Abstract

Agroindustrial by-products have become an economical and ecofriendly alternative for wastewater treatment because their lignocellulosic structures are prone to adsorb metals and dyes from solutions. Mauritia flexuosa petioles are discarded during fiber extraction from leaves and are becoming an abundant agrowaste product. This study characterizes the biomass from Mauritia flexuosa petioles using different spectroscopic techniques and evaluates aqueous Cu(II) and methylene blue adsorption on this biomass. The results showed that Mauritia flexuosa petioles are a mesoporous and lignocellulosic biomass, rich in carboxyl and hydroxyl groups that adsorb Cu(II) and methylene blue primarily through physical and exothermic processes. Copper and methylene blue had adsorption rates of 0.016 and 0.733  g/mgmin that are mainly controlled by the COOH and OH groups presented in the biomass surface. Copper adsorption occurs through liquid film diffusion and electrostatic attraction, whereas methylene blue adsorption occurs through electrostatic attraction and hydrogen bonding. The maximum Cu(II) and methylene blue adsorption capacity was 14.20 and 7.49  mgg1, respectively. These findings make this biomass a novel low-cost adsorbent and contributes to agrowaste valorization and reuse.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors would like to thank Flavio Júnior Caires from UNESP for his collaboration on FTIR and TG/DSC analysis. This study was supported by a financial grant from the National Council of Technological and Scientific Development (CNPq No. 456649/2014-0).

References

Adelaja, O. A., I. A. Amoo, and A. D. Aderibigbe. 2011. “Biosorption of lead (II) ions from aqueous solution using moringa oleifera pods.” Arch. Appl. Sci. Res. 3 (6): 50–60.
Afroze, S., T. K. Sen, M. Ang, and H. Nishioka. 2016. “Adsorption of methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: Equilibrium, kinetics, thermodynamics and mechanism.” Desalin. Water Treat. 57 (13): 5858–5878. https://doi.org/10.1080/19443994.2015.1004115.
Ahalya, N., R. D. Kanamadi, and T. V. Ramachandra. 2006. “Biosorption of iron(III) from aqueous solutions using the husk of Cicer arientinum.” Indian J. Chem. Technol. 13 (2): 122–127.
Ahmad, R., and R. Kumar. 2010. “Adsorptive removal of Congo red dye from aqueous solution using bael shell carbon.” Appl. Surf. Sci. 257 (5): 1628–1633. https://doi.org/10.1016/j.apsusc.2010.08.111.
Amorim, D. J., H. C. Rezende, É. L. Oliveira, I. L. Almeida, N. M. Coelho, T. N. Matos, and C. S. Araújo. 2016. “Characterization of pequi (Caryocar brasiliense) shells and evaluation of their potential for the adsorption of PbII ions in aqueous systems.” J. Braz. Chem. Soc. 27 (3): 616–623. https://doi.org/10.5935/0103-5053.20150304.
Arias, F., and T. K. Sen. 2009. “Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: A kinetic and equilibrium study.” Colloids Surf., A 348 (1–3): 100–108. https://doi.org/10.1016/j.colsurfa.2009.06.036.
Balarak, D., J. Jaafari, G. Hassani, Y. Mahdavi, I. Tyagi, S. Agarwal, and V. K. Gupta. 2015. “The use of low-cost adsorbent (canola residues) for the adsorption of methylene blue from aqueous solution: Isotherm, kinetic and thermodynamic studies.” Colloids Interface Sci. Commun. 7 (Jul): 16–19. https://doi.org/10.1016/j.colcom.2015.11.004.
Batenburg, L., and H. Fischer. 2001. PlanoColors—A combination of organic dyes and layered silicates with nanometer dimensions. E-polymers. Berlin: Walter de Gruyter.
Ben-Ali, S., I. Jaouali, S. Souissi-Najar, and A. Ouederni. 2017. “Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal.” J. Cleaner Prod. 142 (Jan): 3809–3821. https://doi.org/10.1016/j.jclepro.2016.10.081.
Bhatnagar, A., and M. Sillanpää. 2010. “Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review.” Chem. Eng. J. 157 (2–3): 277–296. https://doi.org/10.1016/j.cej.2010.01.007.
Cattani, I. M. 2016. “Fibra de buriti (Mauritia flexuosa Mart.): Registro em comunidade local (Barreirinhas-MA, Brasil), caracterização físico-química e estudo comimpregnação com resinas.” Ph.D. dissertation, Escola de Artes Ciências e Humanidades, Universidade de São Paulo.
Cattani, I. M., and R. J. Baruque. 2016. “Brazilian buriti palm fiber (Mauritia flexuosa Mart.).” In Natural fibres: Advances in science and technology towards industrial applications, 89–98. Dordrecht, Netherlands: Springer.
Cesarino, E. C., D. S. Mulholland, and W. Francisco. 2018. “Desenvolvimento e validação de um método espectrofotométrico para avaliação da capacidade biossortiva da casca de baru (Dipteryx alata).” Periódico tchê química (Meio eletrônico) 15 (30): 221–240.
Chao, H. P., C. C. Chang, and A. Nieva. 2014. “Biosorption of heavy metals on citrus maxima peel, passion fruit shell, and sugarcane bagasse in a fixed-bed column.” J. Ind. Eng. Chem. 20 (5): 3408–3414. https://doi.org/10.1016/j.jiec.2013.12.027.
Demiral, H., and C. Gungor. 2016. “Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse.” J. Cleaner Prod. 124 (Jun): 103–113. https://doi.org/10.1016/j.jclepro.2016.02.084.
Demirbas, A. 2008. “Heavy metal adsorption onto agro-based waste materials: A review.” J. Hazard. Mater. 157 (2–3): 220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024.
De Oliveira Brito, S. M., H. M. C. Andrade, L. F. Soares, and R. P. de Azevedo. 2010. “Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions.” J. Hazard. Mater. 174 (1–3): 84–92. https://doi.org/10.1016/j.jhazmat.2009.09.020.
Farinella, N. V., G. D. Matos, and M. A. Z. Arruda. 2007. “Grape bagasse as a potential biosorbent of metals in effluent treatments.” Bioresour. Technol. 98 (10): 1940–1946. https://doi.org/10.1016/j.biortech.2006.07.043.
Fávere, V. T., H. G. Riella, and S. Rosa. 2010. “Cloreto de n-(2-hidroxil) propil-3-trimetil amônio quitosana como adsorvente de corantes reativos em solução aquosa.” Química Nova 33 (7): 1476–1481. https://doi.org/10.1590/S0100-40422010000700010.
Fierro, V., V. Torné-Fernández, D. Montané, and A. Celzard. 2008. “Adsorption of phenol onto activated carbons having different textural and surface properties.” Microporous Mesoporous Mater. 111 (1–3): 276–284. https://doi.org/10.1016/j.micromeso.2007.08.002.
Foo, K. Y., and B. H. Hameed. 2010. “Insights into the modeling of adsorption isotherm systems.” Chem. Eng. J. 156 (1): 2–10. https://doi.org/10.1016/j.cej.2009.09.013.
Gong, R., Y. Sun, J. Chen, H. Liu, and C. Yang. 2005. “Effect of chemical modification on dye adsorption capacity of peanut hull.” Dyes Pigm. 67 (3): 175–181. https://doi.org/10.1016/j.dyepig.2004.12.003.
Hamdaoui, O., and E. Naffrechoux. 2007. “Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. I: Two-parameter models and equations allowing determination of thermodynamic parameters.” J. Hazard. Mater. 147 (1–7): 381–394. https://doi.org/10.1016/j.jhazmat.2007.01.021.
Hameed, B. H., D. K. Mahmoud, and A. L. Ahmad. 2008. “Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste.” J. Hazard. Mater. 158 (1): 65–72. https://doi.org/10.1016/j.jhazmat.2008.01.034.
Hassan, E. 2016. “Comparative study on the biosorption of Pb (II), Cd (II) and Zn (II) using lemon grass (Cymbopogon citratus): Kinetics, isotherms and thermodynamics.” Chem. Int. 2 (2): 89–102.
Jnr, M. H., and A. I. Spiff. 2005. “Equilibrium sorption study of Al3+, Co2+ and Ag+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK f) waste biomass.” Acta Chim. Slovenica 52 (2): 174–181.
Khambhaty, Y., K. Mody, S. Basha, and B. Jha. 2009. “Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger.” Chem. Eng. J. 145 (3): 489–495. https://doi.org/10.1016/j.cej.2008.05.002.
Kumar, P. S., S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, and S. Sivanesan. 2010. “Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions.” Desalination 261 (1–2): 52–60. https://doi.org/10.1016/j.desal.2010.05.032.
Lim, L. B., N. Priyantha, D. T. B. Tennakoon, H. I. Chieng, M. K. Dahri, and M. Suklueng. 2017. “Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies.” Supplement, Arabian J. Chem. 10 (S2): S3216–S3228. https://doi.org/10.1016/j.arabjc.2013.12.018.
Nasernejad, B., T. E. Zadeh, B. B. Pour, M. E. Bygi, and A. Zamani. 2005. “Comparison for biosorption modeling of heavy metals (Cr (III), Cu (II), Zn (II)) adsorption from wastewater by carrot residues.” Process Biochem. 40 (3–4): 1319–1322. https://doi.org/10.1016/j.procbio.2004.06.010.
Nasuha, N., B. H. Hameed, and A. T. M. DIN. 2010. “Rejected tea as a potential low-cost adsorbent for the removal of methylene blue.” J. Hazard. Mater. 175 (1): 126–132. https://doi.org/10.1016/j.jhazmat.2009.09.138.
Neupane, S., S. T. Ramesh, R. Gandhimathi, and P. V. Nidheesh. 2015. “Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution.” Desalin. Water Treat. 54 (7): 2041–2054. https://doi.org/10.1080/19443994.2014.903867.
Ofomaja, A. E., E. B. Naidoo, and S. J. Modise. 2010. “Dynamic studies and pseudo-second order modeling of copper (II) biosorption onto pine cone powder.” Desalination 251 (1–3): 112–122. https://doi.org/10.1016/j.desal.2009.09.135.
Olu-Owolabi, B. I., P. N. Diagboya, and K. O. Adebowale. 2014. “Evaluation of pyrene sorption–desorption on tropical soils.” J. Environ. Manage. 137 (May): 1–9. https://doi.org/10.1016/j.jenvman.2014.01.048.
Parmar, M., and L. S. Thakur. 2013. “Heavy metal Cu, Ni and Zn: Toxicity, health hazards and their removal techniques by low cost adsorbents: A short overview.” Int. J. Plant Anim. Environ. Sci. 3 (3): 143–157.
Pinto, M. V. D. S., D. L. D. Silva, and A. C. F. Saraiva. 2013. “Production and characterization of the activated carbon from buriti stone (Mauritia flexuosa L. f.) to evaluate the adsorption’s process of copper (II).” Acta Amazonica 43 (1): 73–80. https://doi.org/10.1590/S0044-59672013000100009.
Rafatullah, M., O. Sulaiman, R. Hashim, and A. Ahmad. 2010. “Adsorption of methylene blue on low-cost adsorbents: A review.” J. Hazard. Mater. 177 (1–3): 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047.
Rajeswari, S., and S. Swaminathan. 2014. “Role of copper in health and diseases.” Int. J. Cur. Sci. 10 (Feb): 94–107.
Ribeiro, R. F., V. C. Soares, L. M. Costa, and C. C. Nascentes. 2012. “Efficient removal of Cd2+ from aqueous solutions using by-product of biodiesel production.” J. Hazard. Mater. 237 (Oct): 170–179. https://doi.org/10.1016/j.jhazmat.2012.08.027.
Ronda, A., M. A. Martín-Lara, E. Dionisio, G. Blázquez, and M. Calero. 2013. “Effect of lead in biosorption of copper by almond shell.” J. Taiwan Inst. Chem. Eng. 44 (3): 466–473. https://doi.org/10.1016/j.jtice.2012.12.019.
Rovani, S., M. T. Censi, S. L. Pedrotti Jr., É. C. Lima, R. Cataluña, and A. N. Fernandes. 2014. “Development of a new adsorbent from agro-industrial waste and its potential use in endocrine disruptor compound removal.” J. Hazard. Mater. 271 (Apr): 311–320. https://doi.org/10.1016/j.jhazmat.2014.02.004.
Saha, P. 2010. “Assessment on the removal of methylene blue dye using tamarind fruit shell as biosorbent.” Water Air Soil Pollut. 213 (1–4): 287–299. https://doi.org/10.1007/s11270-010-0384-2.
Saldarriaga, J. F., R. Aguado, A. Pablos, M. Amutio, M. Olazar, and J. Bilbao. 2015. “Fast characterization of biomass fuels by thermogravimetric analysis (TGA).” Fuel 140 (Jan): 744–751. https://doi.org/10.1016/j.fuel.2014.10.024.
Salleh, M. A. M., D. K. Mahmoud, W. A. W. A. Karim, and A. Idris. 2011. “Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review.” Desalination 280 (1–3): 1–13. https://doi.org/10.1016/j.desal.2011.07.019.
Sen, T. K., S. Afroze, and H. M. Ang. 2011. “Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiate.” Water Air Soil Pollut. 218 (1–4): 499–515. https://doi.org/10.1007/s11270-010-0663-y.
Silva, D. A. D., E. Eloy, B. O. Caron, and P. F. Trugilho. 2019. “Elemental chemical composition of forest biomass at different ages for energy purposes.” Floresta e Ambiente 26 (4): 1–11.
Silva, D. S., C. A. Holanda, S. A. Santana, C. W. B. Bezerra, and H. A. Silva. 2012. “Adsorção do corante têxtil azul remazol por pecíolo de buriti (Mauritia flexuosa Lf).” Cadernos de pesquisa. 19 (July): 138–146.
Smith, M. B., and M. Jerry. 2007. March’s advanced organic chemistry: Reactions, mechanisms, and structure. New York: Wiley.
Stern, B. R. 2010. “Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations.” J. Toxicol. Environ. Health Part A 73 (2): 114–127. https://doi.org/10.1080/15287390903337100.
Sue, K., F. Ouchi, K. Minami, and K. Arai. 2004. “Determination of carboxylic acid dissociation constants to 350°C at 23 MPa by potentiometric pH measurements.” J. Chem. Eng. Data 49 (5): 1359–1363. https://doi.org/10.1021/je049923q.
Sun, L., S. Wan, and W. Luo. 2013. “Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies.” Bioresour. Technol. 140 (Jul): 406–413. https://doi.org/10.1016/j.biortech.2013.04.116.
Sun, S., and A. Wang. 2006. “Adsorption kinetics of Cu (II) ions using N, O-carboxymethyl-chitosan.” J. Hazard. Mater. 131 (1–3): 103–111. https://doi.org/10.1016/j.jhazmat.2005.09.012.
Tarawou, T., and E. Young. 2015. “Intraparticle and liquid film diffusion studies on the adsorption of Cu2+ and Pb2+ ions from aqueous solution using powdered cocoa pod (Theobroma cacao).” Int. Res. J. Eng. Technol. 2 (8): 1–8.
Tarley, C. R. T., and M. A. Z. Arruda. 2004. “Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents.” Chemosphere 54 (7): 987–995. https://doi.org/10.1016/j.chemosphere.2003.09.001.
Vijayakumar, G., R. Tamilarasan, and M. Dharmendirakumar. 2012. “Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye rhodamine-B from aqueous solution by the use of natural adsorbent perlite.” J. Mater. Environ. Sci. 3 (1): 157–170.
Wang, T., W. Liu, L. Xiong, N. Xu, and J. Ni. 2013. “Influence of pH, ionic strength and humic acid on competitive adsorption of Pb (II), Cd (II) and Cr (III) onto titanate nanotubes.” Chem. Eng. J. 215 (Jan): 366–374. https://doi.org/10.1016/j.cej.2012.11.029.
Weng, C-H., and Y-C. Wu. 2012. “Potential low-cost biosorbent for copper removal: Pineapple leaf powder.” J. Environ. Eng. 138 (3): 286–292. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000424.
Wu, Y., L. Zhang, C. Gao, J. Ma, X. Ma, and R. Han. 2009. “Adsorption of copper ions and methylene blue in a single and binary system on wheat straw.” J. Chem. Eng. Data 54 (12): 3229–3234. https://doi.org/10.1021/je900220q.
Yang, X., C. Yuan, J. Xu, and W. Zhang. 2014. “Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.” Bioresour. Technol. 173 (Dec): 1–5. https://doi.org/10.1016/j.biortech.2014.09.073.
Yargıç, A. Ş., R. Y. Şahin, N. Özbay, and E. Önal. 2015. “Assessment of toxic copper (II) biosorption from aqueous solution by chemically-treated tomato waste.” J. Cleaner Prod. 88 (Feb): 152–159. https://doi.org/10.1016/j.jclepro.2014.05.087.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 6June 2020

History

Received: Apr 17, 2019
Accepted: Nov 19, 2019
Published online: Mar 30, 2020
Published in print: Jun 1, 2020
Discussion open until: Aug 30, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Sara Nepomuceno Patriota [email protected]
Lecturer, Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins Rua Badejós, Lote 7, Chácaras 69/72, Gurupi, TO 77402-970, Brazil. Email: [email protected]
Welington Francisco, Ph.D. [email protected]
Professor, Departamento de Química Ambiental, Universidade Federal de Tocantins, Rua Badejós, Lote 7, Chácaras 69/72, Gurupi, TO 77402-970, Brazil. Email: [email protected]
Daniel Ferreira Araújo, Ph.D. [email protected]
Researcher, Instituto de Geociências, Universidade de Brasília, Campus Darcy Riberio, Brasília, DF 70910-900, Brazil. Email: [email protected]
Professor, Departamento de Química Ambiental, Universidade Federal de Tocantins, Rua Badejós, Lote 7, Chácaras 69/72 Gurupi, TO 77402-970, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-9739-842X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share