Technical Papers
Jul 28, 2020

Investigation of Ultrasonically Induced Degradation of Tris(2-chloroethyl) Phosphate in Water

Publication: Journal of Environmental Engineering
Volume 146, Issue 10

Abstract

The widespread use of hazardous organophosphate ester (OPE) flame retardants has led to the contamination of groundwater and drinking water sources. Given the negative impact of OPEs on environmental and human health, there is a critical need to identify effective remediation processes. This study reports that ultrasonic irradiation at 640 kHz leads to effective degradation of tris(2-chloroethyl) phosphate (TCEP), a model organophosphate flame retardant. The concentration of TCEP in an irradiated aqueous solution was monitored by a gas chromatography- nitrogen phosphorus detector (GC-NPD) technique. TCEP has a half-life of less than 1 h under the used experimental conditions. The degradation follows pseudo-first-order kinetics with rate constants varying from 0.09 to 0.02  min1 depending on initial concentrations ranging from 3.1 to 84 μM. The observed rate constant decreases with the increase in initial TCEP concentration, implying the process likely involves a heterogeneous process controlled by partitioning at the gas–liquid interface during ultrasonic cavitation. The degradation fits the heterogeneous Langmuir-Hinshelwood model, further suggesting the degradation occurs at the gas–liquid interface. Detailed product studies using liquid chromatography orbitrap high-resolution mass spectrometry confirm the primary degradation products are the mono and diester adducts of TCEP, specifically 2-chloroethyl dihydrogen phosphate and bis(2-chloroethyl) hydrogen phosphate. Mineralization of TCEP to chloride and phosphate was monitored by ion chromatography, yielding mass balances of 48% and 32% for chloride and phosphate, respectively, after 6 h of treatment. The results demonstrate that ultrasonic irradiation is effective for the degradation of the halogenated flame retardant TCEP. The results suggest ultrasonic treatment can be used alone or in combination with other methods for the remediation of problematic organophosphorus flame retardants.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

Kevin O’Shea acknowledges partial support received from the National Science Foundation (NSF) under Award No. CHE-1710111. The authors also would like to acknowledge the Southeast Environment Research Center of Institute of Environment in the Florida International University. A M Abdullah is thankful for the dissertation year fellowship from Florida International University.

References

Abdullah, A. M., and K. E. O’Shea. 2019. “TiO2 photocatalytic degradation of the flame retardant tris (2-chloroethyl) phosphate (TCEP) in aqueous solution: A detailed kinetic and mechanistic study.” J. Photochem. Photobiol. A 377 (May): 130–137. https://doi.org/10.1016/j.jphotochem.2019.03.026.
Antonopoulou, M., P. Karagianni, and I. K. Konstantinou. 2016. “Kinetic and mechanistic study of photocatalytic degradation of flame retardant tris (1-chloro-2-propyl) phosphate (TCPP).” Appl. Catal., B 192 (Sep): 152–160. https://doi.org/10.1016/j.apcatb.2016.03.039.
Cristale, J., D. D. Ramos, R. F. Dantas, A. Machulek Jr., S. Lacorte, C. Sans, and S. Esplugas. 2016. “Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?” Environ. Res. 144 (Jan): 11–18. https://doi.org/10.1016/j.envres.2015.10.008.
Crump, D., S. Chiu, and S. W. Kennedy. 2012. “Effects of tris(1,3-dichloro-2-propyl) phosphate and tris(1-chloropropyl) phosphate on cytotoxicity and mRNA expression in primary cultures of avian hepatocytes and neuronal cells.” Toxicol. Sci. 126 (1): 140–148. https://doi.org/10.1093/toxsci/kfs015.
Cui, D., A. M. Mebel, L. E. Arroyo-Mora, C. Zhao, A. De Caprio, and K. O’Shea. 2018. “Fundamental study of the ultrasonic induced degradation of the popular antihistamine, diphenhydramine (DPH).” Water Res. 144 (Nov): 265–273. https://doi.org/10.1016/j.watres.2018.07.032.
Czili, H., and A. Horváth. 2008. “Applicability of coumarin for detecting and measuring hydroxyl radicals generated by photoexcitation of TiO2 nanoparticles.” Appl. Catal., B 81 (3–4): 295–302. https://doi.org/10.1016/j.apcatb.2008.01.001.
Eren, Z., and K. O’Shea. 2019. “Hydroxyl radical generation and partitioning in degradation of methylene blue and DEET by dual-frequency ultrasonic irradiation.” J. Environ. Eng. 145 (10): 04019070. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001593.
Evgenidou, E., I. Konstantinou, K. Fytianos, and T. Albanis. 2006. “Study of the removal of dichlorvos and dimethoate in a titanium dioxide mediated photocatalytic process through the examination of intermediates and the reaction mechanism.” J. Hazard. Mater. 137 (2): 1056–1064. https://doi.org/10.1016/j.jhazmat.2006.03.042.
Flint, E. B., and K. S. Suslick. 1991. “The temperature of cavitation.” Science 253 (5026): 1397–1399. https://doi.org/10.1126/science.253.5026.1397.
Garcia-Lopez, M., I. Rodriguez, and R. Cela. 2007. “Development of a dispersive liquid-liquid microextraction method for organophosphorus flame retardants and plasticizers determination in water samples.” J. Chromatogr. A 1166 (1–2): 9–15. https://doi.org/10.1016/j.chroma.2007.08.006.
González-García, J., V. Sáez, I. Tudela, M. I. Díez-Garcia, M. D. Esclapez, and O. Louisnard. 2010. “Sonochemical treatment of water polluted by chlorinated organocompounds: A review.” Water 2 (1): 28–74. https://doi.org/10.3390/w2010028.
Grieco, S. A., and B. V. Ramarao. 2013. “Removal of TCEP from aqueous solutions by adsorption with zeolites.” Colloids Surf. A 434 (Oct): 329–338. https://doi.org/10.1016/j.colsurfa.2013.04.042.
Hoffmann, M. R., I. Hua, and R. Höchemer. 1996. “Application of ultrasonic irradiation for the degradation of chemical contaminants in water.” Ultrason. Sonochem. 3 (3): 163–172. https://doi.org/10.1016/S1350-4177(96)00022-3.
Kim, D. K., Y. He, J. Jeon, and K. E. O’Shea. 2016. “Irradiation of ultrasound to 5-methylbenzotriazole in aqueous phase: Degradation kinetics and mechanisms.” Ultrason. Sonochem. 31 (Jul): 227–236. https://doi.org/10.1016/j.ultsonch.2016.01.006.
Kim, S. D., J. Cho, I. S. Kim, B. J. Vanderford, and S. A. Snyder. 2007. “Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters.” Water Res. 41 (5): 1013–1021. https://doi.org/10.1016/j.watres.2006.06.034.
Kyllönen, H., P. Pirkonen, M. Nyström, J. Nuortila-Jokinen, and A. Grönroos. 2006. “Experimental aspects of ultrasonically enhanced cross-flow membrane filtration of industrial wastewater.” Ultrason. Sonochem. 13 (4): 295–302. https://doi.org/10.1016/j.ultsonch.2005.04.006.
Li, J., J. P. Giesy, L. Yu, G. Li, and C. Liu. 2015. “Effects of tris (1,3-dichloro-2- propyl) phosphate (TDCPP) in Tetrahymena Thermophila: Targeting the ribosome.” Sci. Rep. 5 (1): 1–9. https://doi.org/10.1038/srep10562.
Löning, J. M., C. Horst, and U. Hoffmann. 2002. “Investigations on the energy conversion in sonochemical processes.” Ultrason. Sonochem. 9 (3): 169–179. https://doi.org/10.1016/S1350-4177(01)00113-4.
Mahamuni, N. N., and Y. G. Adewuyi. 2010. “Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation.” Ultrason. Sonochem. 17 (6): 990–1003. https://doi.org/10.1016/j.ultsonch.2009.09.005.
Marklund, A., B. Andersson, and P. Haglund. 2005. “Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants.” Environ. Sci. Technol. 39 (19): 7423–7429. https://doi.org/10.1021/es051013l.
Mason, T. J. 1999. “Sonochemistry: Current uses and future prospects in the chemical and processing industries.” Philos. Trans. R. Soc. London, Ser. A 357 (1751): 355–369. https://doi.org/10.1098/rsta.1999.0331.
Matthews, R. W., and S. R. McEvoy. 1992. “A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors.” J. Photochem. Photobiol., A 66 (3): 355–366. https://doi.org/10.1016/1010-6030(92)80008-J.
Meeker, J. D., E. M. Cooper, H. M. Stapleton, and R. Hauser. 2013. “Urinary metabolites of organophosphate flame retardants: Temporal variability and correlations with house dust concentrations.” Environ. Health Perspect. 121 (5): 580–585. https://doi.org/10.1289/ehp.1205907.
Morozov, I., S. Gligorovski, P. Barzaghi, D. Hoffmann, Y. G. Lazarou, E. Vasiliev, and H. Herrmann. 2008. “Hydroxyl radical reactions with halogenated ethanols in aqueous solution: Kinetics and thermochemistry.” Int. J. Chem. Kinet. 40 (4): 174–188. https://doi.org/10.1002/kin.20301.
Morris, P. J., D. Medina-Cleghorn, A. Heslin, S. M. King, J. Orr, M. M. Mulvihill, R. M. Krauss, and D. K. Nomura. 2014. “Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia.” ACS Chem. Biol. 9 (5): 1097–1103. https://doi.org/10.1021/cb500014r.
Oncescu, T., M. I. Stefan, and P. Oancea. 2010. “Photocatalytic degradation of dichlorvos in aqueous TiO2 suspensions.” Environ. Sci. Pollut. Res. 17 (5): 1158–1166. https://doi.org/10.1007/s11356-009-0292-4.
O’Shea, K. E. 2003. “Titanium dioxide-photocatalyzed reactions of organophosphorus compounds in aqueous media.” Semicond. Photochem. Photophys. 10 (Feb): 231–247.
O’Shea, K. E., A. Aguila, K. Vinodgopal, and P. V. Kamat. 1998. “Reaction pathways and kinetics parameters of sonolytically induced oxidation of dimethyl methylphosphonate in air-saturated aqueous solutions.” Res. Chem. Intermed. 24 (6): 695–705. https://doi.org/10.1163/156856798X00591.
O’Shea, K. E., S. Beightol, I. Garcia, M. Aguilar, D. V. Kalen, and W. J. Cooper. 1997a. “Photocatalytic decomposition of organophosphonates in irradiated TiO2 suspensions.” J. Photochem. Photobiol., A 107 (1–3): 221–226. https://doi.org/10.1016/S1010-6030(96)04420-6.
O’Shea, K. E., I. Garcia, and M. Aguilar. 1997b. “TiO2 photocatalytic degradation of dimethyl- and diethyl-methylphosphonate, effects of catalyst and environmental factors.” Res. Chem. Intermed. 23 (4): 325–339. https://doi.org/10.1163/156856797X00556.
Page, S. E., W. A. Arnold, and K. McNeill. 2010. “Terephthalate as a probe for photochemically generated hydroxyl radical.” J. Environ. Monit. 12 (9): 1658–1665. https://doi.org/10.1039/c0em00160k.
Ruan, X. C., R. Ai, X. Jin, Q. F. Zeng, and Z. Y. Yang. 2014. “Photodegradation of tris (2-chloroethyl) phosphate in aqueous solution by UV/H2O2.” Water Air Soil Pollut. 225 (8): 1405–1414. https://doi.org/10.1016/j.chemosphere.2017.07.090.
Salamova, A., Y. Ma, M. Venier, and R. A. Hites. 2014. “High levels of organophosphate flame retardants in the Great Lakes atmosphere.” Environ. Sci. Technol. Lett. 1 (1): 8–14. https://doi.org/10.1021/ez400034n.
Schramm, J. D., and I. Hua. 2001. “Ultrasonic irradiation of dichlorvos: Decomposition mechanism.” Water Res. 35 (3): 665–674. https://doi.org/10.1016/S0043-1354(00)00304-3.
Schreder, E. D., and M. J. La Guardia. 2014. “Flame retardant transfers from US households (dust and laundry wastewater) to the aquatic environment.” Environ. Sci. Technol. 48 (19): 11575–11583. https://doi.org/10.1021/es502227h.
Stackelberg, P. E., J. Gibs, E. T. Furlong, M. T. Meyer, S. D. Zaugg, and R. L. Lippincott. 2007. “Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds.” Sci. Total Environ. 377 (2–3): 255–272. https://doi.org/10.1016/j.scitotenv.2007.01.095.
Sundkvist, A. M., U. Olofsson, and P. Haglund. 2010. “Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk.” J. Environ. Monit. 12 (4): 943–951. https://doi.org/10.1039/B921910B.
Suslick, K. S. 1990. “Sonochemistry.” Science 247 (4949): 1439–1445. https://doi.org/10.1126/science.247.4949.1439.
Suslick, K. S., D. A. Hammerton, and R. E. Cline. 1986. “The sonochemical hot spot.” J. Am. Chem. Soc. 108 (18): 5641–5642. https://doi.org/10.1021/ja00278a055.
van der Veen, I., and J. de Boer. 2012. “Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis.” Chemosphere 88 (10): 1119–1153. https://doi.org/10.1016/j.chemosphere.2012.03.067.
Wang, W., S. Deng, D. Li, L. Ren, D. Shan, B. Wang, J. Huang, Y. Wang, and G. Yu. 2018. “Sorption behavior and mechanism of organophosphate flame retardants on activated carbons.” Chem. Eng. J. 332 (Sep): 286–292. https://doi.org/10.1016/j.cej.2017.09.085.
Watts, M. J., and K. G. Linden. 2009. “Advanced oxidation kinetics of aqueous trialkyl phosphate flame retardants and plasticizers.” Environ. Sci. Technol. 43 (8): 2937–2942. https://doi.org/10.1021/es8031659.
Wei, G. L., D. Q. Li, M. N. Zhuo, Y. S. Liao, Z. Y. Xie, T. L. Guo, J. J. Li, S. Y. Zhang, and Z. Q. Liang. 2015. “Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure.” Environ. Pollut. 196 (Jan): 29–46. https://doi.org/10.1016/j.envpol.2014.09.012.
Wei, Z., R. Spinney, R. Ke, Z. Yang, and R. Xiao. 2016. “Effect of pH on the sonochemical degradation of organic pollutants.” Environ. Chem. Lett. 14 (2): 163–182. https://doi.org/10.1007/s10311-016-0557-3.
Yao, J. J., N. Y. Gao, C. Li, L. Li, and B. Xu. 2010. “Mechanism and kinetics of parathion degradation under ultrasonic irradiation.” J. Hazard. Mater. 175 (1–3): 138–145. https://doi.org/10.1016/j.jhazmat.2009.09.140.
Ye, J., J. Liu, C. Li, P. Zhou, S. Wu, and H. Ou. 2017. “Heterogeneous photocatalysis of tris(2-chloroethyl) phosphate by UV/TiO2: Degradation products and impacts on bacterial proteome.” Water Res. 124 (Nov): 29–38. https://doi.org/10.1016/j.watres.2017.07.034.
Yuan, X., S. Lacorte, J. Cristale, R. F. Dantas, C. Sans, S. Esplugas, and Z. Qiang. 2015. “Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments.” Sep. Purif. Technol. 156 (Dec): 1028–1034. https://doi.org/10.1016/j.seppur.2015.09.052.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 10October 2020

History

Received: Feb 26, 2020
Accepted: May 21, 2020
Published online: Jul 28, 2020
Published in print: Oct 1, 2020
Discussion open until: Dec 28, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Chemistry and Biochemistry, Florida International Univ., Miami, FL 33199. ORCID: https://orcid.org/0000-0003-4666-2432. Email: [email protected]
Natalia Soares Quinete [email protected]
Assistant Professor, Dept. of Chemistry and Biochemistry, Florida International Univ., Miami, FL 33199. Email: [email protected]
Piero Gardinali [email protected]
Professor, Dept. of Chemistry and Biochemistry, Florida International Univ., Miami, FL 33199; Director, Southeast Environmental Research Center, Florida International Univ., Miami, FL 33181. Email: [email protected]
Kevin O’Shea [email protected]
Professor, Dept. of Chemistry and Biochemistry, Florida International Univ., Miami, FL 33199 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share