State-of-the-Art Reviews
Jul 21, 2020

Electrocoagulation Treatment of Electroplating Wastewater: A Review

Publication: Journal of Environmental Engineering
Volume 146, Issue 10

Abstract

Electrochemical methods such as electrocoagulation (EC), electrooxidation (EO), and electroreduction (ER) are promising technologies to remove organics and heavy metals contained in industrial effluents discharged from numerous industries such as electroplating, textile, and metal processing. EC is widely applicable to treat wastewater that has a wide range of pollutants as well as being applicable to treating organic pollutants having a chemical oxygen demand (COD) range of 1,00013,000  mg/L, and metals concentration in the range of 102,500  mg/L depending on the type of pollutants/metals. Several parameters such as pH, current density, electrode gap, electrolysis time, and agitation speed plays a major role during EC. Various laboratory results show that EC works effectively in the pH range 2–8, current density 20200  A/m2, electrode gap 1.5–3 cm, electrolysis time 10–150 min, and stirrer speed 30–200 rpm for the reactor size 1–2.5 L depending on the type of wastewater/effluent. Moreover, this process has been proved to be versatile and environmentally friendly. This review mainly focuses on the separation of heavy metals from electroplating effluent (EPE), including other pollutants removal from various industrial effluents such as textile, distillery, paint, and tannery. EC operation is oriented on the supply of direct current in metal electrodes and, consequently, metal ions released into the solution. This results in an increased metal concentration in the solution that finally precipitates as metal hydroxides along with pollutants. Numerous techniques are available to treat heavy metals bearing effluent, which includes precipitation, adsorption, bioadsorption, ion exchange, and membrane separation. These methods have several limitations in term of high operating costs and a large amount of sludge generation, while the EC process has several advantages over conventional technologies such as requirement of less external chemicals, easier installation, lower secondary pollutants formation, odor and color removal, and lower residence time. However, high electricity consumption due to formation of oxide film on the surface of the electrode is a major drawback of this process because oxide film works as an electric insulator. Overall, the EC method has wide potential to treat different kinds of effluents.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

During the preparation of this paper, a large number of research papers have been studied, which are incorporated in this paper as terms of reference. All data, models, and code generated or used during the study appeared in the submitted paper. Furthermore, to the best of our knowledge, any data in this paper are not incorporated from a hidden/other source.

References

Adhoum, N., L. Monser, N. Bellakhal, and J. E. Belgaied. 2004. “Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation.” J. Hazard. Mater. 112 (3): 207–213. https://doi.org/10.1016/j.jhazmat.2004.04.018.
Akbal, F., and S. Camcı. 2011. “Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation.” Desalination 269 (1–3): 214–222. https://doi.org/10.1016/j.desal.2010.11.001.
Akyol, A. 2012. “Treatment of paint manufacturing wastewater by electrocoagulation.” Desalination 285 (Jan): 91–99. https://doi.org/10.1016/j.desal.2011.09.039.
Al Aji, B., Y. Yavuz, and A. S. Koparal. 2012. “Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes.” Sep. Purif. Technol. 86 (Feb): 248–254. https://doi.org/10.1016/j.seppur.2011.11.011.
Albert, C. F. 1996. Advanced inorganic chemistry a comprehensive text. 2nd ed. New York: Wiley.
Ali, I., T. A. Khan, and M. Asim. 2011. “Removal of arsenic from water by electrocoagulation and electrodialysis techniques.” Sep. Purif. Rev. 40 (1): 25–42. https://doi.org/10.1080/15422119.2011.542738.
AlJaberi, F. Y. 2018. “Studies of autocatalytic electrocoagulation reactor for lead removal from simulated wastewater.” J. Environ. Chem. Eng. 6 (5): 6069–6078. https://doi.org/10.1016/j.jece.2018.09.032.
Arroyo, M. G., V. Pérez-Herranz, M. T. Montanes, J. García-Antón, and J. L. Guinon. 2009. “Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor.” J. Hazard. Mater. 169 (1–3): 1127–1133. https://doi.org/10.1016/j.jhazmat.2009.04.089.
Asaithambi, P., M. Susree, R. Saravanathamizhan, and M. Matheswaran. 2012. “Ozone assisted electrocoagulation for the treatment of distillery effluent.” Desalination 297 (Jul): 1–7. https://doi.org/10.1016/j.desal.2012.04.011.
Aswathy, P., R. Gandhimathi, S. T. Ramesh, and P. V. Nidheesh. 2016. “Removal of organics from bilge water by batch electrocoagulation process.” Sep. Purif. Technol. 159 (Feb): 108–115. https://doi.org/10.1016/j.seppur.2016.01.001.
Avsar, Y., U. Kurt, and T. Gonullu. 2007. “Comparison of classical chemical and electrochemical processes for treating rose processing wastewater.” J. Hazard. Mater. 148 (1–2): 340–345. https://doi.org/10.1016/j.jhazmat.2007.02.048.
Babu, R. R., N. S. Bhadrinarayana, K. M. M. S. Begum, and N. Anantharaman. 2007. “Treatment of tannery wastewater by electrocoagulation.” J. Univ. Chem. Technol. Metall. 42 (2): 201–206.
Bani-Melhem, K., and E. Smith. 2012. “Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system.” Chem. Eng. J. 198-199 (Aug): 201–210. https://doi.org/10.1016/j.cej.2012.05.065.
Barakat, M. A., and E. Schmidt. 2010. “Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater.” Desalination 256 (1–3): 90–93. https://doi.org/10.1016/j.desal.2010.02.008.
Barrera-Díaz, C., G. Roa-Morales, L. Ávila-Córdoba, T. Pavón-Silva, and B. Bilyeu. 2006. “Electrochemical treatment applied to food-processing industrial wastewater.” Ind. Eng. Chem. Res. 45 (1): 34–38. https://doi.org/10.1021/ie050594k.
Bassyouni, D. G., H. A. Hamad, E.-S. Z. El-Ashtoukhy, N. K. Amin, and M. M. Abd El-Latif. 2017. “Comparative performance of anodic oxidation and electrocoagulation as clean process for electrocatalytic degradation of diazo dye acid broom 14 in aqueous medium.” J. Hazard. Mater. 335: 178–187. https://doi.org/10.1016/j.jhazmat.2017.04.045.
Bayramoglu, M., M. Eyvaz, and M. Kobya. 2007. “Treatment of the textile wastewater by electrocoagulation: Economical evaluation.” Chem. Eng. J. 128 (2–3): 155–161. https://doi.org/10.1016/j.cej.2006.10.008.
Behbahani, M., M. R. Alvi Moghaddam, and M. Arami. 2011a. “A comparison between aluminum and iron electrodes on removal of phosphate from aqueous solutions by electrocoagulation process.” Int. J. Environ. Res. 5 (2): 403–412. https://doi.org/10.22059/IJER.2011.325.
Behbahani, M., M. R. Alvi Moghaddam, and M. Arami. 2011b. “Techno-economical evaluation of fluoride removal by electrocoagulation process: Optimization through response surface methodology.” Desalination 271 (1–3): 209–218. https://doi.org/10.1016/j.desal.2010.12.033.
Bektaş, N., H. Akbulut, H. Inan, and A. Dimoglo. 2004. “Removal of phosphate from aqueous solutions by electro-coagulation.” J. Hazard. Mater. 106 (2–3): 101–105. https://doi.org/10.1016/j.jhazmat.2003.10.002.
Bhagawan, D., S. Poodari, T. Pothuraju, D. Srinivasulu, G. Shankaraiah, M. Y. Rani, V. Himabindu, and S. Vidyavathi. 2014. “Effect of operational parameters on heavy metal removal by electrocoagulation.” Environ. Sci. Pollut. Res. 21 (24): 14166–14173. https://doi.org/10.1007/s11356-014-3331-8.
Borgheei, S. M., J. Goodarzi, M. Mohseni, and A. Amouei. 2015. “Efficiency of removing chromium from plating industry wastewater using the electrocoagulation method.” Int. Arch. Health Sci. 2 (2): 83–87.
Boroski, M., A. C. Rodrigues, J. C. Garcia, L. C. Sampaio, J. Nozaki, and N. Hioka. 2009. “Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries.” J. Hazard. Mater. 162 (1): 448–454. https://doi.org/10.1016/j.jhazmat.2008.05.062.
Budiyono, N., and S. Johari. 2010. “Study on treatment of slaughterhouse wastewater by electro-coagulation technique.” Int. J. Sci. Eng. 1 (1): 25–28.
Can, O. T., M. Kobya, E. Demirbas, and M. Bayramoglu. 2006. “Treatment of the textile wastewater by combined electrocoagulation.” Chemosphere 62 (2): 181–187. https://doi.org/10.1016/j.chemosphere.2005.05.022.
Central Pollution Control Board. 2011. Pollution control law. SERIES: PCLS/02/2010. New Delhi, India: Central Pollution Control Board.
Chafi, M., B. Gourich, A. H. Essadki, C. Vial, and A. Fabregat. 2011. “Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye.” Desalination 281 (Oct): 285–292. https://doi.org/10.1016/j.desal.2011.08.004.
Ching, H. W., T. S. Tanaka, and M. Elimelech. 1994. “Dynamics of coagulation of kaolin particles with ferric chloride.” Water Res. 28 (3): 559–569. https://doi.org/10.1016/0043-1354(94)90007-8.
Dabrowski, A., Z. Hubicki, P. Podkościelny, and E. Robens. 2004. “Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method.” Chemosphere 56 (2): 91–106. https://doi.org/10.1016/j.chemosphere.2004.03.006.
Daniel, R., Y. Anjaneyulu, and R. J. Krupadam. 2009. “Cr(VI) removal from electroplating industrial effluents: A greener and cheaper method.” Zaštita Materijala 50 (1): 13–18.
Deghles, A., and U. Kurt. 2016. “Treatment of tannery wastewater by a hybrid electrocoagulation/electrodialysis process.” Chem. Eng. Process. 104 (Jun): 43–50. https://doi.org/10.1016/j.cep.2016.02.009.
Dermentzis, K., A. Christoforidis, and E. Valsamidou. 2011. “Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation.” Int. J. Environ. Sci. 1 (5): 697–710.
Drouiche, N., S. Aoudj, M. Hecini, N. Ghaffour, H. Lounici, and N. Mameri. 2009. “Study on the treatment of photovoltaic wastewater using electrocoagulation: Fluoride removal with aluminium electrodes-Characteristics of products.” J. Hazard. Mater. 169 (1–3): 65–69. https://doi.org/10.1016/j.jhazmat.2009.03.073.
Drouiche, N., S. Aoudj, H. Lounici, M. Drouiche, T. Ouslimane, and N. Ghaffour. 2012. “Fluoride removal from pretreated photovoltaic wastewater by electrocoagulation: An investigation of the effect of operational parameters.” Procedia Eng. 33: 385–391. https://doi.org/10.1016/j.proeng.2012.01.1218.
Drouiche, N., N. Ghaffour, H. Lounici, and M. Mameri. 2007. “Electrocoagulation of chemical mechanical polishing wastewater.” Desalination 214 (1–3): 31–37. https://doi.org/10.1016/j.desal.2006.11.009.
Dura, A., and C. B. Breslin. 2019. “Electrocoagulation using stainless steel anodes: Simultaneous removal of phosphates, Orange II and zinc ions.” J. Hazard. Mater. 374 (Jul): 152–158. https://doi.org/10.1016/j.jhazmat.2019.04.032.
Durante, C., M. Cuscov, A. A. Isse, G. Sandonà, and A. Gennaro. 2011. “Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.” Water Res. 45 (5): 2122–2130. https://doi.org/10.1016/j.watres.2010.12.022.
Elabbas, S., N. Ouazzani, L. Mandi, F. Berrekhis, M. Perdicakis, S. Pontvianne, M. N. Pons, F. Lapicque, and J. P. Leclerc. 2016. “Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode.” J. Hazard. Mater. 319 (Dec): 69–77. https://doi.org/10.1016/j.jhazmat.2015.12.067.
El-Naas, M. H., S. Al-Zuhair, A. Al-Lobaney, and S. Makhlouf. 2009. “Assessment of electrocoagulation for the treatment of petroleum refinery wastewater.” J. Environ. Manage. 91 (1): 180–185. https://doi.org/10.1016/j.jenvman.2009.08.003.
Elnakar, H., and I. Buchanan. 2019. “Soluble chemical oxygen demand removal from bypass wastewater using iron electrocoagulation.” Sci. Total Environ. 706 (Mar): 136076. https://doi.org/10.1016/j.scitotenv.2019.136076.
Emamjomeh, M. M., and M. Sivakumar. 2006. “An empirical model for defluoridation by batch monopolar electrocoagulation/flotation (ECF) process.” J. Hazard. Mater. 131 (1–3): 118–125. https://doi.org/10.1016/j.jhazmat.2005.09.030.
Emamjomeh, M. M., and M. Sivakumar. 2009. “Fluoride removal by a continuous flow electrocoagulation reactor.” J. Environ. Manage. 90 (2): 1204–1212. https://doi.org/10.1016/j.jenvman.2008.06.001.
Emamjomeh, M. M., M. Sivakumar, and A. S. Varyani. 2011. “Analysis and the understanding of fluoride removal mechanisms by an electrocoagulation/flotation (ECF) process.” Desalination 275 (1–3): 102–106. https://doi.org/10.1016/j.desal.2011.02.032.
Ensano, B. M. B., L. Borea, V. Naddeo, V. Belgiorno, M. D. G. DeLuna, and F. C. Ballesteros. 2017. “Removal of pharmaceuticals from wastewater by intermittent electrocoagulation.” Water 9 (2): 85. https://doi.org/10.3390/w9020085.
Fajardo, A. S., R. F. Rodrigues, R. C. Martins, L. M. Castro, and R. M. Quinta-Ferreira. 2015. “Phenolic wastewaters treatment by electrocoagulation process using Zn anode.” Chem. Eng. J. 275 (Sep): 331–341. https://doi.org/10.1016/j.cej.2015.03.116.
Farhadi, S., B. Aminzadeh, A. Torabian, V. Khatibikamal, and M. A. Fard. 2012. “Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes.” J. Hazard. Mater. 219–220 (Jun): 35–42. https://doi.org/10.1016/j.jhazmat.2012.03.013.
Feng, D., C. Aldrich, and H. Tan. 2000. “Treatment of acid mine water by use of heavy metal precipitation and ion exchange.” Miner. Eng. 13 (6): 623–642. https://doi.org/10.1016/S0892-6875(00)00045-5.
Feng, X., Z. Wu, and X. Chen. 2007. “Removal of metal ions from electroplating effluent by EDI process and recycle of purified water.” Sep. Purif. Technol. 57 (2): 257–263. https://doi.org/10.1016/j.seppur.2007.04.014.
Gatsios, E., J. N. Hahladakis, and E. Gidarakos. 2015. “Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals.” J. Environ. Manage. 154 (May): 117–127. https://doi.org/10.1016/j.jenvman.2015.02.018.
Ghanbari, F., and M. Moradi. 2015. “A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement.” J. Environ. Chem. Eng. 3 (1): 499–506. https://doi.org/10.1016/j.jece.2014.12.018.
Gherardini, L., P. A. Michaud, M. Panizza, C. Comninellis, and N. Vatistas. 2001. “Electrochemical oxidation of 4-chlorophenol for wastewater treatment: Definition of normalized current efficiency (ϕ).” J. Electrochem. Soc. 148 (6): D78–D82. https://doi.org/10.1149/1.1368105.
Ghosh, D., C. R. Medhi, and M. K. Purkait. 2008. “Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections.” Chemosphere 73 (9): 1393–1400. https://doi.org/10.1016/j.chemosphere.2008.08.041.
Ghosh, D., C. R. Medhi, and M. K. Purkait. 2011. “Techno-economic analysis for the electrocoagulation of fluoride-contaminated drinking water.” Toxicol. Environ. Chem. 93 (3): 424–437. https://doi.org/10.1080/02772248.2010.542158.
Golder, A. K., A. K. Chanda, A. N. Samanta, and S. Ray. 2007a. “Removal of Cr (VI) from aqueous solution: Electrocoagulation vs chemical coagulation.” Sep. Sci. Technol. 42 (10): 2177–2193. https://doi.org/10.1080/01496390701446464.
Golder, A. K., V. S. Dhaneesh, A. N. Samanta, and S. Ray. 2009. “Electrotreatment of industrial copper plating rinse effluent using mild steel and aluminum electrodes.” J. Chem. Technol. Biotechnol. 84 (12): 1803–1810. https://doi.org/10.1002/jctb.2249.
Golder, A. K., A. N. Samanta, and S. Ray. 2007b. “Trivalent chromium removal by electrocoagulation and characterization of the process sludge.” J. Chem. Technol. Biotechnol. 82 (5): 496–503. https://doi.org/10.1002/jctb.1700.
Gomes, J. A. G., et al. 2007. “Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products.” J. Hazard. Mater. 139 (2): 220–231. https://doi.org/10.1016/j.jhazmat.2005.11.108.
Gong, C., G. Shen, H. Huang, P. He, Z. Zhang, and B. Ma. 2017. “Removal and transformation of polycyclic aromatic hydrocarbons during electrocoagulation treatment of an industrial wastewater.” Chemosphere 168 (Feb): 58–64. https://doi.org/10.1016/j.chemosphere.2016.10.044.
Hanay, O., and H. Hasar. 2011. “Effect of anions on removing Cu2+, Mn2+ and Zn2+ in electrocoagulation process using aluminum electrodes.” J. Hazard. Mater. 189 (1–2): 572–576. https://doi.org/10.1016/j.jhazmat.2011.02.073.
Hassani, G., S. Nasseri, and H. Gharibi. 2011. “Removal of cyanide by electrocoagulation process.” Anal. Bioanal. Electrochem. 3 (6): 625–634.
Heidmann, I., and W. Calmano. 2008. “Removal of Cr (VI) from model wastewaters by electrocoagulation with Fe electrodes.” Sep. Purif. Technol. 61 (1): 15–21. https://doi.org/10.1016/j.seppur.2007.09.011.
Heidmann, I., and W. Calmano. 2010. “Removal of Ni, Cu and Cr from a galvanic wastewater in an electrocoagulation system with Fe-and Al-electrodes.” Sep. Purif. Technol. 71 (3): 308–314. https://doi.org/10.1016/j.seppur.2009.12.016.
Hu, C. Y., S. L. Lo, and W. H. Kuan. 2003. “Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes.” Water Res. 37 (18): 4513–4523. https://doi.org/10.1016/S0043-1354(03)00378-6.
Hunsom, M., K. Pruksathorn, S. Damronglerd, H. Vergnes, and P. Duverneuil. 2005. “Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction.” Water Res. 39 (4): 610–616. https://doi.org/10.1016/j.watres.2004.10.011.
Hussin, F., M. K. Aroua, and M. Szlachta. 2019. “Combined solar electrocoagulation and adsorption processes for Pb (II) removal from aqueous solution.” Chem. Eng. Process. 143 (Sep): 107619. https://doi.org/10.1016/j.cep.2019.107619.
İrdemez, Ş., N. Demircioğlu, and Z. Bingül. 2006a. “The effects of current density and phosphate concentration on phosphate removal from wastewater by electrocoagulation using aluminum and iron plate electrodes.” Sep. Purif. Technol. 52 (2): 218–223.
İrdemez, Ş., Y. Ş. Yıldız, and V. Tosunoğlu. 2006b.“Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrode.” Sep. Purif. Technol. 52 (2): 394–401.
Kabdaşlı, I., T. Arslan, T. Ölmez-Hancı, I. Arslan-Alaton, and O. Tünay. 2009. “Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.” J. Hazard. Mater. 165 (1–3): 838–845. https://doi.org/10.1016/j.jhazmat.2008.10.065.
Katal, R., and H. Pahlavanzadeh. 2011. “Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: Application to the treatment of paper mill wastewater.” Desalination 265 (1–3): 199–205. https://doi.org/10.1016/j.desal.2010.07.052.
Keshmirizadeh, E., S. Yousefi, and M. K. Rofouei. 2011. “An investigation on the new operational parameter effective in Cr(VI) removal efficiency: A study on electrocoagulation by alternating pulse current.” J. Hazard. Mater. 190 (1–3): 119–124. https://doi.org/10.1016/j.jhazmat.2011.03.010.
Khandegar, V., and A. K. Saroha. 2013a. “Electrochemical treatment of effluent from small-scale dyeing unit.” Indian Chem. Eng. 55 (2): 112–120. https://doi.org/10.1080/00194506.2013.798889.
Khandegar, V., and A. K. Saroha. 2013b. “Electrochemical treatment of textile effluent containing Acid Red 131 dye.” J. Hazard. Toxic Radioact. Waste 18 (1): 38–44. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000194.
Khatibikamal, V., A. Torabian, F. Janpoor, and G. Hoshyaripour. 2010. “Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics.” J. Hazard. Mater. 179 (1–3): 276–280. https://doi.org/10.1016/j.jhazmat.2010.02.089.
Kobya, M., O. T. Can, and M. Bayramoglu. 2003. “Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes.” J. Hazard. Mater. 100 (1–3): 163–178. https://doi.org/10.1016/S0304-3894(03)00102-X.
Kobya, M., and E. Demirbas. 2015. “Evaluations of operating parameters on treatment of can manufacturing wastewater by electrocoagulation.” J. Water Process Eng. 8 (Dec): 64–74. https://doi.org/10.1016/j.jwpe.2015.09.006.
Kobya, M., E. Demirbas, A. Dedeli, and M. T. Sensoy. 2010. “Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes.” J. Hazard. Mater. 173 (1–3): 326–334. https://doi.org/10.1016/j.jhazmat.2009.08.092.
Kobya, M., H. Hiz, E. Senturk, C. Aydiner, and E. Demirbas. 2006a. “Treatment of potato chips manufacturing wastewater by electrocoagulation.” Desalination 190 (1–3): 201–211. https://doi.org/10.1016/j.desal.2005.10.006.
Kobya, M., E. Senturk, and M. Bayramoglu. 2006b. “Treatment of poultry slaughterhouse wastewaters by electrocoagulation.” J. Hazard. Mater. 133 (1–3): 172–176. https://doi.org/10.1016/j.jhazmat.2005.10.007.
Kobya, M., F. Ulu, U. Gebologlu, E. Demirbas, and M. S. Oncel. 2011. “Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe-Al electrodes.” Sep. Purif. Technol. 77 (3): 283–293. https://doi.org/10.1016/j.seppur.2010.12.018.
Kongjao, S., S. Damronglerd, and M. Hunsom. 2008. “Simultaneous removal of organic and inorganic pollutants in tannery wastewater using electrocoagulation technique.” Korean J. Chem. Eng. 25 (4): 703–709. https://doi.org/10.1007/s11814-008-0115-1.
Kryvoruchko, A., L. Yurlova, and B. Kornilovich. 2002. “Purification of water containing heavy metals by chelating-enhanced ultrafiltration.” Desalination 144 (1–3): 243–248. https://doi.org/10.1016/S0011-9164(02)00319-3.
Kumar, P., B. Prasad, and S. Chand. 2009. “Treatment of desizing wastewater by catalytic thermal treatment and coagulation.” J. Hazard. Mater. 163 (1): 433–440. https://doi.org/10.1016/j.jhazmat.2008.06.114.
Kuroda, Y., Y. Kawada, T. Takahashi, Y. Ehara, T. Ito, A. Zukeran, Y. Kono, and K. Yasumoto. 2003. “Effect of electrode shape on discharge current and performance with barrier discharge type electrostatic precipitator.” J. Electrostat. 57 (3–4): 407–415. https://doi.org/10.1016/S0304-3886(02)00177-8.
Lacasa, E., P. Canizares, C. Saez, F. J. Fernández, and M. A. Rodrigo. 2011a. “Electrochemical phosphates removal using iron and aluminium electrodes.” Chem. Eng. J. 172 (1): 137–143. https://doi.org/10.1016/j.cej.2011.05.080.
Lacasa, E., P. Canizares, C. Sáez, F. J. Fernández, and M. A. Rodrigo. 2011b. “Removal of arsenic by iron and aluminium electrochemically assisted coagulation.” Sep. Purif. Technol. 79 (1): 15–19. https://doi.org/10.1016/j.seppur.2011.03.005.
Lacasa, E., P. Cañizares, C. Sáez, F. J. Fernández, and M. A. Rodrigo. 2011c. “Removal of nitrates from groundwater by electrocoagulation.” Chem. Eng. J. 171 (3): 1012–1017. https://doi.org/10.1016/j.cej.2011.04.053.
Lai, C. L., and S. H. Lin. 2003. “Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor fabrication.” Chem. Eng. J. 95 (1–3): 205–211. https://doi.org/10.1016/S1385-8947(03)00106-2.
Lakshmanan, D., D. A. Clifford, and G. Samanta. 2010. “Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation.” Water Res. 44 (19): 5641–5652. https://doi.org/10.1016/j.watres.2010.06.018.
Lakshmi, P. M., and P. Sivashanmugam. 2013. “Treatment of oil tanning effluent by electrocoagulation: Influence of ultrasound and hybrid electrode on COD removal.” Sep. Purif. Technol. 116 (Sep): 378–384. https://doi.org/10.1016/j.seppur.2013.05.026.
Li, Y., X. Zeng, Y. Liu, S. Yan, Z. Hu, and Y. Ni. 2003. “Study on the treatment of copper-electroplating wastewater by chemical trapping and flocculation.” Sep. Purif. Technol. 31 (1): 91–95. https://doi.org/10.1016/S1383-5866(02)00162-4.
Lin, S. H., and C. L. Wu. 1996. “Electrochemical removal of nitrite and ammonia for aquaculture.” Water Res. 30 (3): 715–721. https://doi.org/10.1016/0043-1354(95)00208-1.
Linares-Hernández, I., C. Barrera-Díaz, G. Roa-Morales, B. Bilyeu, and F. Ureña-Núñez. 2009. “Influence of the anodic material on electrocoagulation performance.” Chem. Eng. J. 148 (1): 97–105. https://doi.org/10.1016/j.cej.2008.08.007.
López-Guzmán, M., M. T. Alarcón-Herrera, J. R. Irigoyen-Campuzano, L. A. Torres-Castañón, and L. Reynoso-Cuevas. 2019. “Simultaneous removal of fluoride and arsenic from well water by electrocoagulation.” Sci. Total Environ. 678 (Aug): 181–187. https://doi.org/10.1016/j.scitotenv.2019.04.400.
Mahesh, S., B. Prasad, I. D. Mall, and I. M. Mishra. 2006. “Electrochemical degradation of pulp and paper mill wastewater. Part 1. COD and color removal.” Ind. Eng. Chem. Res. 45 (8): 2830–2839. https://doi.org/10.1021/ie0514096.
Mahvi, A. H., and E. Bazrafshan. 2007. “Removal of cadmium from industrial effluents by electrocoagulation process using aluminum electrodes.” World Appl. Sci. J. 2 (1): 34–39.
Malakootian, M., N. Yousefi, and A. Fatehizadeh. 2011. “Survey efficiency of electrocoagulation on nitrate removal from aqueous solution.” Int. J. Environ. Sci. Technol. 8 (1): 107–114. https://doi.org/10.1007/BF03326200.
Mamelkina, M. A., S. Cotillas, E. Lacasa, C. Sáez, R. Tuunila, M. Sillanpää, A. Häkkinen, and M. A. Rodrigo. 2017. “Removal of sulfate from mining waters by electrocoagulation.” Sep. Purif. Technol. 182 (Jul): 87–93. https://doi.org/10.1016/j.seppur.2017.03.044.
Mameri, N., A. R. Yeddou, H. Lounici, D. Belhocine, H. Grib, and B. Bariou. 1998. “Defluoridation of septentrional Sahara water of North Africa by electrocoagulation process using bipolar aluminium electrodes.” Water Res. 32 (5): 1604–1612. https://doi.org/10.1016/S0043-1354(97)00357-6.
Manenti, D. R., A. N. Módenes, P. A. Soares, F. R. Espinoza-Quiñones, R. A. R. Boaventura, R. Bergamasco, and V. J. P. Vilar. 2014. “Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment.” Chem. Eng. J. 252 (Sep): 120–130. https://doi.org/10.1016/j.cej.2014.04.096.
Manisankar, P., C. Rani, and S. Viswanathan. 2004. “Effect of halides in the electrochemical treatment of distillery effluent.” Chemosphere 57 (8): 961–966. https://doi.org/10.1016/j.chemosphere.2004.07.026.
Meas, Y., J. A. Ramirez, M. A. Villalon, and T. W. Chapman. 2010. “Industrial wastewaters treated by electrocoagulation.” Electrochim. Acta 55 (27): 8165–8171. https://doi.org/10.1016/j.electacta.2010.05.018.
Modirshahla, N., M. A. Behnajady, and S. Mohammadi-Aghdam. 2008. “Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation.” J. Hazard. Mater. 154 (1–3): 778–786. https://doi.org/10.1016/j.jhazmat.2007.10.120.
Moussavi, G., F. Majidi, and M. Farzadkia. 2011. “The influence of operational parameters on elimination of cyanide from wastewater using the electrocoagulation process.” Desalination 280 (1–3): 127–133. https://doi.org/10.1016/j.desal.2011.06.052.
Murugananthan, M., G. B. Raju, and S. Prabhakar. 2004. “Removal of sulfide, sulfate and sulfite ions by electro coagulation.” J. Hazard. Mater. 109 (1–3): 37–44. https://doi.org/10.1016/j.jhazmat.2003.12.009.
Muthukumar, M., M. Govindaraj, A. Muthusamy, and G. B. Raju. 2010. “Comparative study of electrocoagulation and electrooxidation processes for the degradation of ellagic acid from aqueous solution.” Sep. Sci. Technol. 46 (2): 272–282. https://doi.org/10.1080/01496395.2010.505224.
Myllymäki, P., R. Lahti, H. Romar, and U. Lassi. 2018. “Removal of total organic carbon from peat solution by hybrid method—Electrocoagulation combined with adsorption.” J. Water Process Eng. 24 (Aug): 56–62. https://doi.org/10.1016/j.jwpe.2018.05.008.
Nazlabadi, E., M. R. A. Moghaddam, and E. Karamati-Niaragh. 2019. “Simultaneous removal of nitrate and nitrite using electrocoagulation/floatation (ECF): A new multi-response optimization approach.” J. Environ. Manage. 250: 109489. https://doi.org/10.1016/j.jenvman.2019.109489.
Nielsen, N. F., and C. Andersson. 2009. “Electrode shape and collector plate spacing effects on ESP performance.” In Electrostatic precipitation, 111–118. Berlin: Springer.
Nippatla, N., and L. Philip. 2019. “Electrocoagulation-floatation assisted pulsed power plasma technology for the complete mineralization of potentially toxic dyes and real textile wastewater.” Process Saf. Environ. 125 (May): 143–156. https://doi.org/10.1016/j.psep.2019.03.012.
Osipenko, V. D., and P. I. Pogorelyi. 1977. “Electrocoagulation neutralization of chromium containing effluent.” Metallurgist 21 (9): 628–630. https://doi.org/10.1007/BF01083218.
Ouaissa, Y. A., M. Chabani, A. Amrane, and A. Bensmaili. 2012. “Integration of electro coagulation and adsorption for the treatment of tannery wastewater—The case of an Algerian factory, Rouiba.” Procedia Eng. 33: 98–101. https://doi.org/10.1016/j.proeng.2012.01.1181.
Ozaki, H., K. Sharma, and W. Saktaywin. 2002. “Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: Effects of interference parameters.” Desalination 144 (1–3): 287–294. https://doi.org/10.1016/S0011-9164(02)00329-6.
Ozyonar, F., and B. Karagozoglu. 2015. “Treatment of pretreated coke wastewater by electrocoagulation and electrochemical peroxidation processes.” Sep. Purif. Technol. 150 (Aug): 268–277. https://doi.org/10.1016/j.seppur.2015.07.011.
Parga, J. R., D. L. Cocke, J. L. Valenzuela, J. A. Gomes, M. Kesmez, G. Irwin, H. Moreno, and M. Weir. 2005. “Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico.” J. Hazard. Mater. 124 (1–3): 247–254. https://doi.org/10.1016/j.jhazmat.2005.05.017.
Pociecha, M., and D. Lestan. 2010. “Using electrocoagulation for metal and chelant separation from washing solution after EDTA leaching of Pb, Zn and Cd contaminated soil.” J. Hazard. Mater. 174 (1–3): 670–678. https://doi.org/10.1016/j.jhazmat.2009.09.103.
Prajapati, A. K., M. Bidyut, and P. K. Chaudhari. 2013. “Electrochemical treatment of rice grain based distillery effluent using iron electrode.” Int. J. Chemtech. Res. 5 (2): 694–698.
Prajapati, A. K., and P. K. Chaudhari. 2014a. “Electrochemical treatment of rice grain-based distillery biodigester effluent.” Chem. Eng. Technol. 37 (1): 65–72. https://doi.org/10.1002/ceat.201300035.
Prajapati, A. K., and P. K. Chaudhari. 2014b. “Electrochemical treatment of rice grain-based distillery effluent: Chemical oxygen demand and colour removal.” Environ. Technol. 35 (2): 242–249. https://doi.org/10.1080/09593330.2013.824507.
Prajapati, A. K., P. K. Chaudhari, D. Pal, A. Chandrakar, and R. Choudhary. 2016. “Electrocoagulation treatment of rice grain based distillery effluent using copper electrode.” J. Water Process Eng. 11 (Jun): 1–7. https://doi.org/10.1016/j.jwpe.2016.03.008.
Priya, M., and J. Jeyanthi. 2019. “Removal of COD, oil and grease from automobile wash water effluent using electrocoagulation technique.” Microchem. J. 150 (Nov): 104070. https://doi.org/10.1016/j.microc.2019.104070.
Qin, J. J., M. N. Wai, M. H. Oo, and F. S. Wong. 2002. “A feasibility study on the treatment and recycling of a wastewater from metal plating.” J. Membr. Sci. 208 (1–2): 213–221. https://doi.org/10.1016/S0376-7388(02)00263-6.
Reddithota, D., A. Yerramilli, and R. J. Krupadam. 2007. “Electrocoagulation: A cleaner method for treatment of Cr (VI) from electroplating industrial effluents.” Indian J. Chem. Technol. 14 (3): 240–245.
Ribordy, P., C. Pulgarin, J. Kiwi, and P. Peringer. 1997. “Electrochemical versus photochemical pretreatment of industrial wastewaters.” Water Sci. Technol. 35 (4): 293–302. https://doi.org/10.2166/wst.1997.0141.
Ricordel, C., A. Darchen, and D. Hadjiev. 2010. “Electrocoagulation–electroflotation as a surface water treatment for industrial uses.” Sep. Purif. Technol. 74 (3): 342–347. https://doi.org/10.1016/j.seppur.2010.06.024.
Sanyal, O., Z. Liu, B. M. Meharg, W. Liao, and I. Lee. 2015. “Development of polyelectrolyte multilayer membranes to reduce the COD level of electrocoagulation treated high-strength wastewater.” J. Membr. Sci. 496 (Dec): 259–266. https://doi.org/10.1016/j.memsci.2015.09.011.
Semmens, M. J., C. D. Dillon, and C. Riley. 2001. “An evaluation of continuous electrodeionization as an in-line process for plating rinsewater recovery.” Environ. Prog. 20 (4): 251–260. https://doi.org/10.1002/ep.670200414.
Şengil, İ. A., S. Kulac, and M. Özacar. 2009. “Treatment of tannery liming drum wastewater by electrocoagulation.” J. Hazard. Mater. 167 (1–3): 940–946. https://doi.org/10.1016/j.jhazmat.2009.01.099.
Sharma, D., Chaudhari, P. K., and A. K. Prajapati. 2020. “Removal of chromium (VI) and lead from electroplating effluent using electrocoagulation.” Sep. Sci. Technol. 55 (2): 321–331.
Sinha, R., I. Khazanchi, and S. Mathur. 2012. “Fluoride removal by a continuous flow electrocoagulation reactor from groundwater of shivdaspura.” Int. J. Eng. Res. Appl. 2 (5): 1336–1341.
Sridhar, R., V. Sivakumar, V. P. Immanuel, and J. P. Maran. 2011. “Treatment of pulp and paper industry bleaching effluent by electrocoagulant process.” J. Hazard. Mater. 186 (2–3): 1495–1502. https://doi.org/10.1016/j.jhazmat.2010.12.028.
Tak, B. Y., B. S. Tak, Y. J. Kim, Y. J. Park, Y. H. Yoon, and G. H. Min. 2015. “Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box–Behnken design (BBD).” J. Ind. Eng. Chem. 28: 307–315.
Tanattı, N. P., İ. A. Şengil, and A. Özdemir. 2018. “Optimizing TOC and COD removal for the biodiesel wastewater by electrocoagulation.” Appl. Water Sci. 8 (2): 58. https://doi.org/10.1007/s13201-018-0701-2.
Tezcan Un, U., and E. Aytac. 2011. “Treatment of textile wastewaters by electrocoagulation method.” In Vol. 23 of Proc., 2nd Int. Conf. Chemical Engineering Applications, 138–140. Kuala Lumpur, Malaysia: International Institute of Engineers and Researchers.
Tian, Y., W. He, X. Zhu, W. Yang, N. Ren, and B. E. Logan. 2016. “Energy efficient electrocoagulation using an air-breathing cathode to remove nutrients from wastewater.” Chem. Eng. J. 292 (May): 308–314. https://doi.org/10.1016/j.cej.2016.02.004.
Tsioptsias, C., D. Petridis, N. Athanasakis, I. Lemonidis, A. Deligiannis, and P. Samaras. 2015. “Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.” J. Environ. Manage. 164 (Dec): 104–113. https://doi.org/10.1016/j.jenvman.2015.09.007.
Tzanetakis, N., W. M. Taama, K. Scott, R. J. J. Jachuck, R. S. Slade, and J. Varcoe. 2003. “Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt.” Sep. Purif. Technol. 30 (2): 113–127. https://doi.org/10.1016/S1383-5866(02)00139-9.
Vaikosen, E. N., and G. O. Alade. 2011. “Evaluation of pharmacognostical parameters and heavy metals in some locally manufactured herbal drugs.” J. Chem. Pharm. Res. 3 (2): 88–97.
Valero, D., J. M. Ortiz, V. García, E. Expósito, V. Montiel, and A. Aldaz. 2011. “Electrocoagulation of wastewater from almond industry.” Chemosphere 84 (9): 1290–1295. https://doi.org/10.1016/j.chemosphere.2011.05.032.
Vasudevan, S., and J. Lakshmi. 2011. “Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water—A novel approach.” Sep. Purif. Technol. 80 (3): 643–651. https://doi.org/10.1016/j.seppur.2011.06.027.
Vasudevan, S., J. Lakshmi, J. Jayaraj, and G. Sozhan. 2009. “Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes.” J. Hazard. Mater. 164 (2–3): 1480–1486. https://doi.org/10.1016/j.jhazmat.2008.09.076.
Vasudevan, S., J. Lakshmi, and G. Sozhan. 2011. “Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water.” J. Hazard. Mater. 192 (1): 26–34. https://doi.org/10.1016/j.jhazmat.2011.04.081.
Vasudevan, S., J. Lakshmi, and G. Sozhan. 2013. “Electrochemically assisted coagulation for the removal of boron from water using zinc anode.” Desalination 310 (Feb): 122–129. https://doi.org/10.1016/j.desal.2012.01.016.
Verma, S. K., V. Khandegar, and A. K. Saroha. 2013. “Removal of chromium from electroplating industry effluent using electrocoagulation.” J. Hazard. Toxic Radioact. Waste 17 (2): 146–152. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000170.
Wang, C. T., W. L. Chou, and Y. M. Kuo. 2009. “Removal of COD from laundry wastewater by electrocoagulation/electroflotation.” J. Hazard. Mater. 164 (1): 81–86. https://doi.org/10.1016/j.jhazmat.2008.07.122.
Wang, Y. H., S. H. Lin, and R. S. Juang. 2003. “Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents.” J. Hazard. Mater. 102 (2–3): 291–302. https://doi.org/10.1016/S0304-3894(03)00218-8.
Xu, L., G. Cao, X. Xu, S. Liu, Z. Duan, C. He, Y. Wang, and Q. Huang. 2017. “Simultaneous removal of cadmium, zinc and manganese using electrocoagulation: Influence of operating parameters and electrolyte nature.” J. Environ. Manage. 204 (Pt 1): 394–403. https://doi.org/10.1016/j.jenvman.2017.09.020.
Xu, X., and X. Zhu. 2004. “Treatment of refectory oily wastewater by electro-coagulation process.” Chemosphere 56 (10): 889–894. https://doi.org/10.1016/j.chemosphere.2004.05.003.
Yang, C. L., and R. Dluhy. 2002. “Electrochemical generation of aluminum sorbent for fluoride adsorption.” J. Hazard. Mater. 94 (3): 239–252. https://doi.org/10.1016/S0304-3894(02)00066-3.
Yang, T., B. Qiao, G. C. Li, and Q. Y. Yang. 2015. “Improving performance of dynamic membrane assisted by electrocoagulation for treatment of oily wastewater: Effect of electrolytic conditions.” Desalination 363 (May): 134–143. https://doi.org/10.1016/j.desal.2015.01.010.
Yavuz, Y. 2007. “EC and EF processes for the treatment of alcohol distillery wastewater.” Sep. Purif. Technol. 53 (1): 135–140. https://doi.org/10.1016/j.seppur.2006.08.022.
Zaroual, Z., M. Azzi, N. Saib, and E. Chaînet. 2006. “Contribution to the study of electrocoagulation mechanism in basic textile effluent.” J. Hazard. Mater. 131 (1–3): 73–78. https://doi.org/10.1016/j.jhazmat.2005.09.021.
Zhang, F., C. Yang, H. Zhu, Y. Li, and W. Gui. 2019. “An integrated prediction model of heavy metal ion concentration for iron electrocoagulation process.” Chem. Eng. J. 391 (Jul): 123628. https://doi.org/10.1016/j.cej.2019.123628.
Zhao, S., G. Huang, G. Cheng, Y. Wang, and H. Fu. 2014. “Hardness, COD and turbidity removals from produced water by electrocoagulation pretreatment prior to reverse osmosis membranes.” Desalination 344 (Jul): 454–462. https://doi.org/10.1016/j.desal.2014.04.014.
Zhao, X., B. Zhang, H. Liu, F. Chen, A. Li, and J. Qu. 2012. “Transformation characteristics of refractory pollutants in plugboard wastewater by an optimal electrocoagulation and electro-Fenton process.” Chemosphere 87 (6): 631–636. https://doi.org/10.1016/j.chemosphere.2012.01.054.
Zhao, X., B. Zhang, H. Liu, and J. Qu. 2011. “Simultaneous removal of arsenite and fluoride via an integrated electro-oxidation and electrocoagulation process.” Chemosphere 83 (5): 726–729. https://doi.org/10.1016/j.chemosphere.2011.01.055.
Zhou, M., Q. Dai, L. Lei, C. Ma, and D. Wang. 2005. “Long life modified lead dioxide anode for organic wastewater treatment: Electrochemical characteristics and degradation mechanism.” Environ. Sci. Technol. 39 (1): 363–370. https://doi.org/10.1021/es049313a.
Zhu, J., H. Zhao, and J. Ni. 2007. “Fluoride distribution in electrocoagulation defluoridation process.” Sep. Purif. Technol. 56 (2): 184–191. https://doi.org/10.1016/j.seppur.2007.01.030.
Zielińska-Jurek, A., I. Wysocka, M. Janczarek, W. Stampor, and J. Hupka. 2015. “Preparation and characterization of PtN/TiO2 photocatalysts and their efficiency in degradation of recalcitrant chemicals.” Sep. Purif. Technol. 156 (2): 369–378. https://doi.org/10.1016/j.seppur.2015.10.024.
Zodi, S., O. Potier, F. Lapicque, and J. P. Leclerc. 2009. “Treatment of the textile wastewaters by electrocoagulation: Effect of operating parameters on the sludge settling characteristics.” Sep. Purif. Technol. 69 (1): 29–36. https://doi.org/10.1016/j.seppur.2009.06.028.
Zongo, I., A. H. Maiga, J. Wéthé, G. Valentin, J. P. Leclerc, G. Paternotte, and F. Lapicque. 2009. “Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: Compared variations of COD levels, turbidity and absorbance.” J. Hazard. Mater. 169 (1–3): 70–76. https://doi.org/10.1016/j.jhazmat.2009.03.072.
Zuo, Q., X. Chen, W. Li, and G. Chen. 2008. “Combined electrocoagulation and electroflotation for removal of fluoride from drinking water.” J. Hazard. Mater. 159 (2–3): 452–457. https://doi.org/10.1016/j.jhazmat.2008.02.039.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 10October 2020

History

Published online: Jul 21, 2020
Published in print: Oct 1, 2020
Discussion open until: Dec 21, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Deepak Sharma [email protected]
Research Scholar, Dept. of Chemical Engineering, National Institute of Technology, Chhattisgarh 492001, India. Email: [email protected]
Parmesh Kumar Chaudhari [email protected]
Associate Professor, Dept. of Chemical Engineering, National Institute of Technology, Chhattisgarh 492001, India. Email: [email protected]
Savita Dubey [email protected]
Associate Professor, Dept. of Chemical Engineering, IPS Academy, Institute of Engineering and Science, Madhya Pradesh 452012, India. Email: [email protected]
Abhinesh Kumar Prajapati [email protected]
Associate Professor, Dept. of Chemical Engineering, IPS Academy, Institute of Engineering and Science, Madhya Pradesh 452012, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share