Technical Papers
Jan 22, 2020

Carbon Nano-Onions (CNOs)/TiO2 Composite Preparation and Its Photocatalytic Performance under Visible Light Irradiation

Publication: Journal of Environmental Engineering
Volume 146, Issue 4

Abstract

Carbon nano-onions/titanium dioxide (CNOs/TiO2) photocatalyst was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area (BET method), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC), UV-Vis diffuse reflectance spectra (UV-Vis DRS), and high-performance liquid chromatography (HPLC). The photocatalytic activity of CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light irradiation. The results showed that the optimum photocatalytic activity was achieved when the mass ratio of CNOs to TiO2 was 10%. The aforementioned specific CNOs/TiO2 photocatalyst resulted in a maximum RhB degradation efficiency of 78% (10  mg/L of RhB in 220 min). CNOs enhance the photocatalytic efficiency of TiO2 and improve the separation quantity of CNOs/TiO2 catalyst from aqueous media. CNOs can be used as a modification agent to develop high-performance photocatalysts for the removal of organic pollutants.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the Key R&D Projects of Shanxi Province (Social Development Field, 201803D31049), the Natural Science Foundation of Shanxi Province (201801D221341), and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) (2016147).

References

Atchudan, R., S. Perumal, D. Karthikeyan, and R. L. Yong. 2017. “Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation.” J. Photochem. Photobiol. A 333 (Jan): 92–104. https://doi.org/10.1016/j.jphotochem.2016.10.021.
Azzam, E. M. S., N. A. Fathy, S. M. El-Khouly, and R. M. Sami. 2019. “Enhancement the photocatalytic degradation of methylene blue dye using fabricated CNTs/TiO2/AgNPs/surfactant nanocomposites.” J. Water Process Eng. 28 (Apr): 311–321. https://doi.org/10.1016/j.jwpe.2019.02.016.
Bi, Y. G., and D. Liu. 2019. “Rapid synthesis of recyclable and reusable magnetic TiO2@Fe3O4 for degradation of organic pollutant.” Appl. Phys. A 125 (2): 77. https://doi.org/10.1007/s00339-018-2334-6.
Cai, J., X. Wu, Y. Li, Y. Lin, H. Yang, and S. Li. 2018. “Noble metal sandwich-like TiO2 @Pt@C3N4 hollow spheres enhance photocatalytic performance.” J. Colloid Interf. Sci. 514 (Mar):791–800. https://doi.org/10.1016/j.jcis.2018.01.011.
Deblock, R., M. Kociak, B. Reulet, H. Bouchiat, I. I. Khodos, V. T. Volkov, C. Journet, and M. Burghard. 1999. “Supercurrents through single-walled carbon nanotubes.” Science 284 (5419): 1508–1511. https://doi.org/10.1126/science.284.5419.1508.
Eshon, S., W. K. Zhang, M. Saunders, Y. Zhang, H. T. Chua, and J. M. Gordon. 2019. “Panorama of boron nitride nanostructures via lamp ablation.” Nano Res. 12 (3): 557–562. https://doi.org/10.1007/s12274-018-2252-0.
Fu, H. B., S. C. Zhang, T. G. Xu, Y. F. Zhu, and J. M. Chen. 2008. “Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products.” Environ. Sci. Technol. 42 (6): 2085–2091. https://doi.org/10.1021/es702495w.
Fujishima, A., and K. Honda. 1972. “Electrochemical photolysis of water at a semiconductor electrode.” Nature 238 (5358): 37–38. https://doi.org/10.1038/238037a0.
Girgis, B. S., A. A. Attia, and N. A. Fathy. 2011. “Potential of nano-carbon xerogels in the remediation of dye-contaminated water discharges.” Desalination 265 (1): 169–176. https://doi.org/10.1016/j.desal.2010.07.048.
Gupta, V. K., A. Fakhri, M. Azad, and S. Agarwal. 2017. “Synthesis of CdSe quantum dots decorated SnO2 nanotubes as anode for photo-assisted electrochemical degradation of hydrochlorothiazide: Kinetic process.” J. Colloid Interf. Sci. 508 (Dec): 575–582. https://doi.org/10.1016/j.jcis.2017.08.083.
Hung, M. C., S. Y. Yuan, C. C. Hung, C. L. Cheng, H. C. Ho, and T. H. Ko. 2014. “Effectiveness of ZnO/carbon-based material as a catalyst for photodegradation of acrolein.” Carbon 66 (Jan): 93–104. https://doi.org/10.1016/j.carbon.2013.08.047.
Isaev, A. B., N. S. Shabanov, F. F. Orudzhev, K. M. Giraev, and R. M. Emirov. 2017. “Electrochemical synthesis and photocatalytic properties of a-Fe2O3.” J. Nanosci. Nanotechno. 17 (7): 4498–4503. https://doi.org/10.1166/jnn.2017.14199.
Kamil, A. M., H. T. Mohammed, A. A. Balakit, F. H. Hussein, D. W. Bahnemann, and G. A. El-Hiti. 2017. “Synthesis, characterization and photocatalytic activity of carbon nanotube/titanium dioxide nanocomposites.” Arabian J. Sci. Eng. 43 (5): 1–12. https://doi.org/10.1007/s13369-017-2861-z.
Khan, I., S. Ali, M. Mansha, and A. Qurashi. 2017. “Sonochemical assisted hydrothermal synthesis of pseudo-flower shaped Bismuth vanadate (BiVO4) and their solar-driven water splitting application.” Ultrason. Sonochem. 36 (May): 386–392. https://doi.org/10.1016/j.ultsonch.2016.12.014.
Li, H., Y. Zhang, S. Wang, Q. Wu, and C. Liu. 2009. “Study on nanomagnets supported TiO2 photocatalysts prepared by a sol-gel process in reverse microemulsion combining with solvent-thermal technique.” J. Hazard. Mater. 169 (1–3): 1045–1053. https://doi.org/10.1016/j.jhazmat.2009.04.040.
Liu, B., and H. C. Zeng. 2008. “Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2.” Chem. Mater. 20 (8): 2711–2718. https://doi.org/10.1021/cm800040k.
Liu, G., Z. G. Chen, C. L. Dong, Y. N. Zhao, F. Li, G. Q. Lu, and H. M. Cheng. 2006. “Visible light photocatalyst: Iodine-doped mesoporous titania with a bicrystalline framework.” J. Phys. Chem. B 110 (42): 20823–20828. https://doi.org/10.1021/jp062946m.
Liu, S., K. Yin, W. Ren, B. Cheng, and J. Yu. 2012. “Tandem photocatalytic oxidation of rhodamine B over surface fluorinated bismuth vanadate crystals.” J. Mater. Chem. 22 (34): 17759–17767. https://doi.org/10.1039/c2jm33337f.
Liu, X., P. Lv, G. Yao, C. Ma, Y. Tang, Y. Wu, P. Huo, J. Pan, W. Shi, and Y. Yan. 2014. “Selective degradation of ciprofloxacin with modified NaCl/TiO2 photocatalyst by surface molecular imprinted technology.” Colloid Surf. A. 441 (Jan): 420–426. https://doi.org/10.1016/j.colsurfa.2013.10.005.
Lui, G., J. Y. Liao, A. Duan, Z. Zhang, M. Fowler, and A. Yu. 2013. “Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance.” J. Mater. Chem. A 1 (39): 12255–12262. https://doi.org/10.1039/c3ta12329d.
Ma, X., Y. Dai, J. Lu, M. Guo, and B. Huang. 2012. “Tuning of the surface-exposing and photocatalytic activity for AgX (X = Cl and Br): A theoretical study.” J. Phys. Chem. C 116 (36): 19372–19378. https://doi.org/10.1021/jp305645u.
McDonough, J. K., A. I. Frolov, V. Presser, J. Niu, C. H. Miller, T. Ubieto, M. V. Fedorov, and Y. Gogotsi. 2012. “Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes.” Carbon 50 (9): 3298–3309. https://doi.org/10.1016/j.carbon.2011.12.022.
McEvoy, J. G., and Z. Zhang. 2014. “Synthesis and characterization of magnetically separable Ag/AgCl–magnetic activated carbon composites for visible light induced photocatalytic detoxification and disinfection.” Appl. Catal. B 160–161 (Nov): 267–278. https://doi.org/10.1016/j.apcatb.2014.04.043.
Melvin Ng, H. K., C. P. Leo, and A. Z. Abdullah. 2017. “Selective removal of dyes by molecular imprinted TiO2 nanoparticles in polysulfone ultrafiltration membrane.” J. Environ. Chem. Eng. 5 (4): 3991–3998. https://doi.org/10.1016/j.jece.2017.07.075.
Ming, D., Z. Peng, C. Jiang, C. Bei, and J. Yu. 2017. “First-principles investigation of Cu-doped ZnS with enhanced photocatalytic hydrogen production activity.” Chem. Phys. Lett. 668 (Jan): 1–6. https://doi.org/10.1016/j.cplett.2016.12.008.
Monteagudo, J. M., A. Durán, I. San Martín, and P. Carrillo. 2019. “Effect of sodium persulfate as electron acceptor on antipyrine degradation by solar TiO2 or TiO2/rGO photocatalysis.” Chem. Eng. J. 364 (May): 257–268. https://doi.org/10.1016/j.cej.2019.01.165.
Mykhailiv, O., H. Zubyk, K. Brzezinski, M. Gras, G. Lota, M. Gniadek, E. Romero, L. Echegoyen, and M. E. Plonska-Brzezinska. 2017. “Improvement of the structural and chemical properties of carbon nano-onions for electrocatalysis.” ChemNanoMat. 3 (8): 583–590. https://doi.org/10.1002/cnma.201700161.
Nakata, K., T. Kagawa, M. Sakai, S. Liu, T. Ochiai, H. Sakai, T. Murakami, M. Abe, and A. Fujishima. 2013. “Preparation and photocatalytic activity of robust titania monoliths for water remediation.” ACS Appl. Mater. Inter. 5 (3): 500–504. https://doi.org/10.1021/am302654r.
Olena, M., I. Monika, P. Martyna, E. Luis, and M. E. Plonska-Brzezinska. 2015. “Chemical versus electrochemical synthesis of carbon nano-onion/polypyrrole composites for supercapacitor electrodes.” Chemistry 21 (15): 5783–5793. https://doi.org/10.1002/chem.201406126.
Ouyang, R., J. Lei, and H. Ju. 2008. “Surface molecularly imprinted nanowire for protein specific recognition.” Chem. Commun. 44 (44): 5761–5763. https://doi.org/10.1039/b810248a.
Prokes, S. M., J. L. Gole, X. Chen, C. Burda, and W. E. Carlos. 2005. “Defect-related optical behavior in surface modified TiO2 nanostructures.” Adv. Funct. Mater. 15 (1): 161–167. https://doi.org/10.1002/adfm.200305109.
Pu, A., J. Deng, M. Li, J. Gao, H. Zhang, Y. Hao, J. Zhong, and X. Sun. 2014. “Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency.” J. Mater. Chem. A 2 (8): 2491–2497. https://doi.org/10.1039/c3ta14575a.
Ramya, R., P. S. Krishnan, M. Neelaveni, M. Gurulakshmi, T. Sivakumar, and K. Shanthi. 2019. “Enhanced visible light activity of Pr-TiO2 nanocatalyst in the degradation of dyes: Effect of PR doping and TiO2 morphology.” J. Nanosci. Nanotechno. 19 (7): 3971–3981. https://doi.org/10.1166/jnn.2019.16308.
Rioult, M., H. Magnan, D. Stanescu, and A. Barbier. 2014. “Single crystalline hematite films for solar water splitting: Ti-doping and thickness effects.” J. Phys. Chem. C 118 (6): 3007–3014. https://doi.org/10.1021/jp500290j.
Senthilnathan, J., and L. Philip. 2010. “Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2.” Chem. Eng. J. 161 (1): 83–92. https://doi.org/10.1016/j.cej.2010.04.034.
Shouman, M. A., and N. A. Fathy. 2018. “Microporous nanohybrids of carbon xerogels and multi-walled carbon nanotubes for removal of rhodamine B dye.” J. Water Process Eng. 23 (Jun): 165–173. https://doi.org/10.1016/j.jwpe.2018.03.014.
Sinnott, S. B., O. A. Shenderova, C. T. White, and D. W. Brenner. 1998. “Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations.” Carbon 36 (1–2): 1–9. https://doi.org/10.1016/S0008-6223(97)00144-9.
Soler-Illia, G. J. D. A. A., A. Louis, and C. Sanchez. 2002. “Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly.” Chem. Mater. 14 (2): 750–759. https://doi.org/10.1021/cm011217a.
Sönmezoğlu, S., G. Çankaya, and N. Serin. 2012. “Phase transformation of nanostructured titanium dioxide thin films grown by sol-gel method.” Appl. Phys. A 107 (1): 233–241. https://doi.org/10.1007/s00339-011-6749-6.
Tan, L. L., S. P. Chai, and A. R. Mohamed. 2012. “Synthesis and applications of graphene-based TiO2 photocatalysts.” ChemSusChem. 5 (10): 1868–1882. https://doi.org/10.1002/cssc.201200480.
Tho, N. T., N. T. T. Mai, N. T. Van, B. D. Phat, L. V. Hieu, C. M. Thi, and P. V. Viet. 2019. “Direct synthesis of reduced graphene oxide/TiO2 nanotubes composite from graphite oxide as a high-efficiency visible-light-driven photocatalyst.” J. Nanosci. Nanotechno. 19 (8): 5195–5204. https://doi.org/10.1166/jnn.2019.16810.
Tolosana-Moranchel, Á., A. Manassero, M. L. Satuf, O. M. Alfano, J. A. Casas, and A. Bahamonde. 2019. “Influence of TIO2-rGO optical properties on the photocatalytic activity and efficiency to photodegrade an emerging pollutant.” Appl. Catal. B 246 (Jun): 1–11. https://doi.org/10.1016/j.apcatb.2019.01.054.
Ugarte, D. 1992. “Curling and closure of graphitic networks under electron-beam irradiation.” Nature 359 (6397): 707–709. https://doi.org/10.1038/359707a0.
Ugarte, D. 1995. “Onion-like graphitic particles.” Carbon 33 (7): 989–993. https://doi.org/10.1016/0008-6223(95)00027-B.
Wu, G., M. Nelson, S. Ma, H. Meng, G. Cui, and P. K. Shen. 2011. “Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction.” Carbon 49 (12): 3972–3982. https://doi.org/10.1016/j.carbon.2011.05.036.
Yan, Y., M. Yang, H. Shi, C. Wang, J. Fan, E. Liu, and X. Hu. 2019. “CuInS2 sensitized TiO2 for enhanced photodegradation and hydrogen production.” Ceram. Int. 45 (5): 6093–6101. https://doi.org/10.1016/j.ceramint.2018.12.083.
Yang, Y. Q., W. K. Zhang, R. X. Liu, J. M. Cui, and C. Deng. 2018. “Preparation and photocatalytic properties of visible light driven Ag-AgBr-RGO composite.” Sep. Purif. Technol. 190 (Jan): 278–287. https://doi.org/10.1016/j.seppur.2017.09.003.
Yeşilova, E., B. Osman, A. Kara, and E. Tümay Özer. 2018. “Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption.” Sep. Purif. Technol. 200 (Jul): 155–163. https://doi.org/10.1016/j.seppur.2018.02.002.
Zhang, W. K., C. Deng, J. Jia, J. W. Wang, Y. R. Zhang, Y. Q. Yang, and Y. Liang. 2018a. “Efficient removal of transition phase from metal encapsulated carbon onions.” Diamond Relat. Mater. 89 (Oct): 282–285. https://doi.org/10.1016/j.diamond.2018.09.020.
Zhang, W. K., J. J. Fu, J. Chang, M. Zhang, Y. Q. Yang, and L. Z. Gao. 2015. “Fabrication and purification of carbon nano onions.” New Carbon Mater. 82 (5): 610. https://doi.org/10.1016/j.carbon.2014.10.056.
Zhang, W. K., J. W. Wang, Y. Q. Yang, Y. Liang, and Z. Y. Gao. 2018b. “Novel magnetically retrievable Bi2WO6/magnetic carbon nano-onions composite with enhanced photoactivity under visible light.” J. Colloid Interf. Sci. 531 (Dec): 502–512. https://doi.org/10.1016/j.jcis.2018.07.076.
Zhang, Y., Z. R. Tang, X. Fu, and Y. J. Xu. 2010. “TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials?” ACS Nano 4 (12): 7303–7314. https://doi.org/10.1021/nn1024219.
Zhao, J., T. Wu, K. Wu, K. Oikawa, H. Hidaka, and N. Serpone. 1998. “Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: Evidence for the need of substrate adsorption on TiO2 particles.” Environ. Sci. Technol. 32 (16): 2394–2400. https://doi.org/10.1021/es9707926.
Zheng, D., G. J. Yang, Y. F. Zheng, P. Fan, R. Ji, J. Huang, W. K. Zhang, and J. S. Yu. 2017. “Carbon nano-onions as a functional dopant to modify hole transporting layers for improving stability and performance of planar perovskite solar cells.” Electrochim. Acta 247 (Sep): 548–557. https://doi.org/10.1016/j.electacta.2017.07.061.
Zhou, M., Q. Li, S. Zhong, J. Chen, H. Lin, and X. L. Wu. 2017. “Facile large scale fabrication of magnetic carbon nano-onions for efficient removal of bisphenol A.” Mater. Chem. Phys. 198 (Sep): 186–192. https://doi.org/10.1016/j.matchemphys.2017.05.020.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 4April 2020

History

Received: May 4, 2019
Accepted: Aug 16, 2019
Published online: Jan 22, 2020
Published in print: Apr 1, 2020
Discussion open until: Jun 22, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Yanrong Zhang [email protected]
Master Student, School of Environmental Science and Engineering, Taiyuan Univ. of Technology, 79 West Yingze St., Taiyuan 030024, PR China. Email: [email protected]
Associate Professor, School of Environmental Science and Engineering, Taiyuan Univ. of Technology, 79 West Yingze St., Taiyuan 030024, PR China (corresponding author). ORCID: https://orcid.org/0000-0001-8402-0102. Email: [email protected]
Kai Yang, Ph.D. [email protected]
Postdoctoral Researcher, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking Univ., 5 Yiheyuan Rd., Haidian District, Beijing 100871, PR China. Email: [email protected]
Yanqing Yang [email protected]
Lecturer, School of Environmental Science and Engineering, Taiyuan Univ. of Technology, 79 West Yingze St., Taiyuan 030024, PR China. Email: [email protected]
Master Student, School of Environmental Science and Engineering, Taiyuan Univ. of Technology, 79 West Yingze St., Taiyuan 030024, PR China. Email: [email protected]
Master Student, School of Environmental Science and Engineering, Taiyuan Univ. of Technology, 79 West Yingze St., Taiyuan 030024, PR China. Email: [email protected]
Master Student, School of Environmental Science and Engineering, Taiyuan Univ. of Technology, 79 West Yingze St., Taiyuan 030024, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share