Technical Papers
Jun 26, 2020

Utilization of Lignocellulosic Waste for Acridine Orange Uptake: Insights into Multiparameter Isotherms Modeling with ANN-Aimed Formulation

Publication: Journal of Environmental Engineering
Volume 146, Issue 9

Abstract

For the first time, a comprehensive study of 35 multiparameter isotherm models was conducted to describe the dynamics of the adsorption of acridine orange (AO) dye on an abundantly available agricultural waste, i.e., overripe Abelmoschus esculentus seedpods. The purpose of this work is to assess the most reliable model for the design and development of an effective batch adsorber system. Analysis of experimental isotherm data was done by scrutinizing one-, two-, three-, four-, and five-parameter models at three different temperatures to understand specific parameters for the design process. Detailed error analysis is carried out to check the accuracy and adequacy of the best fitting isotherm model for experimental data. The isotherm data are in good agreement with the Fritz-Schlunder-V model. Later, experimental data are extensively investigated for dye-biosorbent/dye interactions through Fowler-Guggenheim, Flory-Huggins, Kiselev, Frumkin, Hill-de Boer, and El-Awady isotherm modeling. As a result, the adsorption phenomenon that provides evidence of a multilayer formation shows an attractive interaction between the adsorbed species and the adsorbent surface. Most importantly, an artificial neural network (ANN)-based empirical model was developed to illustrate the dye sequestration process. The ANN-predicted and experimentally observed results were compared (R2=0.9964) to test the accuracy of the model.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors express their gratitude to the Indian Institute of Technology, Kharagpur, for providing the necessary facilities for the study and to the Ministry of Human Resource Development, Government of India, for financial support. The authors also thank Prof. Debabrata Pradhan (Materials Science Centre) and Prof. Tarasankar Pal (Dept. of Chemistry) for their help in BET N2 adsorption-desorption measurements.

References

Abdollahi, Y., N. A. Sairi, M. K. Aroua, H. R. F. Masoumi, H. Jahangirian, and Y. Alias. 2015. “Fabrication modeling of industrial CO2 ionic liquids absorber by artificial neural networks.” J. Ind. Eng. Chem. 25 (May): 168–175. https://doi.org/10.1016/j.jiec.2014.10.029.
Abiodun, O. I., A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad. 2018. “State-of-the-art in artificial neural network applications: A survey.” Heliyon 4 (11): e00938. https://doi.org/10.1016/j.heliyon.2018.e00938.
Abutaleb, A., A. M. Tayeb, M. A. Mahmoud, A. M. Daher, O. A. Desouky, O. Y. Bakather, and R. Farouq. 2020. “Removal and recovery of U(VI) from aqueous effluents by flax fiber: Adsorption, desorption and batch adsorber proposal.” J. Adv. Res. 22 (Mar): 153–162. https://doi.org/10.1016/j.jare.2019.10.011.
Aguado, D., J. Ribes, T. Montoya, J. Ferrer, and A. Seco. 2009. “A methodology for sequencing batch reactor identification with artificial neural networks: A case study.” Comput. Chem. Eng. 33 (2): 465–472. https://doi.org/10.1016/j.compchemeng.2008.10.018.
Ahmed, M., F. Mashkoor, and A. Nasar. 2020. “Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution.” Groundwater Sustainable Dev. 10 (Apr): 100322. https://doi.org/10.1016/j.gsd.2019.100322.
Alalm, M. G., and M. Nasr. 2018. “Artificial intelligence, regression model, and cost estimation for removal of chlorothalonil pesticide by activated carbon prepared from casuarina charcoal.” Sustainable Environ. Res. 28 (3): 101–110. https://doi.org/10.1016/j.serj.2018.01.003.
Augustus, E. N., A. S. Samuel, A. Nimibofa, and W. Donbebe. 2017. “Removal of congo red from aqueous solutions using fly ash modified with hydrochloric acid.” Br. J. Appl. Sci. Technol. 20 (4): 1–7. https://doi.org/10.9734/BJAST/2017/29880.
Baldikova, E., M. Safarikova, and I. Safarik. 2015. “Organic dyes removal using magnetically modified rye straw.” J. Magn. Magn. Mater. 380 (Apr): 181–185. https://doi.org/10.1016/j.jmmm.2014.09.003.
Basu, S., G. Ghosh, and S. Saha. 2018. “Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design.” Process Saf. Environ. Prot. 117 (Jul): 125–142. https://doi.org/10.1016/j.psep.2018.04.015.
Baudu, M. 1990. “Etude des interactions solute-fibres de charbon actif: Application et regeneration.” Ph.D. thesis, Dept. of Chemical Sciences, Universite de Rennes I.
Belhachemi, M., and F. Addoun. 2011. “Comparative adsorption isotherms and modeling of methylene blue onto activated carbons.” Appl. Water Sci. 1 (3–4): 111–117. https://doi.org/10.1007/s13201-011-0014-1.
Bello, O. S., E. O. Alabi, K. A. Adegoke, S. A. Adegboyega, A. A. Inyinbor, and A. O. Dada. 2020. “Rhodamine B dye sequestration using Gmelina aborea leaf powder.” Heliyon 6 (1): e02872. https://doi.org/10.1016/j.heliyon.2019.e02872.
Boulinguiez, B., P. Le Cloirec, and D. Wolbert. 2008. “Revisiting the determination of Langmuir parameters—Application to tetrahydrothiophene adsorption onto activated carbon.” Langmuir 24 (13): 6420–6424. https://doi.org/10.1021/la800725s.
Brdar, M. M., A. A. Takači, M. B. Šćiban, and D. Z. Rakić. 2012. “Isotherms for the adsorption of Cu(II) onto lignin-comparison of linear and non-linear methods.” Hem. Ind. 66 (4): 497–503. https://doi.org/10.2298/HEMIND111114003B.
Brouers, F., O. Sotolongo, F. Marquez, and J. P. Pirard. 2005. “Microporous and heterogeneous surface adsorption isotherms arising from Levy distributions.” Physica A Stat. Mech. Appl. 349 (1–2): 271–282. https://doi.org/10.1016/j.physa.2004.10.032.
Butnariu, M., P. Negrea, L. Lupa, M. Ciopec, A. Negrea, M. Pentea, I. Sarac, and I. Samfira. 2015. “Remediation of rare earth element pollutants by sorption process using organic natural sorbents.” Int. J. Environ. Res. Public Health 12 (9): 11278–11287. https://doi.org/10.3390/ijerph120911278.
Chieng, H. I., T. Zehra, L. B. L. Lim, N. Priyantha, and D. T. B. Tennakoon. 2014. “Sorption characteristics of peat of Brunei Darussalam IV: Equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution.” Environ. Earth Sci. 72 (7): 2263–2277. https://doi.org/10.1007/s12665-014-3135-7.
Chowdhury, A. K., A. D. Sarkar, and A. Bandyopadhyay. 2009. “Rice husk ash as a low cost adsorbent for the removal of methylene blue and congo red in aqueous phases.” Clean Soil Air Water 37 (7): 581–591. https://doi.org/10.1002/clen.200900051.
Cui, Q., G. Jiao, J. Zheng, T. Wang, G. Wu, and G. Li. 2019. “Synthesis of a novel magnetic Caragana korshinskii biochar/Mg-Al layered double hydroxide composite and its strong adsorption of phosphate in aqueous solutions.” RSC Adv. 9 (32): 18641–18651. https://doi.org/10.1039/C9RA02052G.
Dabrowski, A., P. Podkoscielny, Z. Hubicki, and M. Barczak. 2005. “Adsorption of phenolic compounds by activated carbon—A critical review.” Chemosphere 58 (8): 1049–1070. https://doi.org/10.1016/j.chemosphere.2004.09.067.
Dahri, M. K., M. R. R. Kooh, and L. B. L. Lim. 2015. “Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution.” Alexandria Eng. J. 54 (4): 1253–1263. https://doi.org/10.1016/j.aej.2015.07.005.
Davoudinejad, M., and S. A. Ghorbanian. 2013. “Modeling of adsorption isotherm of benzoic compounds onto GAC and introducing three new isotherm models using new concept of adsorption effective surface (AES).” Sci. Res. Essays 8 (46): 2263–2275. https://doi.org/10.5897/SRE10.643.
Dawood, S., and T. K. Sen. 2012. “Removal of anionic dye congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design.” Water Res. 46 (6): 1933–1946. https://doi.org/10.1016/j.watres.2012.01.009.
De Boer, J. H. 1953. The dynamical character of adsorption. Oxford: Oxford University Press.
Değermenci, G. D., N. Değermenci, V. Ayvaoğlu, E. Durmaz, D. Çakır, and E. Akan. 2019. “Adsorption of reactive dyes on lignocellulosic waste; characterization, equilibrium, kinetic and thermodynamic studies.” J. Clean. Prod. 225 (Jul): 1220–1229. https://doi.org/10.1016/j.jclepro.2019.03.260.
Delnavaz, M., J. Farahbakhsh, A. Talaiekhozani, and K. M. Nouri. 2019. “Predicting removal efficiency of formaldehyde from synthetic contaminated air in biotrickling filter using artificial neural network modeling.” J. Environ. Eng. 145 (9): 04019056. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001566.
Dhiman, N., A. S. Markandeya, N. K. Verma, N. Ajaria, and S. Patnaik. 2017. “Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles.” J. Colloid Interface Sci. 493 (May): 295–306. https://doi.org/10.1016/j.jcis.2017.01.042.
Dichiara, A. B., S. J. Weinstein, and R. E. Rogers. 2015. “On the choice of batch or fixed bed adsorption processes for wastewater treatment.” Ind. Eng. Chem. Res. 54 (34): 8579–8586. https://doi.org/10.1021/acs.iecr.5b02350.
Dubey, S., M. Agarwal, A. B. Gupta, R. K. Dohare, and S. Upadhyaya. 2017. “Automation and control of water treatment plant for defluoridation.” Int. J. Adv. Technol. Eng. Explor. 4 (26): 6–11. https://doi.org/10.19101/IJATEE.2017.426002.
Dubinin, M. M., and L. V. Radushkevich. 1947. “Equation of the characteristic curve of activated charcoal.” Proc Acad. Sci. Phys. Chem. Sect. 55: 331–337.
Durairaj, K., P. Senthilkumar, P. Velmurugan, S. Divyabharathi, and D. Kavitha. 2019. “Development of activated carbon from Nerium oleander flower and their rapid adsorption of direct and reactive dyes.” Int. J. Green Energy 16 (7): 573–582. https://doi.org/10.1080/15435075.2019.1598419.
El-Awady, A. A., B. A. Abd-El-Nabey, and S. G. Aziz. 1992. “Kinetic-thermodynamic and adsorption isotherms analyses for the inhibition of the acid corrosion of steel by cyclic and open-chain amines.” J. Electrochem. Soc. 139 (8): 2149–2154. https://doi.org/10.1149/1.2221193.
Ertugay, M. F., M. Certel, and A. Gürses. 2000. “Moisture adsorption isotherms of Tarhana at 25°C and 35°C and the investigation of fitness of various isotherm equations to moisture sorption data of Tarhana.” J. Sci. Food Agric. 80 (14): 2001–2004. https://doi.org/10.1002/1097-0010(200011)80:14%3C2001::AID-JSFA724%3E3.0.CO;2-D.
Fan, H., Y. Ma, J. Wan, and Y. Wang. 2020. “Removal of gentian violet and rhodamine B using banyan aerial roots after modification and mechanism studies of differential adsorption behaviors.” Environ. Sci. Pollut. Res. 27 (Mar): 9152–9166. https://doi.org/10.1007/s11356-019-07024-7.
Fan, M., J. Hu, R. Cao, W. Ruan, and X. Wei. 2018. “A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence.” Chemosphere 200 (Jun): 330–343. https://doi.org/10.1016/j.chemosphere.2018.02.111.
Fawzy, M., M. Nasr, H. Nagy, and S. Helmi. 2018. “Artificial intelligence and regression analysis for Cd(II) ion biosorption from aqueous solution by Gossypium barbadense waste.” Environ. Sci. Pollut. Res. 25 (6): 5875–5888. https://doi.org/10.1007/s11356-017-0922-1.
Fowler, R. H., and E. A. Guggenheim. 1939. Statistical thermodynamics. London: Cambridge University Press.
Franco, D. S. P., J. Georgin, F. C. Drumm, M. S. Netto, D. Allasia, M. L. S. Oliveira, and G. L. Dotto. 2020. “Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption.” Environ. Sci. Pollut. Res. 27 (Apr): 11184–11194. https://doi.org/10.1007/s11356-019-07490-z.
Freundlich, H. M. F. 1906. “Over the adsorption in solution.” J. Phys. Chem. 57: 385–471.
Fritz, W., and E. U. Schlunder. 1974. “Simultaneous adsorption equilibria of organic solutes in dilute aqueous solution on activated carbon.” Chem. Eng. Sci. 29 (5): 1279–1282. https://doi.org/10.1016/0009-2509(74)80128-4.
Gadekar, M. R., and M. M. Ahammed. 2019. “Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach.” J. Environ. Manage. 231 (Feb): 241–248. https://doi.org/10.1016/j.jenvman.2018.10.017.
Garcia-Reyes, R. B., and J. R. Rangel-Mendez. 2010. “Adsorption kinetics of chromium(III) ions on agro-waste materials.” Bioresour. Technol. 101 (21): 8099–8108. https://doi.org/10.1016/j.biortech.2010.06.020.
Garg, D., S. Kumar, K. Sharma, and C. B. Majumder. 2019. “Application of waste peanut shells to form activated carbon and its utilization for the removal of Acid Yellow 36 from wastewater.” Groundwater Sustainable Dev. 8 (Apr): 512–519. https://doi.org/10.1016/j.gsd.2019.01.010.
Garson, D. G. 1991. “Interpreting neural network connection weights.” Artif. Intell. Expert 6 (4): 46–51.
Gemici, B. T., H. U. Ozel, and H. B. Ozel. 2020. “Adsorption behaviors of crystal violet from aqueous solution using Anatolian black pine (Pinus nigra Arnold.): Kinetic and equilibrium studies.” Sep. Sci. Technol. 55 (3): 406–414. https://doi.org/10.1080/01496395.2019.1577268.
Gerente, C., V. K. C. Lee, P. Le Cloirec, and G. McKay. 2007. “Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review.” Crit. Rev. Environ. Sci. Technol. 37 (1): 41–127. https://doi.org/10.1080/10643380600729089.
Ghaedi, A. M., and A. Vafaei. 2017. “Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: A review.” Adv. Colloid Interf. Sci. 245 (Jul): 20–39. https://doi.org/10.1016/j.cis.2017.04.015.
Gholitabar, S., and H. Tahermansouri. 2017. “Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound.” Carbon Lett. 22 (1): 14–24. https://doi.org/10.5714/CL.2017.22.014.
Ghosal, P. S., and A. K. Gupta. 2018a. “Bi-objective optimization through Pareto frontier analysis and artificial neural network for adsorptive removal of fluoride by a novel Al/olivine composite.” J. Environ. Eng. 144 (12): 04018126. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001457.
Ghosal, P. S., and A. K. Gupta. 2018b. “Modeling adsorption isotherm for defluoridation by calcined Ca-Al-(NO3)-LDH: State-of-the-art technique.” J. Environ. Eng. 144 (2): 04017100. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001316.
Grchev, T., M. Cvetkovska, T. Stafilov, and J. W. Schultze. 1991. “Adsorption of polyacryamide on gold and iron from acidic aqueous solutions.” Electrochim. Acta 36 (8): 1315–1323. https://doi.org/10.1016/0013-4686(91)80011-V.
Guiza, S., L. Franck, and M. Bagané. 2018. “Adsorption of dyes from aqueous solution under batch mode using cellulosic orange peel waste.” Desalin. Water Treat. 113 (May): 262–269. https://doi.org/10.5004/dwt.2018.22258.
Haimi, H., M. Mulas, and R. Vahala. 2010. “Process automation in wastewater treatment plants: The Finnish experience.” E-Water, Off. Publ. Eur. Water Assoc. 3: 1–17.
Halsey, G. 1948. “Physical adsorption on non-uniform surfaces.” J. Chem. Phys. 16 (10): 931–937. https://doi.org/10.1063/1.1746689.
Hamdaoui, O., and E. Naffrechoux. 2007. “Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters.” J. Hazard. Mater. 147 (1–2): 381–394. https://doi.org/10.1016/j.jhazmat.2007.01.021.
Hanbali, M., H. Holail, and H. Hammud. 2014. “Remediation of lead by pretreated red algae: Adsorption isotherm, kinetic, column modeling and simulation studies.” Green Chem. Lett. Rev. 7 (4): 342–358. https://doi.org/10.1080/17518253.2014.955062.
Hashem, A., A. Al-Anwar, N. M. Nagy, D. M. Hussein, and S. Eisa. 2016. “Isotherms and kinetic studies on adsorption of Hg(II) ions onto Ziziphus spina-christi L. from aqueous solutions.” Green Process. Synth. 5 (2): 213–224. https://doi.org/10.1515/gps-2015-0103.
Hassan, M. R., R. M. Fikry, and S. M. Yakout. 2020. “Artificial neural network approach modeling for sorption of cobalt from aqueous solution using modified maghemite nanoparticles.” J. Environ. Eng. 146 (4): 04020013. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001565.
Hill, A. V. 1910. “The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves.” J. Physiol. (London) 40: 4–7.
Hill, T. L. 1946. “Statistical mechanics of multimolecular adsorption II. Localized and mobile adsorption and absorption.” J. Chem. Phys. 14 (7): 441–453. https://doi.org/10.1063/1.1724166.
Hokkanen, S., A. Bhatnagar, A. Koistinen, T. Kangas, U. Lassi, and M. Sillanpaa. 2018. “Comparison of adsorption equilibrium models and error functions for the study of sulfate removal by calcium hydroxyapatite microfibrillated cellulose composite.” Environ. Technol. 39 (8): 952–966. https://doi.org/10.1080/09593330.2017.1317839.
Horsfall, M., and A. I. Spiff. 2005. “Equilibrium sorption study of Al3+, Co2+ and Ag2+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK f) waste biomass.” Acta Chim. Slovenica. 52 (2): 174–181.
Jain, S. N., and P. R. Gogate. 2018. “Efficient removal of acid green 25 dye from wastewater using activated Prunus dulcis as biosorbent: Batch and column studies.” J. Environ. Manage. 210 (Mar): 226–238. https://doi.org/10.1016/j.jenvman.2018.01.008.
Jovanovic, D. S. 1969. “Physical adsorption of gases. I. Isotherms for monolayer and multilayer adsorption.” Colloid Polym. Sci. 235 (1): 1203–1213. https://doi.org/10.1007/BF01542530.
Kapoor, A., and R. T. Yang. 1989. “Correlation of equilibrium adsorption data of condensable vapours on porous adsorbents.” Gas Sep. Purif. 3 (4): 187–192. https://doi.org/10.1016/0950-4214(89)80004-0.
Karri, R. R., and J. N. Sahu. 2018. “Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment.” J. Environ. Manage. 206 (Jan): 178–191. https://doi.org/10.1016/j.jenvman.2017.10.026.
Kavci, E. Forthcoming. “Malachite green adsorption onto modified pine cone: Isotherms, kinetics and thermodynamics mechanism.” Chem. Eng. Commun. https://doi.org/10.1080/00986445.2020.1715961.
Kavitha, B., and D. Sarala Thambavani. 2016. “Kinetics, equilibrium isotherm and neural network modeling studies for the sorption of hexavalent chromium from aqueous solution by quartz/feldspar/wollastonite.” RSC Adv. 6 (Jan): 5837–5847. https://doi.org/10.1039/C5RA22851D.
Khan, A. R., I. R. Al-Waheab, and A. Al-Haddad. 1996. “A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution.” Environ. Technol. 17 (1): 13–23. https://doi.org/10.1080/09593331708616356.
Khan, M. M. R., B. Sahoo, A. K. Mukherjee, and A. Naskar. 2019. “Biosorption of acid yellow-99 using mango (Mangifera indica) leaf powder, an economic agricultural waste.” SN Appl. Sci. 1 (Oct): 1493. https://doi.org/10.1007/s42452-019-1537-6.
Khan, T., M. R. U. Mustafa, M. H. Isa, Y. C. T. S. B. A. Manan, J. W. L. Ho, and N. Z. Yusof. 2017. “Artificial neural network (ANN) for modelling adsorption of lead (Pb(II)) from aqueous solution.” Water Air Soil Pollut. 228 (Nov): 426. https://doi.org/10.1007/s11270-017-3613-0.
Kiselev, A. V. 1958. “Vapor adsorption in the formation of adsorbate molecule complexes on the surface.” Kolloid Zhur. 20: 338–348.
Kıvanç, M. R., and V. Yönten. 2020. “A statistical optimization of methylene blue removal from aqueous solutions by Agaricus campestris using multi-step experimental design with response surface methodology: Isotherm, kinetic and thermodynamic studies.” Surf. Interfaces 18 (Mar): 100414. https://doi.org/10.1016/j.surfin.2019.100414.
Koble, R. A., and T. E. Corrigan. 1952. “Adsorption isotherm for pure hydrocarbons.” Ind. Eng. Chem. Res. 44 (2): 383–387. https://doi.org/10.1021/ie50506a049.
Krishna Murthy, T. P., B. S. Gowrishankar, M. N. Chandra Prabha, M. Kruthi, and R. Hari Krishna. 2019. “Studied on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: Equilibrium, kinetics and thermodynamic studies.” Microchem. J. 146 (May): 192–201. https://doi.org/10.1016/j.microc.2018.12.067.
Kumar, K. V., and S. Sivanesan. 2006. “Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: Comparison of linear and non-linear regression methods.” J. Hazard. Mater. 136 (3): 721–726. https://doi.org/10.1016/j.jhazmat.2006.01.003.
Kuppusamy, S., K. Venkateswarlu, P. Thavamani, Y. B. Lee, R. Naidu, and M. Megharaj. 2017. “Quercus robur acorn peel as a novel coagulating adsorbent for cationic dye removal from aquatic ecosystems.” Ecol. Eng. 101 (Apr): 3–8. https://doi.org/10.1016/j.ecoleng.2017.01.014.
Kyzas, G. Z., J. Fu, and K. A. Matis. 2013. “The change from past to future for adsorbent materials in treatment of dyeing wastewaters.” Materials 6 (11): 5131–5158. https://doi.org/10.3390/ma6115131.
Kyzas, G. Z., M. Kostoglou, A. A. Vassiliou, and N. K. Lazaridis. 2011. “Treatment of real effluents from dyeing reactor: Experimental and modeling approach by adsorption onto chitosan.” Chem. Eng. J. 168 (2): 577–585. https://doi.org/10.1016/j.cej.2011.01.026.
Langmuir, I. 1916. “The constitution and fundamental properties of solids and liquids. Part I. Solids.” J. Am. Chem. Soc. 38 (11): 2221–2295. https://doi.org/10.1021/ja02268a002.
Marquardt, D. W. 1963. “An algorithm for least-squares estimation of nonlinear parameters.” J. Soc. Ind. Appl. Math. 11 (2): 431–441. https://doi.org/10.1137/0111030.
Mashkoor, F., and A. Nasar. 2020. “Magnetized Tectona grandis sawdust as a novel adsorbent: Preparation, characterization, and utilization for the removal of methylene blue from aqueous solution.” Cellulose 27 (5): 2613–2635. https://doi.org/10.1007/s10570-019-02918-8.
McKay, G., and B. Al-Duri. 1987. “Simplified model for the equilibrium adsorption of dyes from mixtures using activated carbon.” Chem. Eng. Process. 22 (3): 145–156. https://doi.org/10.1016/0255-2701(87)80041-7.
Meili, L., et al. 2019. “Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modeling.” Prog. Biophys. Mol. Biol. 141 (Jan): 60–71. https://doi.org/10.1016/j.pbiomolbio.2018.07.011.
Meseldzija, S., J. Petrovic, A. Onjia, T. Volkov-Husovic, A. Nesic, and N. Vukelic. 2019. “Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater.” J. Ind. Eng. Chem. 75 (Jul): 246–252. https://doi.org/10.1016/j.jiec.2019.03.031.
Mohebali, S., D. Bastani, and H. Shayesteh. 2019. “Equilibrium, kinetic and thermodynamic studies of a low-cost biosorbent for the removal of congo red dye: Acid and CTAB-acid modified celery (Apium graveolens).” J. Mol. Struct. 1176 (Jan): 181–193. https://doi.org/10.1016/j.molstruc.2018.08.068.
Mokkapati, R. P., V. N. Ratnakaram, and J. S. Mokkapati. 2018. “Utilization of agro-waste for removal of toxic hexavalent chromium: Surface interaction and mass transfer studies.” Int. J. Environ. Sci. Technol. 15 (4): 875–886. https://doi.org/10.1007/s13762-017-1443-7.
Munagapati, V. S., J.-C. Wen, C.-L. Pan, Y. Gutha, J. -H. Wen, and G. M. Reddy. 2020. “Adsorptive removal of anionic dye (reactive black 5) from aqueous solution using chemically modified banana peel powder: Kinetic, isotherm, thermodynamic, and reusability studies.” Int. J. Phytorem. 22 (3): 267–278. https://doi.org/10.1080/15226514.2019.1658709.
Najdanović, S. M., M. M. Petrović, M. M. Kostić, J. Z. Mitrović, D. V. Bojić, M. D. Antonijević, and A. L. Bojić. 2020. “Electrochemical synthesis and characterization of basic bismuth nitrate [Bi6O5(OH)3](NO3)5.2H2O: A potential highly efficient sorbent for textile reactive dye removal.” Res. Chem. Intermed. 46 (Jan): 661–680. https://doi.org/10.1007/s11164-019-03983-1.
Nayak, A. K., and A. Pal. 2017. “Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modeling.” J. Environ. Manage. 200 (Sep): 145–159. https://doi.org/10.1016/j.jenvman.2017.05.045.
Nayak, A. K., and A. Pal. 2018. “Rapid and high-performance adsorptive removal of hazardous acridine orange from aqueous environment using Abelmoschus esculentus seed powder: Single- and multi-parameter optimization studies.” J. Environ. Manage. 217 (Jul): 573–591. https://doi.org/10.1016/j.jenvman.2018.03.137.
Nayak, A. K., and A. Pal. 2019. “Development and validation of an adsorption kinetic model at solid-liquid interface using normalized Gudermannian function.” J. Mol. Liq. 276 (Feb): 67–77. https://doi.org/10.1016/j.molliq.2018.11.089.
Nayak, A. K., and A. Pal. 2020. “Statistical modeling and performance evaluation of biosorptive removal of nile blue A by lignocellulosic agricultural waste under the application of high-strength dye concentrations.” J. Environ. Chem. Eng. 8 (2): 103677. https://doi.org/10.1016/j.jece.2020.103677.
Nazif, S., E. Mirashrafi, B. Roghani, and G. N. Bidhendi. 2020. “Artificial intelligence-based optimization of reverse osmosis systems operation performance.” J. Environ. Eng. 146 (2): 04019106. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001613.
Ncibi, M. C. 2008. “Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis.” J. Hazard. Mater. 153 (1–2): 207–212. https://doi.org/10.1016/j.jhazmat.2007.08.038.
Ng, J. C. Y., W. H. Cheung, and G. McKay. 2003. “Equilibrium studies for the sorption of lead from effluents using chitosan.” Chemosphere 52 (6): 1021–1030. https://doi.org/10.1016/S0045-6535(03)00223-6.
Ngwabebhoh, F. A., and U. Yildiz. 2019. “Pyrocatechol recovery from aqueous phase by nanocellulose-based platelet-shaped gels: Response surface methodology and artificial neural network design study.” J. Environ. Eng. 145 (2): 04018140. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001491.
Nwabanne, J. T., and V. N. Okafor. 2012. “Adsorption and thermodynamics study of the inhibition of corrosion of mild steel of H2SO4 medium using Vernonia amygdalina.” J. Miner. Mater. Charact. Eng. 11 (9): 885–890. https://doi.org/10.4236/jmmce.2012.119083.
Obot, I. B., N. O. Obi-Egbedi, and S. A. Umoren. 2009. “Adsorption characteristics and corrosion inhibitive properties of clotrimazole for aluminium corrosion in hydrochloric acid.” Int. J. Electrochem. Sci. 4 (6): 863–877.
Ooi, J., L. Y. Lee, B. Y. Z. Hiew, S. Thangalazhy-Gopakumar, S. S. Lim, and S. Gan. 2017. “Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies.” Bioresour. Technol. 245 (Dec): 656–664. https://doi.org/10.1016/j.biortech.2017.08.153.
Oskui, F. N., H. Aghdasinia, and M. G. Sorkhabi. 2019. “Modeling and optimization of chromium adsorption onto clay using response surface methodology, artificial neural network, and equilibrium isotherm models.” Environ. Prog. Sustainable Energy 38 (6): e13260. https://doi.org/10.1002/ep.13260.
Pal, P., and A. Pal. 2020. “Bengal gram husk as efficient and cost-effective adsorbent for Pb2+ and methylene blue removal is single and binary systems.” J. Hazard. Toxic Radioact. Waste 24 (1): 04019032. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000477.
Parker, G. R. 1995. “Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents.” Adsorption 1 (2): 113–132. https://doi.org/10.1007/BF00705000.
Piccin, J. S., C. S. Gomes, L. A. Feris, and M. Gutterres. 2012. “Kinetics and isotherms of leather dye adsorption by tannery solid waste.” Chem. Eng. J. 183 (Feb): 30–38. https://doi.org/10.1016/j.cej.2011.12.013.
Podder, M. S., and C. B. Majumder. 2017. “Simultaneous biosorption and bioaccumulation: A novel technique for the efficient removal of arsenic.” Sustainable Water Resour. Manage. 3 (Dec): 357–389. https://doi.org/10.1007/s40899-017-0103-x.
Radke, C. J., and J. M. Prausnitz. 1972. “Adsorption of organic solutions from dilute aqueous solution on activated carbon.” Ind. Eng. Chem. Fundam. 11 (4): 445–451. https://doi.org/10.1021/i160044a003.
Raj, K. R., A. Kardam, J. K. Arora, S. Srivastava, and M. M. Srivastava. 2013. “Adsorption behavior of dyes from aqueous solution using agricultural waste: Modeling approach.” Clean Technol. Environ. Policy 15 (1): 73–80. https://doi.org/10.1007/s10098-012-0480-7.
Ramadoss, R., and D. Subramaniam. 2019. “Removal of divalent nickel from aqueous solution using blue-green marine algae: Adsorption modeling and applicability of various isotherm models.” Sep. Sci. Technol. 54 (6): 943–961. https://doi.org/10.1080/01496395.2018.1526194.
Redlich, O., and D. L. Peterson. 1959. “A useful adsorption isotherm.” J. Phys. Chem. 63 (6): 1024–1026. https://doi.org/10.1021/j150576a611.
Robinson, T., G. McMullan, R. Marchant, and P. Nigam. 2001. “Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative.” Bioresour. Technol. 77 (3): 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8.
Safarik, I., and M. Safarikova. 2010. “Magnetic fluid modified peanut husks as an adsorbent for organic dyes removal.” Phys. Procedia 9: 274–278. https://doi.org/10.1016/j.phpro.2010.11.061.
Safarik, I., L. F. T. Rego, M. Borovska, E. Mosiniewicz-Szablewska, F. Weyda, and M. Safarikova. 2007. “New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes.” Enzyme Microb. Technol. 40 (6): 1551–1556. https://doi.org/10.1016/j.enzmictec.2006.10.034.
Salehi, I., M. Shirani, A. Semnani, M. Hassani, and S. Habibollahi. 2016. “Comparative study between response surface methodology and artificial neural network for adsorption of crystal violet on magnetic activated carbon.” Arab J. Sci. Eng. 41 (Jul): 2611–2621. https://doi.org/10.1007/s13369-016-2109-3.
Sekar, M., V. Sakthi, and S. Rengaraj. 2004. “Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell.” J. Colloid Interface Sci. 279 (2): 307–313. https://doi.org/10.1016/j.jcis.2004.06.042.
Shooto, N. D., C. S. Nkutha, N. R. Guilande, and E. B. Naidoo. 2020. “Pristine and modified mucuna beans adsorptive studies of toxic lead ions and methylene blue dye from aqueous solution.” S. Afr. J. Chem. Eng. 31 (Jan): 33–43. https://doi.org/10.1016/j.sajce.2019.12.001.
Shoukat, S., H. N. Bhatti, M. Iqbal, and S. Noreen. 2017. “Mango stone biocomposite preparation and application for crystal violet adsorption: A mechanistic study.” Microporous Mesoporous Mater. 239 (Feb): 180–189. https://doi.org/10.1016/j.micromeso.2016.10.004.
Siddique, A., A. K. Nayak, and J. Singh. 2020. “Synthesis of FeCl3-activated carbon derived from waste Citrus limetta peels for removal of fluoride: An eco-friendly approach for the treatment of groundwater and bio-waste collectively.” Groundwater Sustainable Dev. 10 (Apr): 100339. https://doi.org/10.1016/j.gsd.2020.100339.
Singha, B., N. Bar, and S. K. Das. 2014. “The use of artificial neural networks (ANN) for modeling of adsorption of Cr(VI) ions.” Desalin. Water Treat. 52 (1–3): 415–425. https://doi.org/10.1080/19443994.2013.813682.
Sips, R. 1948. “On the structure of a catalyst surface.” J. Chem. Phys. 16 (5): 490–495. https://doi.org/10.1063/1.1746922.
Siqueira, T. C. A., I. Z. da Silva, A. J. Rubio, R. Bergamasco, F. Gasparotto, E. A. de Souza Paccola, and N. U. Yamaguchi. 2020. “Sugarcane bagasse as an efficient biosorbent for methylene blue removal: Kinetics, isotherms and thermodynamics.” Int. J. Environ. Res. Publ. Health 17 (2): 526. https://doi.org/10.3390/ijerph17020526.
Sivarajasekar, N., and R. Baskar. 2014. “Adsorption of basic red 9 onto activated carbon derived from immature cotton seeds: Isotherm studies and error analysis.” Desalin. Water Treat. 52 (40–42): 7743–7765. https://doi.org/10.1080/19443994.2013.834518.
Sun, L., and B. Fugetsu. 2014. “Graphene oxide captured for green use: influence on the structures of calcium alginate and macroporous alginic beads and their application to aqueous removal of acridine orange.” Chem. Eng. J. 240 (Mar): 565–573. https://doi.org/10.1016/j.cej.2013.10.083.
Sutherland, C., B. S. Chittoo, and C. Venkobachar. 2019. “Application of ANN predictive model for the design of batch adsorbers—Equilibrium simulation of Cr(VI) adsorption onto activated carbon.” Open Civ. Eng. J. 13 (Jun): 69–81. https://doi.org/10.2174/1874149501913010069.
Syafiuddin, A., S. Salmiati, J. Jonbi, and M. A. Fulazzaky. 2018. “Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents.” J. Environ. Manage. 218 (Jul): 59–70. https://doi.org/10.1016/j.jenvman.2018.03.066.
Takdastan, A., S. Samarbaf, Y. Tahmasebi, N. Alavi, and A. A. Babaei. 2019. “Alkali modified oak waste residues as a cost-effective adsorbent for enhanced removal of cadmium from water: Isotherm, kinetic, thermodynamic and artificial neural network modeling.” J. Ind. Eng. Chem. 78 (Oct): 352–363. https://doi.org/10.1016/j.jiec.2019.05.034.
Tanzifi, M., M. T. Yaraki, A. D. Kiadehi, S. H. Hosseini, M. Olazar, A. K. Bharti, S. Agarwal, V. K. Gupta, and A. Kazemi. 2018. “Adsorption of amido black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: Experimental investigation and artificial neural network modeling.” J. Colloid Interface Sci. 510 (Jan): 246–261. https://doi.org/10.1016/j.jcis.2017.09.055.
Temkin, M. I., and V. Pyzhev. 1940. “Kinetics of ammonia synthesis on promoted iron catalyst.” Acta Phys. Chim. USSR 12: 327–356.
Torrades, F., and J. García-Montaño. 2014. “Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions.” Dyes Pigm. 100 (Jan): 184–189. https://doi.org/10.1016/j.dyepig.2013.09.004.
Toth, J. 2000. “Calculation of the BET-compatible surface area from any type I isotherms measured above the critical temperature.” J. Colloid Interface Sci. 225 (2): 378–383. https://doi.org/10.1006/jcis.2000.6723.
Tsamo, C., A. Paltahe, D. Fotio, T. A. Vincent, and W. F. Sales. 2019. “One-, two-, and three-parameter isotherms, kinetics, and thermodynamic evaluation of Co(II) removal from aqueous solution using dead neem leaves.” Int. J. Chem. Eng. 2019 (Nov): 6452672. https://doi.org/10.1155/2019/6452672.
Uddin, M. K., and A. Nasar. 2020. “Decolorization of basic dyes solution by utilizing fruit seed powder.” KSCE J. Civ. Eng. 24 (2): 345–355. https://doi.org/10.1007/s12205-020-0523-2.
Ullah, S., M. A. Assiri, A. G. Al-Sehemi, M. A. Bustam, M. Sagir, F. A. Abdulkareem, M. R. Raza, M. Ayoub, and A. Irfan. 2020. “Characteristically insights, artificial neural network (ANN), equilibrium, and kinetic studies of Pb(II) ion adsorption on rice husks treated with nitric acid.” Int. J. Environ. Res. 14 (Feb): 43–60. https://doi.org/10.1007/s41742-019-00235-3.
Valenzuela, D. P., and A. L. Myers. 1989. Adsorption equilibria data handbook. Englewood Cliffs, NJ: Prentice Hall.
van Vliet, B. M., W. J. Weber, and H. Hozumi. 1980. “Modeling and prediction of specific compound adsorption by activated carbon and synthetic adsorbents.” Water Res. 14 (12): 1719–1817. https://doi.org/10.1016/0043-1354(80)90107-4.
Vasudevan, S., J. Lakshmi, and G. Sozhan. 2010. “Studies relating to removal of arsenate by electrochemical coagulation: Optimization, kinetics, coagulant characterization.” Sep. Sci. Technol. 45 (9): 1313–1325. https://doi.org/10.1080/01496391003775949.
Vieth, W. R., and K. J. Sladek. 1965. “A model for diffusion in a glassy polymer.” J. Colloid Sci. 20 (9): 1014–1033. https://doi.org/10.1016/0095-8522(65)90071-1.
Weber, T. N., and R. K. Chakravarti. 1974. “Pore and solid diffusion models for fixed bed adsorbers.” J. Am. Inst. Chem. Eng. 20 (2): 228–238. https://doi.org/10.1002/aic.690200204.
Witek-Krowiak, A., K. Chojnacka, D. Podstawczyk, A. Dawiec, and K. Pokomeda. 2014. “Application of response surface methodology and artificial neural network methods in modeling and optimization of biosorption process.” Bioresour. Technol. 160 (May): 150–160. https://doi.org/10.1016/j.biortech.2014.01.021.
Yadav, M., and N. K. Singh. 2017. “Isotherm investigation for the sorption of fluoride onto Bio-F: Comparison of linear and non-linear regression method.” Appl. Water Sci. 7 (Dec): 4793–4800. https://doi.org/10.1007/s13201-017-0602-9.
Young, B. D., and B. M. Van Vliet. 1988. “The effect of surface roughness on fluid-to-particle mass transfer in a packed adsorber bed.” Int. J. Heat Mass Transf. 31 (1): 27–34. https://doi.org/10.1016/0017-9310(88)90219-0.
Yousef, N. S., R. Farouq, and R. Hazzaa. 2016. “Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ion-exchange resin: Application of two and three parameter isotherm models.” Desalin. Water Treat. 57 (46): 21925–21938. https://doi.org/10.1080/19443994.2015.1132474.
Zbair, M., Z. Anfar, H. Ait Ahsaine, N. El Alem, and M. Ezahri. 2018. “Acridine orange adsorption by zinc oxide/almond shell activated carbon composite: Operational factors, mechanism and performance optimization using central composite design and surface modeling.” J. Environ. Manage. 206 (Jan): 383–397. https://doi.org/10.1016/j.jenvman.2017.10.058.
Zhang, B., Y. Wu, and L. Cha. 2020. “Removal of methyl orange dye using activated biochar derived from pomelo peel wastes: Performance, isotherm, and kinetic studies.” J. Dispersion Sci. Technol. 41 (1): 125–136. https://doi.org/10.1080/01932691.2018.1561298.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 9September 2020

History

Received: Aug 30, 2019
Accepted: Mar 16, 2020
Published online: Jun 26, 2020
Published in print: Sep 1, 2020
Discussion open until: Nov 26, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ashish Kumar Nayak [email protected]
Ph.D. Candidate, Environmental Engineering Div., Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India. Email: [email protected]
Professor, Environmental Engineering Div., Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India (corresponding author). Email: [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share