability.” Water Resour. Res. 36 (11): 3211–3222. https://doi.org/10.1029/2000WR900208.
Boulakradeche, M. O., D. E. Akretche, C. Cameselle, and N. Hamidi. 2015. “Enhanced electrokinetic remediation of hydrophobic organics contaminated soils by the combination of non-ionic and ionic surfactants.” Electrochim. Acta 174 (Aug): 1057–1066. https://doi.org/10.1016/j.electacta.2015.06.091.
Bouzid, I., J. Maire, S. I. Ahmed, and N. Fatin-Rouge. 2018. “Enhanced remedial reagents delivery in unsaturated anisotropic soils using surfactant foam.” Chemosphere 210 (Aug): 977–986. https://doi.org/10.1016/j.chemosphere.2018.07.081.
Bruell, C. J., B. A. Segall, and M. T. Walsh. 1992. “Electroosomotic removal of gasoline hydrocarbons and TCE from clay.” J. Environ. Eng. 118 (1): 68–83. https://doi.org/10.1061/(ASCE)0733-9372(1992)118:1(68).
Carey, F. A. 1987. “Conformations of alkanes and cycloalkanes.” In Organic chemistry, 63. New York: McGraw-Hil.
Chauveteau, G., and N. Kohler. 1984. “Influence of microgels in polysaccharide solutions on their flow behavior through porous media.” Soc. Pet. Eng. J. 24 (3): 361–368. https://doi.org/10.2118/9295-PA.
Chauveteau, G., and A. Zaitoun. 1981. “Basic rheological behavior of xanthan polysaccharide solutions in porous media: Effects of pore size and polymer concentration.” In Proc., 1st European Symp. on Enhanced Oil Recovery, 197–212. Bournemouth, UK: Society of Petroleum Engineers.
Chen, Z., G. H. Huang, and A. Chakma. 1998. “Integrated environmental risk assessment for petroleum-contaminated sites—A North American case study.” Water Sci. Technol. 38 (4–5): 131–138. https://doi.org/10.2166/wst.1998.0602.
Chevalier, L. R., and J. Petersen. 1999. “Literature review of 2-D laboratory experiments in NAPL flow, transport, and remediation.” J. Soil Contam. 8 (1): 149–167. https://doi.org/10.1080/10588339991339289.
Chilingar, G. V., and M. Haroun. 2014. Electrokinetics for petroleum and environmental engineers. New York: Wiley.
Chowdiah, P., B. R. Misra, J. J. Kilbane Ii, V. J. Srivastava, and T. D. Hayes. 1998. “Foam propagation through soils for enhanced in-situ remediation.” J. Hazard. Mater. 62 (3): 265–280. https://doi.org/10.1016/S0304-3894(98)00191-5.
Couto, H. J. B., G. Massarani, E. C. Biscaia Jr., and G. L. Sant’Anna Jr. 2009. “Remediation of sandy soils using surfactant solutions and foams.” J. Hazard. Mater. 164 (2–3): 1325–1334. https://doi.org/10.1016/j.jhazmat.2008.09.129.
Cussler, E. L. 1997. Diffusion: Mass transfer in fluid systems. Cambridge, MA: Cambridge University Press.
da Rosa, C. F. C., D. M. G. Freire, and H. C. Ferraz. 2015. “Biosurfactant microfoam: Application in the removal of pollutants from soil.” J. Environ. Chem. Eng. 3 (1): 89–94. https://doi.org/10.1016/j.jece.2014.12.008.
Deshpande, S., B. J. Shiau, D. Wade, D. A. Sabatini, and J. H. Harwell. 1999. “Surfactant selection for enhancing ex situ soil washing.” Water Res. 33 (2): 351–360. https://doi.org/10.1016/S0043-1354(98)00234-6.
Domenico, P. A., and F. W. Schwartz. 1998. Physical and chemical hydrogeology. New York: Wiley.
Dowd, R. M. 1984. “Leaking underground storage tanks.” Environ. Sci. Technol. 18 (10): 309A–309A. https://doi.org/10.1021/es00128a714.
Fingas, M. 2016. “The fate of polycyclic aromatic hydrocarbons resulting from in-situ oil burns.” In Vol. 39 of Proc., 28th AMOP Seminar, 795–819. Halifax, NS: Environment Canada.
Gauglitz, P. A., F. Friedmann, S. I. Kam, and W. R. Rossen. 2002. “Foam generation in homogeneous porous media.” Chem. Eng. Sci. 57 (19): 4037–4052. https://doi.org/10.1016/S0009-2509(02)00340-8.
Gelhar, L. W. 1993. Vol. 390 of Stochastic subsurface hydrology. Englewood Cliffs, NJ: Prentice-Hall.
Gent, D. B., R. M. Bricka, A. N. Alshawabkeh, S. L. Larson, G. Fabian, and S. Granade. 2004. “Bench-and field-scale evaluation of chromium and cadmium extraction by electrokinetics.” J. Hazard. Mater. 110 (1–3): 53–62. https://doi.org/10.1016/j.jhazmat.2004.02.036.
Gill, R. T., M. J. Harbottle, J. W. N. Smith, and S. F. Thornton. 2014. “Electrokinetic-enhanced bioremediation of organic contaminants: A review of processes and environmental applications.” Chemosphere 107 (Jul): 31–42. https://doi.org/10.1016/j.chemosphere.2014.03.019.
Gomes, H. I., C. Dias-Ferreira, and A. B. Ribeiro. 2012. “Electrokinetic remediation of organochlorines in soil: Enhancement techniques and integration with other remediation technologies.” Chemosphere 87 (10): 1077–1090. https://doi.org/10.1016/j.chemosphere.2012.02.037.
Gruiz, K., T. Meggyes, and É. Fenyvesi. 2019. Engineering tools for environmental risk management: 4. Risk reduction technologies and case studies. Boca Raton, FL: CRC Press.
Hallenbeck, W. H., and R. E. Flowers. 1992. “Risk analysis for worker exposure to benzene.” Environ. Manage. 16 (3): 415–420. https://doi.org/10.1007/BF02400081.
Harbaugh, A., E. R. Banta, M. C. Hill, and M. G. McDonald. 2000. MODFLOW-2000, The US Geological Survey modular ground-water model—User guide to modularization concepts and the ground-water flow process. Washington, DC: USGS.
Hilfer, R. 1996. “Transport and relaxation phenomena in porous media.” Adv. Chem. Phys. 92 (Jan): 299–424.
Hsu, W.-L., H. Daiguji, D. E. Dunstan, M. R. Davidson, and D. J. E. Harvie. 2016. “Electrokinetics of the silica and aqueous electrolyte solution interface: Viscoelectric effects.” Adv. Colloid Interface Sci. 234 (Aug): 108–131. https://doi.org/10.1016/j.cis.2016.05.001.
Huang, C.-W., and C.-H. Chang. 2000. “A laboratory study on foam-enhanced surfactant solution flooding in removing n-pentadecane from contaminated columns.” Colloids Surf., A 173 (1–3): 171–179. https://doi.org/10.1016/S0927-7757(00)00604-X.
ITRC (Interstate Technology and Regulatory Council). 2009. Evaluating natural source zone depletion at sites with LNAPL. LNAPL-1. Washington, DC: ITRC.
Javanbakht, G., M. Arshadi, T. Qin, and L. Goual. 2017. “Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media.” Adv. Water Resour. 105 (Jul): 173–187. https://doi.org/10.1016/j.advwatres.2017.05.006.
Javanbakht, G., and L. Goual. 2016. “Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks.” J. Contam. Hydrol. 185 (Feb): 61–73. https://doi.org/10.1016/j.jconhyd.2016.01.003.
Jeong, S.-W., J. Jeong, and J. Kim. 2015. “Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.” J. Hazard. Mater. 286 (Apr): 164–170. https://doi.org/10.1016/j.jhazmat.2014.12.058.
Jones, C. J. F. P., J. Lamont-Black, and S. Glendinning. 2011. “Electrokinetic geosynthetics in hydraulic applications.” Geotext. Geomembr. 29 (4): 381–390. https://doi.org/10.1016/j.geotexmem.2010.11.011.
Jones, S. A., G. Laskaris, S. Vincent-Bonnieu, R. Farajzadeh, and W. R. Rossen. 2016. “Surfactant effect on foam: From core flood experiments to implicit-texture foam-model parameters.” In Proc., SPE Improved Oil Recovery Conf. Richardson, TX: Society of Petroleum Engineers.
Jones, S. W., and H. Aref. 1988. “Chaotic advection in pulsed source–sink systems.” Phys. Fluids 31 (3): 469–485. https://doi.org/10.1063/1.866828.
Kargar, N., A. R. Amani-Ghadim, A. A. Matin, G. Matin, and H. B. Buyukisik. 2020. “Abatement efficiency and fate of EPA-Listed PAHs in aqueous medium under simulated solar and UV-C irradiations, and combined process with TiO2 and H2O2.” Su Ürünleri Dergisi 37 (1): 15–27.
Karthick, A., B. Roy, and P. Chattopadhyay. 2019. “A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil.” J. Environ. Manage. 243 (Aug): 187–205. https://doi.org/10.1016/j.jenvman.2019.04.092.
Kaya, A., and Y. Yukselen. 2005. “Zeta potential of soils with surfactants and its relevance to electrokinetic remediation.” J. Hazard. Mater. 120 (1–3): 119–126. https://doi.org/10.1016/j.jhazmat.2004.12.023.
Khatib, Z. I., G. J. Hirasaki, and A. H. Falls. 1988. “Effects of capillary pressure on coalescence and phase mobilities in foams flowing through porous media.” SPE Reservoir Eng. 3 (3): 919–926. https://doi.org/10.2118/15442-PA.
Kilbane, J. J., C. Prasan, K. J. Kayser, M. Brij, K. A. Jackowski, V. J. Srivastava, G. N. Sethu, A. D. Nikolov, D. T. Wasan, and T. D. Hayes. 1997. “Remediation of contaminated soils using foams.” Land Contam. Reclam. 5 (1): 41–54.
King, E. G. 1944. “Foam formation in organic liquids.” J. Phys. Chem. 48 (3): 141–154. https://doi.org/10.1021/j150435a006.
Kuppusamy, S., N. R. Maddela, M. Megharaj, and K. Venkateswarlu. 2020a. “Fate of total petroleum hydrocarbons in the environment.” In Total petroleum hydrocarbons. New York: Springer.
Kuppusamy, S., N. R. Maddela, M. Megharaj, and K. Venkateswarlu. 2020b. “An overview of total petroleum hydrocarbons.” In Total petroleum hydrocarbons. New York: Springer.
Kuppusamy, S., P. Thavamani, K. Venkateswarlu, Y. B. Lee, R. Naidu, and M. Megharaj. 2017. “Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions.” Chemosphere 168 (Feb): 944–968. https://doi.org/10.1016/j.chemosphere.2016.10.115.
Los Angeles LNAPL Workgroup. 2015. Final report for the LA Basin LNAPL recoverability study. Torrance, CA: Western States Petroleum Association.
Lake, L. W. 1989. Enhanced oil recovery. Richardson, TX: Society of Petroleum Engineers.
Lamichhane, S., K. C. Bal Krishna, and R. Sarukkalige. 2017. “Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review.” J. Environ. Manage. 199 (Sep): 46–61. https://doi.org/10.1016/j.jenvman.2017.05.037.
Lapeyrouse, N., M. Liu, S. Zou, G. Booth, and C. L. Yestrebsky. 2019. “Remediation of chlorinated alkanes by vitamin B12 and zero-valent iron.” J. Chem. 2019: 1–8. https://doi.org/10.1155/2019/7565464.
Lari, K. S., G. B. Davis, J. L. Rayner, T. P. Bastow, and G. J. Puzon. 2019. “Natural source zone depletion of LNAPL: A critical review supporting modelling approaches.” Water Res. 157 (Jun): 630–646. https://doi.org/10.1016/j.watres.2019.04.001.
Lari, K. S., C. D. Johnston, J. L. Rayner, and G. B. Davis. 2018a. “Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials.” J. Hazard. Mater. 345 (Mar): 87–96. https://doi.org/10.1016/j.jhazmat.2017.11.006.
Lari, K. S., J. L. Rayner, and G. B. Davis. 2018b. “Towards characterizing LNAPL remediation endpoints.” J. Environ. Manage. 224 (Oct): 97–105. https://doi.org/10.1016/j.jenvman.2018.07.041.
Lee, Y.-C., M.-H. Choi, J.-I. Han, Y. L. Lim, and M. Lee. 2013. “A low-foaming and biodegradable surfactant as a soil-flushing agent for diesel-contaminated soil.” Sep. Sci. Technol. 48 (12): 1872–1880. https://doi.org/10.1080/01496395.2013.779711.
Li, X., S. I. Karakashev, G. M. Evans, and P. Stevenson. 2012. “Effect of environmental humidity on static foam stability.” Langmuir 28 (9): 4060–4068. https://doi.org/10.1021/la205101d.
LNAPL. 2005. Cost and performance. Washington, DC: Office of Solid Waste and Emergency Response, Environmental Protection Agency.
Longpré-Girard, M., R. Martel, T. Robert, R. Lefebvre, and J.-M. Lauzon. 2016. “2D sandbox experiments of surfactant foams for mobility control and enhanced LNAPL recovery in layered soils.” J. Contam. Hydrol. 193: 63–73. https://doi.org/10.1016/j.jconhyd.2016.09.001.
Lv, Q., Z. Li, B. Li, S. Li, and Q. Sun. 2015. “Study of nanoparticle–surfactant-stabilized foam as a fracturing fluid.” Ind. Eng. Chem. Res. 54 (38): 9468–9477. https://doi.org/10.1021/acs.iecr.5b02197.
Ma, K., L. Cui, Y. Dong, T. Wang, C. Da, G. J. Hirasaki, and S. L. Biswal. 2013. “Adsorption of cationic and anionic surfactants on natural and synthetic carbonate materials.” J. Colloid Interface Sci. 408 (Oct): 164–172. https://doi.org/10.1016/j.jcis.2013.07.006.
Ma, K., R. Liontas, C. A. Conn, G. J. Hirasaki, and S. L. Biswal. 2012. “Visualization of improved sweep with foam in heterogeneous porous media using microfluidics.” Soft Matter 8 (41): 10669–10675. https://doi.org/10.1039/c2sm25833a.
Mackay, D., W. Y. Shiu, and K. C. Ma. 1992. Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals. Vol. 2 of Polynuclear aromatic hydrocarbons, polychlorinated dioxins and dibenzofurans. Boca Raton, FL: CRC Press.
Maire, J., A. Coyer, and N. Fatin-Rouge. 2015. “Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLs.” J. Hazard. Mater. 299 (Dec): 630–638. https://doi.org/10.1016/j.jhazmat.2015.07.071.
Mao, X., R. Jiang, W. Xiao, and J. Yu. 2015. “Use of surfactants for the remediation of contaminated soils: A review.” J. Hazard. Mater. 285 (Mar): 419–435. https://doi.org/10.1016/j.jhazmat.2014.12.009.
Martel, R., A. Hébert, R. Lefebvre, P. Gélinas, and U. Gabriel. 2004. “Displacement and sweep efficiencies in a DNAPL recovery test using micellar and polymer solutions injected in a five-spot pattern.” J. Contam. Hydrol. 75 (1–2): 1–29. https://doi.org/10.1016/j.jconhyd.2004.03.007.
Maturi, K., K. R. Reddy, and C. Cameselle. 2009. “Surfactant-enhanced electrokinetic remediation of mixed contamination in low permeability soil.” Sep. Sci. Technol. 44 (10): 2385–2409. https://doi.org/10.1080/01496390902983745.
Mays, D. C., and R. M. Neupauer. 2012. “Plume spreading in groundwater by stretching and folding.” Water Resour. Res. 48 (7): W07501. https://doi.org/10.1029/2011WR011567.
Memon, M. K., K. A. Elraies, and M. I. Al-Mossawy. 2017. “Impact of new foam surfactant blend with water alternating gas injection on residual oil recovery.” J. Pet. Explor. Prod. Technol. 7 (3): 843–851. https://doi.org/10.1007/s13202-016-0303-1.
Millioli, V. S., E. L. C. Servulo, L. G. S. Sobral, and D. D. De Carvalho. 2009. “Bioremediation of crude oil-bearing soil: Evaluating the effect of rhamnolipid addition to soil toxicity and to crude oil biodegradation efficiency.” Global NEST J. 11 (2): 181–188.
Mitchell, J. K., and K. Soga. 1993. Fundamentals of soil behavior. New York: Wiley.
Molz, F. J., H. H. Liu, and J. Szulga. 1997. “Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions.” Water Resour. Res. 33 (10): 2273–2286. https://doi.org/10.1029/97WR01982.
Mulligan, C. N., and F. Eftekhari. 2003. “Remediation with surfactant foam of PCP-contaminated soil.” Eng. Geol. 70 (3–4): 269–279. https://doi.org/10.1016/S0013-7952(03)00095-4.
Neupauer, R. M., J. D. Meiss, and D. C. Mays. 2014. “Chaotic advection and reaction during engineered injection and extraction in heterogeneous porous media.” Water Resour. Res. 50 (2): 1433–1447. https://doi.org/10.1002/2013WR014057.
NFESC (Naval Facilities Engineering Command). 2001. Air sparging guidance document, 118. Washington, DC: NFESC.
Pan, Z., Y. R. Personna, M. C. Boufadel, T. King, J. Mason, L. Axe, and X. Geng. 2017. “Biodegradation of dispersed weathered Endicott oil in prince William sound water.” J. Environ. Eng. 143 (9): 04017044. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001238.
Paria, S. 2008. “Surfactant-enhanced remediation of organic contaminated soil and water.” Adv. Colloid Interface Sci. 138 (1): 24–58. https://doi.org/10.1016/j.cis.2007.11.001.
Parnian, M. M., and E. S. Ayat. 2008. “Surfactant remediation of LNAPL contaminated soil; effects of adding alkaline and foam producing substances (research note).” Iran. J. Chem. Eng. 5 (2): 34–44.
Patton, J. T. 1986. Enhanced oil recovery by CO/sub 2/ foam flooding. Final report, October 1, 1981-December 31, 1985. Las Cruces, NM: New Mexico State Univ.
Pazos, M., A. Plaza, M. Martín, and M. C. Lobo. 2012. “The impact of electrokinetic treatment on a loamy-sand soil properties.” Chem. Eng. J. 183 (Feb): 231–237. https://doi.org/10.1016/j.cej.2011.12.067.
Pazos, M., E. Rosales, T. Alcántara, J. Gómez, and M. A. Sanromán. 2010. “Decontamination of soils containing PAHs by electroremediation: A review.” J. Hazard. Mater. 177 (1–3): 1–11. https://doi.org/10.1016/j.jhazmat.2009.11.055.
Pennell, K. D., and L. M. Abriola. 2017. “Surfactant-enhanced aquifer remediation: Fundamental processes and practical applications.” In Fundamentals and applications of bioremediation. Abingdon, UK: Routledge.
Porretta, R., and F. Bianchi. 2016. “Profiles of relative permittivity and electrical conductivity from unsaturated soil water content models.” Ann. Geophys. 59 (3): 0320. https://doi.org/10.4401/ag-6990.
Portois, C., E. Essouayed, M. D. Annable, N. Guiserix, A. Joubert, and O. Atteia. 2018. “Field demonstration of foam injection to confine a chlorinated solvent source zone.” J. Contam. Hydrol. 214 (Jul): 16–23. https://doi.org/10.1016/j.jconhyd.2018.04.003.
Qiao, W., S. Ye, J. Wu, and M. Zhang. 2018. “Surfactant-enhanced electroosmotic flushing in a trichlorobenzene contaminated clayey soil.” Ground Water 56 (4): 673–679. https://doi.org/10.1111/gwat.12631.
Rao, P. S. C., M. D. Annable, R. K. Sillan, D. Dai, K. Hatfield, W. D. Graham, A. L. Wood, and C. G. Enfield. 1997. “Field-scale evaluation of in situ cosolvent flushing for enhanced aquifer remediation.” Water Resour. Res. 33 (12): 2673–2686. https://doi.org/10.1029/97WR02145.
Robert, T., R. Martel, S. H. Conrad, R. Lefebvre, and U. Gabriel. 2006. “Visualization of TCE recovery mechanisms using surfactant–polymer solutions in a two-dimensional heterogeneous sand model.” J. Contam. Hydrol. 86 (1–2): 3–31. https://doi.org/10.1016/j.jconhyd.2006.02.013.
Robert, T., R. Martel, R. Lefebvre, J.-M. Lauzon, and A. Morin. 2017. “Impact of heterogeneous properties of soil and LNAPL on surfactant-enhanced capillary desaturation.” J. Contam. Hydrol. 204 (Sep): 57–65. https://doi.org/10.1016/j.jconhyd.2017.07.006.
Roote, D. S. 1997. In situ flushing: Technology overview report. Pittsburgh: Ground-Water Remediation Technologies Analysis Center.
Rosen, M. J. 1989. Surfactants and interfacial phenomena. 3rd ed. Hoboken, NJ: Wiley.
Rothmel, R. K., R. W. Peters, E. St. Martin, and M. F. DeFlaun. 1998. “Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs.” Environ. Sci. Technol. 32 (11): 1667–1675. https://doi.org/10.1021/es970980w.
Ryu, B.-G., G.-Y. Park, J.-W. Yang, and K. Baek. 2011. “Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil.” Sep. Purif. Technol. 79 (2): 170–176. https://doi.org/10.1016/j.seppur.2011.02.025.
Saeedi, M., L. Y. Li, and J. R. Grace. 2020. “Effect of co-existing heavy metals and natural organic matter on sorption/desorption of polycyclic aromatic hydrocarbons in soil: A review.” Pollution 6 (1): 1–24. https://doi.org/10.22059/POLL.2019.284335.638.
Saichek, R. E., and K. R. Reddy. 2005. “Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: A review.” Crit. Rev. Environ. Sci. Technol. 35 (2): 115–192. https://doi.org/10.1080/10643380590900237.
Scanziani, A., K. Singh, T. Bultreys, B. Bijeljic, and M. J. Blunt. 2018. “In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock.” Adv. Water Resour. 121 (Nov): 446–455. https://doi.org/10.1016/j.advwatres.2018.09.010.
Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden. 2016. Environmental organic chemistry. New York: Wiley.
Shi, Z., and J. Chen. 2013. “The influence of defoamer on removal of PAHs in soil washing.” J. Air Waste Manage. Assoc. 63 (1): 80–86. https://doi.org/10.1080/10962247.2012.735627.
Simon, M., B. Saddington, Z. Zahiraleslamzadeh, and J. DiLorenzo. 1999. Multi-phase extraction: State-of-the-practice. Vienna, VA: Tetra Tech Environmental Management.
Sookhak Lari, K., J. L. Rayner, and G. B. Davis. 2019. “Toward optimizing LNAPL remediation.” Water Resour. Res. 55 (2): 923–936. https://doi.org/10.1029/2018WR023380.
Strbak, L. 2000. In situ flushing with surfactants and cosolvents. Washington, DC: USEPA.
Stylianou, M., J. H. Lee, K. Kostarelos, and T. Voskaridou. 2018. “Laboratory testing in support of surfactant-alternating-gas foam flood for NAPL recovery from shallow subsurface.” Bull. Environ. Contam. Toxicol. 101 (6): 744–750. https://doi.org/10.1007/s00128-018-2453-y.
Suthersan, S. S. 1997. Remediation engineering: Design concepts. Boca Raton, FL: CRC Press.
Szafranski, R., J. B. Lawson, G. J. Hirasaki, C. A. Miller, N. Akiya, S. King, R. E. Jackson, H. Meinardus, and J. Londergan. 1998. “Surfactant/foam process for improved efficiency of aquifer remediation.” In Structure, dynamics and properties of disperse colloidal systems. New York: Springer.
Tel, T., G. Károlyi, A. Péntek, I. Scheuring, Z. Toroczkai, C. Grebogi, and J. Kadtke. 2000. “Chaotic advection, diffusion, and reactions in open flows.” Chaos: Interdiscip. J. Nonlinear Sci. 10 (1): 89–98. https://doi.org/10.1063/1.166478.
Trefry, M. G., D. R. Lester, G. Metcalfe, A. Ord, and K. Regenauer-Lieb. 2012. “Toward enhanced subsurface intervention methods using chaotic advection.” J. Contam. Hydrol. 127 (1–4): 15–29. https://doi.org/10.1016/j.jconhyd.2011.04.006.
Truex, M. J., V. R. Vermeul, D. T. Adamson, M. Oostrom, L. Zhong, R. D. Mackley, B. G. Fritz, J. A. Horner, T. C. Johnson, and J. N. Thomle. 2015. “Field test of enhanced remedial amendment delivery using a shear-thinning fluid.” Ground Water Monit. Rem. 35 (3): 34–45. https://doi.org/10.1111/gwmr.12101.
Virkutyte, J., M. Sillanpää, and P. Latostenmaa. 2002. “Electrokinetic soil remediation—Critical overview.” Sci. Total Environ. 289 (1–3): 97–121. https://doi.org/10.1016/S0048-9697(01)01027-0.
Wang, H., and J. Chen. 2012. “Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: Effect of partition coefficient and sweep efficiency.” J. Environ. Sci. 24 (7): 1270–1277. https://doi.org/10.1016/S1001-0742(11)60881-4.
Wang, H., and J. Chen. 2014. “Experimental investigation on influence of foam mobility on polychlorinated biphenyl removal in foam flushing.” Environ. Technol. 35 (8): 993–1002. https://doi.org/10.1080/09593330.2013.858185.
Weast, R. C., and M. J. Astle. 1984. CRC handbook of chemistry and physics. Boca Raton, FL: CRC Press.
WHO. 2019. “Exposure to benzene: A major public health concern.” Accessed January 29, 2019. https://apps.who.int/iris/bitstream/handle/10665/329481/WHO-CED-PHE-EPE-19.4.2-eng.pdf?ua=1.
Zheng, X., and J. Jang. 2016. “Hydraulic properties of porous media saturated with nanoparticle-stabilized air-water foam.” Sustainability 8 (12): 1317. https://doi.org/10.3390/su8121317.
Zhong, L., M. Oostrom, T. W. Wietsma, and M. A. Covert. 2008. “Enhanced remedial amendment delivery through fluid viscosity modifications: Experiments and numerical simulations.” J. Contam. Hydrol. 101 (1–4): 29–41. https://doi.org/10.1016/j.jconhyd.2008.07.007.
Zhong, L., J. Szecsody, M. Oostrom, M. Truex, X. Shen, and X. Li. 2011. “Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam.” J. Hazard. Mater. 191 (1–3): 249–257. https://doi.org/10.1016/j.jhazmat.2011.04.074.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 3March 2021

History

Published online: Dec 16, 2020
Published in print: Mar 1, 2021
Discussion open until: May 16, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Michel C. Boufadel, F.ASCE [email protected]
Professor and Director of Center for Natural Resources, Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102 (corresponding author). Email: [email protected]
Ph.D. Student, Center for Natural Resources, Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102. ORCID: https://orcid.org/0000-0003-0616-8536. Email: [email protected]
Meghana Parameswarappa Jayalakshmamma [email protected]
Graduate Student, Center for Natural Resources, Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102. Email: [email protected]
Charbel Abou Khalil [email protected]
Ph.D. Student, Center for Natural Resources, Dept. of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102. Email: [email protected]
Stewart Abrams [email protected]
Director, Langan Engineering and Environmental Services, Inc., 300 Kimball Dr., Parsippany, NJ 07054. Email: [email protected]
Engineer, ExxonMobil Upstream Research Company, 22777 Springwoods Village Pkwy., Houston, TX 77389. Email: [email protected]
Technical Advisor, Imperial Oil Limited, 505 Quarry Park Blvd., Calgary, AB, Canada T2C 5N1. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share