Technical Papers
Sep 28, 2020

Harvesting Microalgal Biomass from a Cultured Algae-Based Wastewater Pond System

Publication: Journal of Environmental Engineering
Volume 146, Issue 12

Abstract

Wastewater stabilization ponds (WSPs) are a popular and economical method to treat wastewater. In the current study, algae-treated effluent from WSPs was used to compare microalgal biomass harvesting methods (aluminum sulfate coagulation and chitosan flocculation) and microalgal biomass drying methods (sun drying, oven drying, and freeze drying). The physicochemical characteristics of the supernatants resulting from microalgal biomass harvesting were determined and the microbial composition of the harvested microalgal biomass was investigated using next-generation sequencing. The optimal chitosan and alum concentrations to harvest microalgal biomass were 0.368 and 9.96  g/L, respectively. The calculated optimal exposure period was 2 h. The harvest microalgal biomass with alum caused a decrease in the sulfate concentration (68.44  mg/L) and nitrogen (below detection limit), while the orthophosphate (14.93  mg/L), iron (0.12  mg/L), and total carbon concentration (327.78  mg/L) increased in comparison to the positive control. Furthermore, harvesting the microalgal biomass with chitosan resulted in a decreased sodium (155.17  mg/L) and magnesium concentration (12.40  mg/L), while an increase in ammonia (27.57  mg/L), total carbon (182.04  mg/L), and iron concentration (0.16  mg/L) was observed. The dominant microbial phyla in the positive control were Bacteroidetes (0.242) and Proteobacteria (0.340). Cyanobacteria (0.725) was dominant in the alum-harvested microalgal biomass and Proteobacteria (0.504) was dominant in the chitosan-harvested microalgal biomass. Drying the microalgal biomass to 0.1 NTU using the sun- and oven-drying methods would require 9 days and 25 h, respectively. The freeze-drying method was not able to dehydrate the microalgal biomass to 0.1 NTU. Depending on the application of the dried microalgal biomass, in this case as potential animal feed or soil fertilizer, the sun-drying method may be the superior method because higher-quality nutrients of the microalgal biomass would be retained, while the oven-drying method would require less time but could potentially destroy most of the nutrients.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. These include all 16S metagenomic sequencing raw reads, as well as statistical analyses applied.

Acknowledgments

This research was supported by the African Development Bank, National Research Foundation (NRF South Africa), and the Municipality of Eden. The authors also want to thank the unknown referees for critically reviewing the manuscript and suggesting useful changes.

References

Abdel-Raouf, N., A. A. Al-Homaidan, and I. B. M. Ibraheem. 2012. “Microalgae and wastewater treatment.” Saudi J. Biol. Sci. 19 (3): 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005.
Acién, F. G., C. Gómez-Serrano, M. D. M. Morales-Amaral, J. M. Fernández-Sevilla, and E. Molina-Grima. 2016. “Wastewater treatment using microalgae: How realistic a contribution might it be to significant urban wastewater treatment?” Appl. Microbiol. Biotechnol. 100 (21): 9013–9022. https://doi.org/10.1007/s00253-016-7835-7.
Barros, A. I., A. L. Gonçalves, M. Simões, and J. C. Pires. 2015. “Harvesting techniques applied to microalgae: A review.” Renewable Sustainable Energy Rev. 41 (Jan): 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037.
Beach, E. S., M. J. Eckelman, Z. Cui, L. Brentner, and J. B. Zimmerman. 2012. “Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans.” Bioresour. Technol. 121 (Oct): 445–449. https://doi.org/10.1016/j.biortech.2012.06.012.
Benemann, J. R., J. C. Weissman, B. L. Koopman, and W. J. Oswald. 1977. “Energy production by microbial photosynthesis.” Nature 268 (5615): 19. https://doi.org/10.1038/268019a0.
Borowitzka, M. A., and N. R. Moheimani. 2013. Vol. 5 of Algae for biofuels and energy, 133–152. Dordrecht, Netherlands: Springer.
Bothe, H., O. Schmitz, M. G. Yates, and W. E. Newton. 2010. “Nitrogen fixation and hydrogen metabolism in cyanobacteria.” Microbiol. Mol. Biol. Rev. 74 (4): 529–551. https://doi.org/10.1128/MMBR.00033-10.
Brennan, L., and P. Owende. 2010. “Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products.” Renewable Sustainable Energy Rev. 14 (2): 557–577. https://doi.org/10.1016/j.rser.2009.10.009.
Brentner, L. B., M. J. Eckelman, and J. B. Zimmerman. 2011. “Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.” Environ. Sci. Technol. 45 (16): 7060–7067. https://doi.org/10.1021/es2006995.
Burton, T., H. Lyons, Y. Lerat, M. Stanley, and M. B. Rasmussen. 2009. A review of the potential of marine algae as a source of biofuel in Ireland. Dublin, Ireland: Sustainable Energy Ireland.
Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, and G. A. Huttley. 2010. “QIIME allows analysis of high-throughput community sequencing data.” Nat. Methods 7 (5): 335. https://doi.org/10.1038/nmeth.f.303.
Chao, W. A., Z. H. Xue-Qiang, T. Aizawa, M. Sunairi, and S. H. Ren-Fang. 2013. “High aluminum tolerance of Rhodotorula sp. RS1 is associated with thickening of the cell wall rather than chelation of aluminum ions.” Pedosphere 23 (1): 29–38. https://doi.org/10.1016/S1002-0160(12)60077-0.
Chen, L., C. Wang, W. Wang, and J. Wei. 2013. “Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system.” Bioresour. Technol. 133 (Apr): 9–15. https://doi.org/10.1016/j.biortech.2013.01.071.
Chochorek, A., A. Bobrowski, Z. Kiralyova, and J. Mocak. 2010. “ICP-OES determination of select metals in surface water—A metrological study.” Polish J. Environ. Stud. 19 (1): 59–64.
Chong, M. F. 2012. “Direct flocculation process for wastewater treatment.” In Advances in water treatment and pollution prevention, 201–230. Dordrecht, Netherlands: Springer.
Codd, G. A., S. G. Bell, K. Kaya, C. J. Ward, K. A. Beattie, and J. S. Metcalf. 1999. “Cyanobacterial toxins, exposure routes and human health.” Eur. J. Phycol. 34 (4): 405–415. https://doi.org/10.1080/09670269910001736462.
Coder, D. M., and M. P. Starr. 1978. “Antagonistic association of the Chlorellavorus bacterium (‘Bdellovibrio’ chlorellavorus) with Chlorella vulgaris.Curr. Microbiol. 1 (1): 59–64. https://doi.org/10.1007/BF02601710.
Craggs, R. J., S. Heubeck, T. J. Lundquist, and J. R. Benemann. 2011. “Algal biofuels from wastewater treatment high rate algal ponds.” Water Sci. Technol. 63 (4): 660–665.
Dixon, R. A., M. Al-Nazawi, and G. Alderson. 2004. “Permeabilising effects of sub-inhibitory concentrations of microcystin on the growth of Escherichia coli.” FEMS Microbiol. Lett. 230 (2): 167–170. https://doi.org/10.1016/S0378-1097(03)00910-8.
Engin, G. O., and I. Demir. 2006. “Cost analysis of alternative methods for wastewater handling in small communities.” J. Environ. Manage. 79 (4): 357–363. https://doi.org/10.1016/j.jenvman.2005.07.011.
Esquivel, B. C., and D. Voltolina. 1996. “Nutritional value of preserved microalgae for subadult Mytilus galloprovincialis.” J. World Aquacult Soc. 27 (1): 113–118. https://doi.org/10.1111/j.1749-7345.1996.tb00601.x.
Flaten, T. P. 2001. “Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water.” Brain Res. 55 (2): 187–196. https://doi.org/10.1016/S0361-9230(01)00459-2.
Gabriel, J., P. Baldrian, K. Hladíková, and M. Háková. 2001. “Copper sorption by native and modified pellets of wood-rotting basidiomycetes.” Lett. Appl. Microbiol. 32 (3): 194–198. https://doi.org/10.1046/j.1472-765x.2001.00888.x.
Grima, E. M., E. H. Belarbi, F. A. Fernández, A. R. Medina, and Y. Chisti. 2003. “Recovery of microalgal biomass and metabolites: Process options and economics.” Biotechnol. Adv. 20 (7–8): 491–515. https://doi.org/10.1016/S0734-9750(02)00050-2.
Gross, M., W. Henry, C. Michael, and Z. Wen. 2013. “Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.” Bioresour. Technol. 150 (Dec): 195–201. https://doi.org/10.1016/j.biortech.2013.10.016.
Guibal, E., and J. Roussy. 2007. “Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan).” React. Funct. Polym. 67 (1): 33–42. https://doi.org/10.1016/j.reactfunctpolym.2006.08.008.
Haapapuro, E. R., N. D. Barnard, and M. Simon. 1997. “Animal waste used as livestock feed: Dangers to human health.” Preventive Med. 26 (5): 599–602. https://doi.org/10.1006/pmed.1997.0220.
He, G., J. Lin, Q. Liu, J. Zhang, and J. Wu. 2012. “The effects of aluminum stress on bacterial community diversity in acidic red soils by polymerase chain reaction (PCR)-amplified restriction fragment length polymorphism.” Afr. J. Microbiol. Res. 6 (15): 3707–3715. https://doi.org/10.5897/AJMR12.347.
Heasman, M., J. Diemar, W. O’connor, T. Sushames, and L. Foulkes. 2000. “Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs—A summary.” Aquacult. Res. 31 (8–9): 637–659. https://doi.org/10.1046/j.1365-2109.2000.00492.x.
Hernandez, J. P., L. E. de-Bashan, D. J. Rodriguez, Y. Rodriguez, and Y. Bashan. 2009. “Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils.” Eur. J. Soil Biol. 45 (1): 88–93. https://doi.org/10.1016/j.ejsobi.2008.08.004.
Illmer, P., and C. Erlebach. 2003. “Influence of Al on growth, cell size and content of intracellular water of Arthrobacter sp. PI/1-95.” Antonie van Leeuwenhoek 84 (3): 239–246. https://doi.org/10.1023/A:1026024428451.
Jadia, C. D., and M. H. Fulekar. 2009. “Phytoremediation of heavy metals: Recent techniques.” Afr. J. Biotechnol. 8 (6): 921–928.
Johnes, P. J., and A. L. Heathwaite. 1992. “A procedure for the simultaneous determination of total nitrogen and total phosphorus in freshwater samples using persulphate microwave digestion.” Water Res. 26 (10): 1281–1287.
Joo, D. J., W. S. Shin, J. H. Choi, S. J. Choi, M. C. Kim, M. H. Han, T. W. Ha, and Y. H. Kim. 2007. “Decolorization of reactive dyes using inorganic coagulants and synthetic polymer.” Dyes Pigm. 73 (1): 59–64. https://doi.org/10.1016/j.dyepig.2005.10.011.
Kaseamchochoung, C., P. Lertsutthiwong, and C. Phalakornkule. 2006. “Influence of chitosan characteristics and environmental conditions on flocculation of anaerobic sludge.” Water Environ. Res. 78 (11): 2210–2216. https://doi.org/10.2175/106143005X72830.
Khan, S., Q. Cao, Y. M. Zheng, Y. Z. Huang, and Y. G. Zhu. 2008. “Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China.” Environ. Pollut. 152 (3): 686–692. https://doi.org/10.1016/j.envpol.2007.06.056.
Kinraide, T. B., and B. K. Sweeney. 2003. “Proton alleviation of growth inhibition by toxic metals (Al, La, Cu) in rhizobia.” Soil Biol. Biochem. 35 (2): 199–205. https://doi.org/10.1016/S0038-0717(02)00246-8.
Koppová, I., M. Bureš, and J. Šimůnek. 2012. “Intestinal bacterial population of healthy rats during the administration of chitosan and chitooligosaccharides.” Folia Microbiologica 57 (4): 295–299. https://doi.org/10.1007/s12223-012-0129-2.
Lertsittichai, S., P. Lertsutthiwong, and C. Phalakornkule. 2007. “Improvement of upflow anaerobic sludge bed performance using chitosan.” Water Environ. Res. 79 (7): 801–807.
Lertsutthiwong, P., N. C. How, S. Chandrkrachang, and W. F. Stevens. 2002. “Effect of chemical treatment on the characteristics of shrimp chitosan.” J. Met. Mater. Miner. 12 (1): 11–18.
Lertsutthiwong, P., S. Sutti, and S. Powtongsook. 2009. “Optimization of chitosan flocculation for phytoplankton removal in shrimp culture ponds.” Aquacult. Eng. 41 (3): 188–193.
Liu, H., Y. Du, X. Wang, and L. Sun. 2004. “Chitosan kills bacteria through cell membrane damage.” Int. J. Food Microbiol. 95 (2): 147–155. https://doi.org/10.1016/j.ijfoodmicro.2004.01.022.
Lundquist, T. J., I. C. Woertz, N. W. T. Quinn, and J. R. Benemann. 2010. A realistic technology and engineering assessment of algae biofuel production. Berkeley, CA: Energy Biosciences Institute.
Mahapatra, D. M., H. N. Chanakya, and T. V. Ramachandra. 2013. “Treatment efficacy of algae-based sewage treatment plants.” Environ. Monit. Assess. 185 (9): 7145–7164. https://doi.org/10.1007/s10661-013-3090-x.
Margeson, J. H., W. J. Mitchell, J. C. Suggs, and M. R. Midgett. 1982. “Integrated sampling and analysis methods for determining NOx emissions at electric utility plants.” J. Air Pollut. Control Assoc. 32 (12): 1210–1215. https://doi.org/10.1080/00022470.1982.10465533.
Marinho-Soriano, E., P. C. Fonseca, M. A. A. Carneiro, and W. S. C. Moreira. 2006. “Seasonal variation in the chemical composition of two tropical seaweeds.” Bioresour. Technol. 97 (18): 2402–2406. https://doi.org/10.1016/j.biortech.2005.10.014.
Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. “Microalgae for biodiesel production and other applications: A review.” Renewable Sustainable Energy Rev. 14 (1): 217–232. https://doi.org/10.1016/j.rser.2009.07.020.
Mino, T. V., M. C. M. van Loosdrecht, and J. J. Heijnen. 1998. “Microbiology and biochemistry of the enhanced biological phosphate removal process.” Water Res. 32 (11): 3193–3207. https://doi.org/10.1016/S0043-1354(98)00129-8.
Mulbry, W., E. K. Westhead, C. Pizarro, and L. Sikora. 2005. “Recycling of manure nutrients: Use of algal biomass from dairy manure treatment as a slow release fertilizer.” Bioresour. Technol. 96 (4): 451–458. https://doi.org/10.1016/j.biortech.2004.05.026.
Oberholster, P. J., P. H. Cheng, B. Genthe, and M. Steyn. 2019. “The environmental feasibility of low-cost algae-based sewage treatment as a climate change adaption measure in rural areas of SADC countries.” J. Appl. Phycol. 31 (1): 355–363. https://doi.org/10.1007/s10811-018-1554-7.
Olguín, E. J. 2003. “Phycoremediation: Key issues for cost-effective nutrient removal processes.” Biotechnol. Adv. 22 (1–2): 81–91. https://doi.org/10.1016/S0734-9750(03)00130-7.
Oswald, W. J. 1988. “Large-scale algal culture systems (engineering aspects).” In Micro-algal biotechnology, edited by L. J. Borowitzka and M. A. Borowitzka, 357–394. Cambridge, UK: Cambridge University Press.
Panhwar, Q. A., U. A. Naher, O. Radziah, J. Shamshuddin, and I. M. Razi. 2015. “Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.” Molecules 20 (3): 3628–3646. https://doi.org/10.3390/molecules20033628.
Patil, V., K. Q. Tran, and H. R. Giselrød. 2008. “Towards sustainable production of biofuels from microalgae.” Int. J. Mol. Sci. 9 (7): 1188–1195. https://doi.org/10.3390/ijms9071188.
Pereira, H., P. C. Lemos, M. A. Reis, J. P. Crespo, M. J. Carrondo, and H. Santos. 1996. “Model for carbon metabolism in biological phosphorus removal processes based on in vivo13C-NMR labelling experiments.” Water Res. 30 (9): 2128–2138. https://doi.org/10.1016/0043-1354(96)00035-8.
Pienkos, P. T., and A. L. Darzins. 2009. “The promise and challenges of microalgal-derived biofuels.” Biofuels, Bioprod. Biorefin. 3 (4): 431–440. https://doi.org/10.1002/bbb.159.
Rashid, N., S. U. Rehman, and J. I. Han. 2013. “Rapid harvesting of freshwater microalgae using chitosan.” Process Biochem. 48 (7): 1107–1110. https://doi.org/10.1016/j.procbio.2013.04.018.
Roleda, M. Y., S. P. Slocombe, R. J. Leakey, J. G. Day, E. M. Bell, and M. S. Stanley. 2013. “Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy.” Bioresour. Technol. 129 (Feb): 439–449. https://doi.org/10.1016/j.biortech.2012.11.043.
Rossignol, N., L. Vandanjon, P. Jaouen, and F. Quemeneur. 1999. “Membrane technology for the continuous separation microalgae/culture medium: Compared performances of cross-flow microfiltration and ultrafiltration.” Aquacult. Eng. 20 (3): 191–208. https://doi.org/10.1016/S0144-8609(99)00018-7.
Roussy, J., M. Van Vooren, B. A. Dempsey, and E. Guibal. 2005. “Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions.” Water Res. 39 (14): 3247–3258. https://doi.org/10.1016/j.watres.2005.05.039.
Schwartz, R. E., C. F. Hirsch, D. F. Sesin, J. E. Flor, M. Chartrain, R. E. Fromtling, and K. Yudin. 1990. “Pharmaceuticals from cultured algae.” J. Ind. Microbiol. 5 (2–3): 113–123. https://doi.org/10.1007/BF01573860.
Sharma, K. P., S. Sharma, S. Sharma, P. K. Singh, S. Kumar, R. Grover, and P. K. Sharma. 2007. “A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests.” Chemosphere 69 (1): 48–54. https://doi.org/10.1016/j.chemosphere.2007.04.086.
Show, K. Y., D. J. Lee, and J. S. Chang. 2013. “Algal biomass dehydration.” Bioresour. Technol. 135 (May): 720–729. https://doi.org/10.1016/j.biortech.2012.08.021.
Šimůnek, J., G. Tishchenko, B. Hodrová, and H. Bartoňová. 2006. “Effect of chitosan on the growth of human colonic bacteria.” Folia Microbiologica 51 (4): 306–308. https://doi.org/10.1007/BF02931820.
Skjånes, K., C. Rebours, and P. Lindblad. 2013. “Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process.” Crit. Rev. Biotechnol. 33 (2): 172–215. https://doi.org/10.3109/07388551.2012.681625.
Starr, R. C. 1964. “The culture collection of algae at Indiana University.” Am. J. Bot. 51 (9): 1013–1044. https://doi.org/10.1002/j.1537-2197.1964.tb06731.x.
Steyn, M., P. Jagals, and B. Genthe. 2004. “Assessment of microbial infection risks posed by ingestion of water during domestic water use and full-contact recreation in a mid-southern African region.” Water Sci. Technol. 50 (1): 301–308.
Su, Y., A. Mennerich, and B. Urban. 2011. “Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture.” Water Res. 45 (11): 3351–3358. https://doi.org/10.1016/j.watres.2011.03.046.
Suopajärvi, T., H. Liimatainen, O. Hormi, and J. Niinimäki. 2013. “Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses.” Chem. Eng. J. 231 (Sep): 59–67. https://doi.org/10.1016/j.cej.2013.07.010.
Suzuki, T., S. Tamura, H. Nakanishi, M. Tashiro, N. K. Nishizawa, and E. Yoshimura. 2007. “Reduction of aluminum toxicity by 2-isopropylmalic acid in the budding yeast Saccharomyces cerevisiae.” Biol. Trace Elem. Res. 120 (1–3): 257–263. https://doi.org/10.1007/s12011-007-8011-9.
Szyguła, A., E. Guibal, M. A. Palacín, M. Ruiz, and A. M. Sastre. 2009. “Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan.” J. Environ. Manage. 90 (10): 2979–2986.
Taiganides, E. P. 1992. Pig waste management and recycling: The Singapore experience. Ottawa: International Development Research Centre.
Tiwari, S. K., G. Manoj, V. Sharma, G. Sivaram, R. Saikant, A. Bardia, and C. M. Habibullah. 2010. “Relevance of Helicobacter pylori genotypes in gastric pathology and its association with plasma malondialdehyde and nitric oxide levels.” Inflammopharmacology 18 (2): 59–64.
Uduman, N., Y. Qi, M. K. Danquah, G. M. Forde, and A. Hoadley. 2010. “Dewatering of microalgal cultures: A major bottleneck to algae-based fuels.” J. Renewable Sustainable Energy 2 (1): 012701. https://doi.org/10.1063/1.3294480.
US EPA. 1983. Project summary utility FGD survey: October. Cincinnati: EPA.
Valdor, R., and M. Aboal. 2007. “Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria.” Toxicon 49 (6): 769–779. https://doi.org/10.1016/j.toxicon.2006.11.025.
Vandamme, D., I. Foubert, B. Meesschaert, and K. Muylaert. 2010. “Flocculation of microalgae using cationic starch.” J. Appl. Phycol. 22 (4): 525–530. https://doi.org/10.1007/s10811-009-9488-8.
Vessey, J. K. 2003. “Plant growth promoting rhizobacteria as biofertilizers.” Plant Soil 255 (2): 571–586. https://doi.org/10.1023/A:1026037216893.
Viswanathan, T., S. Mani, K. C. Das, S. Chinnasamy, and A. Bhatnagar. 2011. “Drying characteristics of a microalgae consortium developed for biofuels production.” Trans. ASABE 54 (6): 2245–2252. https://doi.org/10.13031/2013.40637.
Wibowo, S., G. Velazquez, V. Savant, and J. A. Torres. 2007. “Effect of chitosan type on protein and water recovery efficiency from surimi wash water treated with chitosan–alginate complexes.” Bioresour. Technol. 98 (3): 539–545. https://doi.org/10.1016/j.biortech.2006.02.014.
Wileman, A., A. Ozkan, and H. Berberoglu. 2012. “Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production.” Bioresour. Technol. 104 (Jan): 432–439. https://doi.org/10.1016/j.biortech.2011.11.027.
Zainal, M. H., K. B. A. K. Amin, O. H. Hassan, S. A. S. Mohamad, A. M. M. Ali, F. Abdullah, and M. Z. A. Yahya. 2017. “Comparison of energy and performance from biodegradation of freeze dried and spray dried microalgal biomass.” Pertanika J. Sci. Technol. 25: 53–62.
Zhang, X., Q. Hu, M. Sommerfeld, E. Puruhito, and Y. Chen. 2010. “Harvesting microalgal biomass for biofuels using ultrafiltration membranes.” Bioresour. Technol. 101 (14): 5297–5304. https://doi.org/10.1016/j.biortech.2010.02.007.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 12December 2020

History

Received: Oct 28, 2019
Accepted: Jun 30, 2020
Published online: Sep 28, 2020
Published in print: Dec 1, 2020
Discussion open until: Feb 28, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

M. F. van den Berg [email protected]
Dept. of Genetics, Univ. of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7601, South Africa. Email: [email protected]
Professor, Dept. of Genetics, Univ. of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7601, South Africa (corresponding author). ORCID: https://orcid.org/0000-0002-9868-1566. Email: [email protected]
A. Bierman, Ph.D. [email protected]
Applied Physiological Entomology Lab, Dept. of Conservation Ecology and Entomology, Stellenbosch Univ., Victoria Rd., Stellenbosch 7601 South Africa. Email: [email protected]
P. J. Oberholster, Ph.D. [email protected]
Professor, Centre for Environmental Management, Univ. of the Free State, Private Bag 339, Bloemfontein 9300, South Africa. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share