Abstract

Ultrahigh-volume samplers with a flow rate of approximately 500  m3/h are widely used for atmospheric radionuclide monitoring. These samplers are often shut down during heavy particulate pollution due to filter clogging. We proposed a solution involving sampling with an impactor to reduce the filter clogging and avoid sample loss. A multislit impactor was designed to keep its low pressure drop and to save space in the context of an ultrahigh flow rate. Nonwoven cloth was chosen as impaction substrate for a low cut size, high dust capacity, and convenient operation. An undulating jet plate was designed to reduce particle loss on its surface and this was predicted by computational fluid dynamics (CFD). The test experiment results show that the cut size of the impactor is approximately 1.5 μm, and the particle loss is only 5% with loess aerosol as the challenge. Field tests show that the atmospheric large particles collected by the impactor was average approximately 0.53; the concentrations of I131 and aerosol mass are consistent with those from commercial Hi-Vol total suspended particles (TSP) sampler (63  m3/h) by ±10%. Results from the laboratory and field tests suggest that the impactor presented in this study constitutes a major improvement in the reduction of the filter clogging in ultrahigh-volume aerosol samplers under heavy particulate pollution.

Get full access to this article

View all available purchase options and get full access to this article.

References

Bergman, W., J. S. R. Lochner, S. Sawyer, F. Milanovich, R. Mariella, and R. Mariella, Jr. 2005. “High air flow, low pressure drop, bio-aerosol collector using a multi-slit virtual impactor.” J. Aerosol Sci. 36 (5–6): 619–638. https://doi.org/10.1016/j.jaerosci.2004.12.010.
Cao, J., Q. Wang, J. C. Chow, J. G. Watson, X. Tie, Z. Shen, P. Wang, and Z. An. 2012. “Impacts of aerosol compositions on visibility impairment in Xi’an, China.” Atmos. Environ. 59 (Nov): 559–566. https://doi.org/10.1016/j.atmosenv.2012.05.036.
CEPA (Chinese Environmental Protection Administration). 1996. Ambient air quality standard. GB 3095. Beijing: CEPA.
Chan, C. K., and X. Yao. 2008. “Air pollution in mega cities in China.” Atmos. Environ. 42 (1): 1–42. https://doi.org/10.1016/j.atmosenv.2007.09.003.
Chang, M., S. Kim, and C. Sioutas. 1999. “Experimental studies on particle impaction and bounce: Effects of substrate design and material.” Atmos. Environ. 33 (15): 2313–2322. https://doi.org/10.1016/S1352-2310(99)00082-5.
Chang, Y., et al. 2011. “Development of PMS-800 atmospheric particulate sampler.” [In Chinese.] Radiat. Prot. 31 (1): 39–42.
Chen, H., L. Zhao, H. Tian, H. Wu, and N. Huan. 2012. “Effects of sand dust weather on the air quality of Beijing.” [In Chinese.] Res. Environ. Sci. 25 (6): 609–614.
Cheng, Y., H. Irshad, A. McFarland, W. Su, Y. Zhou, and D. Barringer. 2004. “An aerosol wind tunnel for evaluation of massive-flow air samplers and calibration of Snow White sampler.” Aerosol Sci. Technol. 38 (11): 1099–1107. https://doi.org/10.1080/02786820490494034.
Cheng, Z., J. Jiang, Q. Fajardo, S. Wang, and J. Hao. 2013. “Characteristics and health impacts of particulate matter pollution in China (2001-2011).” Atmos. Environ. 65 (Feb): 186–194. https://doi.org/10.1016/j.atmosenv.2012.10.022.
CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). 1999. Certification of IMS radionuclide stations (with guidelines for station installation). Vienna, Austria: CTBTO.
Demokritou, P., I. G. Kavouras, S. T. Ferguson, and P. Koutrakis. 2002. “Development of a high volume cascade impactor for toxicological and chemical characterization studies.” Aerosol Sci. Technol. 36 (9): 925–933. https://doi.org/10.1080/02786820290092113.
Demokritou, P., S. J. Lee, S. T. Ferguson, and P. Koutrakis. 2004. “A compact multistage (cascade) impactor for the characterization of atmospheric aerosols.” J. Aerosol Sci. 35 (3): 281–299. https://doi.org/10.1016/j.jaerosci.2003.09.003.
Du, W., Q. Gao, D. Sun, and H. Shi. 2011. “Concentration characteristics of atmospheric aerosols in Northern China in spring.” [In Chinese.] Res. Environ. Sci. 24 (1): 11–19.
Feng, Y., L. Peng, J. Wu, T. Zhu, A. Lv, and K. Zhang. 2005. “Analytic studies on source of TSP and PM10 in environmental air of Urumchi city.” [In Chinese.] China Environ. Sci. 25 (S1): 30–33.
Feng, Y., J. Wu, T. Zhu, Z. Bai, H. Yan, and X. Tan. 2004. “Study on source appointment of TSP and PM10 in air environment in Jinan.” [In Chinese.] Res. Environ. Sci. 17 (S1): 1–5.
Fujitani, Y., S. Hasegawa, A. Fushimi, Y. Kondo, K. Tanabe, S. Kobayashi, and T. Kobayashi. 2006. “Collection characteristics of low-pressure impactors with various impaction substrate materials.” Atmos. Environ. 40 (18): 3221–3229. https://doi.org/10.1016/j.atmosenv.2006.02.001.
He, X., Y. Wang, T. Wen, and H. Bo. 2005. “Analysis on chemical and physical properties of Beijing super dust storm in spring of 2004.” [In Chinese.] Environ. Sci. 26 (5): 1–6.
Hinds, W. C. 1999. Aerosol technology: Properties, behavior and measurement of airborne particles. New York: Wiley.
Hong, Y., D. Zhou, Y. Qi, D. Liu, Y. Ma, N. Liu, and L. Gan. 2010. “Distribution characteristics of aerosol mass concentrations in Northeastern China.” [In Chinese.] Arid Land Geogr. 33 (2): 224–230.
Huang, C., C. Chang, S. Chang, C. Tsai, T. Shih, and D. Tang. 2005. “Use of porous foam as the substrate of an impactor for respirable aerosol sampling.” J. Aerosol Sci. 36 (11): 1373–1386. https://doi.org/10.1016/j.jaerosci.2005.03.008.
Huang, C., C. Tsai, and T. Shih. 2001. “Particle collection efficiency of an inertial impactor with porous metal substrates.” J. Aerosol Sci. 32 (9): 1035–1044. https://doi.org/10.1016/S0021-8502(01)00038-6.
ISO. 1998. Reinforcements: Test method for woven fabrics. Part 1: Determination of thickness for glass fibre and woven fabrics. ISO 4603: 1993. Geneva: ISO.
Kwon, S. B., K. S. Lim, J. S. Jung, G. N. Bae, and K. W. Lee. 2003. “Design and calibration of a 5-stage cascade impactor (K-JIST cascade impactor).” J. Aerosol Sci. 34 (3): 289–300. https://doi.org/10.1016/S0021-8502(02)00177-5.
Liu, J., S. Fan, L. Zhang, C. Chen, X. Chen, and Z. Meng. 2006. “Analysis on the pollution characteristics of atmospheric particle in Lanzhou City in winter.” [In Chinese.] J. Lanzhou Univ. Nat. Sci. 42 (6): 45–49.
Liu, L., et al. 2013. “Monitoring of atmospheric radionuclides from the Fukushima nuclear accident and assessing their impact on Xi’an, China.” Chin. Sci. Bull. 58 (13): 1585–1591. https://doi.org/10.1007/s11434-012-5521-4.
Liu, L., H. Tang, Y. Wu, S. Liu, and X. Wang. 2009. “A method for lessening filter clogging on atmospheric aerosol samplers at IMS.” In Proc., Int. Science Studies. Vienna, Austria: Comprehensive Nuclear-Test-Ban Treaty Organization.
Marple, V. A. 2004. “History of impactors: The first 110 years.” Aerosol Sci. Technol. 38 (3): 247–292. https://doi.org/10.1080/02786820490424347.
Marple, V. A., B. Y. H. Liu, and R. M. Burton. 1990. “High-volume impactor for sampling fine and coarse particles.” J. Air Waste Manage. Assoc. 40 (5): 762–767. https://doi.org/10.1080/10473289.1990.10466722.
Marple, V. A., B. Olson, A. Thomas, and K. L. Rubow. 2001. “Inertial, gravitational, centrifugal, and thermal collection techniques.” In Aerosol measurement, principles, techniques, and applications, edited by P. A. Baron, and K. Willeke, 2nd ed., 229–260. New York: Wiley.
Marple, V. A., and K. Willeke. 1976. “Impactor design.” Atmos. Environ. 10 (10): 891–896. https://doi.org/10.1016/0004-6981(76)90144-X.
Medici, F. 2001. “The IMS radionuclide network of the CTBT.” Radiat. Phys. Chem. 61 (3–6): 689–690. https://doi.org/10.1016/S0969-806X(01)00375-9.
Miley, H. S., S. M. Bowyer, C. W. Hubbard, A. D. McKinnon, R. W. Perkins, R. C. Thompson, and R. A. Warner. 1998. “A description of the DOE radionuclide aerosol sampler/analyzer for the comprehensive test ban treaty.” J. Radioanal. Nucl. Chem. 235 (1–2): 83–87. https://doi.org/10.1007/BF02385942.
Newton, G. J., O. G. Raabe, and B. V. Mokler. 1977. “Cascade impactor design and performance.” J. Aerosol Sci. 8 (5): 339–347. https://doi.org/10.1016/0021-8502(77)90021-0.
Park, S., and E. Lee. 2004. “Parameterization of Asian dust (Hwangsa) particle-size distributions for use in dust emission models.” Atmos. Environ. 38 (14): 2155–2162. https://doi.org/10.1016/j.atmosenv.2004.01.024.
Quan, J., X. Xi, X. Wang, J. Li, and L. Zhang. 2005. “Analysis on aerosol concentration in Lanzhou City from sand-dust storm in 2001.” [In Chinese.] J. Desert Res. 25 (1): 93–97.
Sioutas, C., S. T. Ferguson, J. M. Wolfson, H. Ozkaynak, and P. Koutrakis. 1997. “Inertial collection of fine particles using a high-volume rectangular geometry conventional impactor.” J. Aerosol Sci. 28 (6): 1015–1028. https://doi.org/10.1016/S0021-8502(96)00486-7.
Thomas, D., P. Penicot, P. Contal, D. Leclerc, and J. Vendelb. 2001. “Clogging of fibrous filters by solid aerosol particles: Experimental and modelling study.” Chem. Eng. Sci. 56 (11): 3549–3561. https://doi.org/10.1016/S0009-2509(01)00041-0.
Tsai, C., and Y. Cheng. 1995. “Solid particle collection characteristics on impaction surfaces of different designs.” Aerosol Sci. Technol. 23 (1): 96–106. https://doi.org/10.1080/02786829508965297.
Valmari, T., M. Lehtimaeki, and A. Taipale. 2006. “Filter clogging by bimodal aerosol.” Aerosol Sci. Technol. 40 (4): 255–260. https://doi.org/10.1080/02786820500543282.
Wan, B., X. Kang, J. Zhang, Y. Tong, G. Tang, and X. Li. 2004. “Research on classification of dust and sand storm basic on particular concentration.” [In Chinese.] Environ. Monit. China, 20 (3), 8–11.
Wang, G., H. Xie, X. Wan, and L. Ren. 2004. “Variation of aerosol mass concentration and element composition with height in Beijing area.” [In Chinese.] Res. Environ. Sci., 17, 37–40.
Wang, W. 2009. “Apportionment of air-borne particulate during heating period in Harbin.” [In Chinese.] M.Eng. dissertation, School of Municipal and Environment Engineering, Harbin Institute of Technology.
Wang, W., X. Yue, H. Liu, Z. Pan, D. Tang, Y. Wang, R. Du, H. Su, F. Qian, and S. Kazuhiko. 2002. “Study on pollution characteristics of aerosols during sand-dust storm weather in Beijing.” [In Chinese.] Acta Sci. Circum., 22 (4), 494–498.
Werzi, R. 2009. “The operational status of the IMS radionuclide particulate network.” J. Radioanal. Nucl. Chem. 282 (3): 749–754. https://doi.org/10.1007/s10967-009-0270-9.
Werzi, R. 2010. “Improving the sensitivity of radionuclide particulate monitoring stations.” Appl. Radiat. Isot. 68 (2): 340–344. https://doi.org/10.1016/j.apradiso.2009.10.032.
Wu, Y., X. Wang, and L. Liu. 2009. “Performance measurement at high filtration velocity for sampling filter.” [In Chinese.] Radiat. Prot., 29 (1), 13–17.
Yao, Q., Z. Cai, S. Han, and H. Mu. 2013. “Influence of a sand-dust weather process on aerosol mass concentration and number concentration in Tianjing, China.” [In Chinese.] J. Desert Res., 33, 1138–1143.
Yu, J., T. Yu, Q. Wei, X. Wang, J. Shi, and H. Li. 2004. “Characteristics of mass concentration variations of PM10 and PM2.5 in Beijing Area.” [In Chinese.] Res. Environ. Sci., 17 (1), 45–47.
Zhang, W., M. Bean, M. Benotto, J. Cheung, K. Ungar, and B. Ahier. 2011. “Development of a new aerosol monitoring system and its application in Fukushima nuclear accident related aerosol radioactivity measurement at the CTBT radionuclide station in Sidney of Canada.” J. Environ. Radioact. 102 (12): 1065–1069. https://doi.org/10.1016/j.jenvrad.2011.08.007.
Zhang, Z., H. Jiao, B. Bi, L. Zhao, Q. Gao, J. Guo, and Z. Ren. 2009. “Analysis of the heavy polluting effects of sand dust weather in Beijing.” [In Chinese.] Res. Environ. Sci., 22 (3), 319–324.
Zhao, P., Y. Feng, T. Zhu, and J. Wu. 2006. “Characterizations of resuspended dust in six cities of North China.” Atmos. Environ. 40 (30): 5807–5814. https://doi.org/10.1016/j.atmosenv.2006.05.026.
Zhou, X., Z. Cao, Y. Ma, L. Wang, R. Wu, and W. Wang. 2016. “Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard.” Chemosphere 144 (Feb): 518–526. https://doi.org/10.1016/j.chemosphere.2015.09.003.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 2February 2020

History

Received: Aug 14, 2018
Accepted: May 7, 2019
Published online: Dec 2, 2019
Published in print: Feb 1, 2020
Discussion open until: May 2, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Research Fellow, Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi’an 710024, China (corresponding author). ORCID: https://orcid.org/0000-0001-8938-6218. Email: [email protected]
Hanbing Tang [email protected]
Research Assistant, Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi’an 710024, China. Email: [email protected]
Jiamei Zhang [email protected]
Associate Research Fellow, Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi’an 710024, China. Email: [email protected]
Xiaobing He [email protected]
Research Assistant, Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi’an 710024, China. Email: [email protected]
Research Assistant, Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi’an 710024, China. Email: [email protected]
Associate Research Fellow, Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi’an 710024, China. Email: [email protected]
Associate Research Fellow, Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi’an 710024, China. Email: [email protected]
Yongyang Su [email protected]
Associate Research Fellow, Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi’an 710024, China. Email: [email protected]
Quanlin Shi [email protected]
Research Fellow, Northwest Institute of Nuclear Technology, P.O. Box 69-14, Xi’an 710024, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share