Abstract

The aim of this study was to ascertain the biocidal efficacy, based on the so-called C·t values, and the usage expenses of seven disinfection products in recreational waters using Escherichia coli and Pseudomonas aeruginosa as microorganism models of fecal and environmental contamination, respectively. A 250-L indoor fully equipped pool basin was harnessed as a proof-of-concept setup for the evaluation of chlorine-based [viz., trichloroisocyanuric acid (trichloro), sodium hypochlorite, sodium hypochlorite + isocyanuric acid, and saline electrolysis] and unconventional (viz., 1-bromo-3-chloro-5,5-dimethylilhidantoine, chlorine dioxide and hydrogen peroxide) biocides at 30°C and different pH values. The economic losses resulting from human action, mimicked by urea addition, were also considered. Experimental results showed that trichloro, chlorine dioxide, and sodium hypochlorite were the most effective disinfection agents with a log 3 removal of both organisms in 60 s regardless of the water pH. On the other hand, sodium hypochlorite and trichloro afforded unparalleled cost-effectiveness. Chlorine dioxide exhibits the greatest biocide efficacy, yet its elevated usage costs make it merely applicable in shock treatments to offset high organic loads.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

This work was supported by Research Project AAEE 28/2014 of the Conselleria d’Educació, Cultura i Universitats from the Balearic Islands Government. Manuel Miró acknowledges the financial support of the Spanish State Research Agency (AEI) and Ministry of Science, Innovation and Universities (MCIU) through Project CTM2017-84763-C3-3-R (AEI/MCIU/FEDER, EU).

References

Afifi, M. Z., and E. R. Blatchley. 2016. “Effects of UV-based treatment on volatile disinfection byproducts in a chlorinated, indoor swimming pool.” Water Res. 105 (Nov): 167–177. https://doi.org/10.1016/j.watres.2016.08.064.
APHA, AWWA, and WEF (American Public Health Association, American Water Works Association, Water Environment Federation). 2017. Standard methods for the examination of water and wastewater. Washington, DC: APHA, AWWA, and WEF.
Borgmann-Strahsen, R. 2003. “Comparative assessment of different biocides in swimming pool water.” Int. Biodeterior. Biodegrad. 51 (4): 291–297. https://doi.org/10.1016/S0964-8305(03)00040-4.
Chowdhury, S., K. Alhooshani, and T. Karanfil. 2014. “Disinfection byproducts in swimming pool: Occurrences, implications and future needs.” Water Res. 53 (Apr): 68–109. https://doi.org/10.1016/j.watres.2014.01.017.
De Laat, J., W. Feng, D. A. Freyfer, and F. Dossier-Berne. 2011. “Concentration levels of urea in swimming pool water and reactivity of chlorine with urea.” Water Res. 45 (3): 1139–1146. https://doi.org/10.1016/j.watres.2010.11.005.
Dietrich, A., M. Orr, D. Gallagher, and R. Hoehn. 1992. “Tastes and odors associated with chlorine dioxide.” J. Am. Water Works Assoc. 84 (6): 82–88. https://doi.org/10.1002/j.1551-8833.1992.tb07379.x.
Ding, N., N. F. Neumann, L. M. Price, S. L. Braithwaite, A. Balachandran, M. Belosevic, and M. G. El-Din. 2012. “Inactivation of template-directed misfolding of infectious prion protein by ozone.” Appl. Environ. Microbiol. 78 (3): 613–620. https://doi.org/10.1128/AEM.06791-11.
Doménech-Sánchez, A., F. Olea, and C. I. Berrocal. 2008. “Infections related to recreational waters.” Supplement, Enfermedades Infecciosas y Microbiologia Clin 26 (S13): 32–37. https://doi.org/10.1157/13128778.
Dorevitch, S., S. Panthi, Y. Huang, H. Li, A. M. Michalek, P. Pratap, M. Wroblewski, L. Liu, P. A. Scheff, and A. Li. 2011. “Water ingestion during water recreation.” Water Res. 45 (5): 2020–2028. https://doi.org/10.1016/j.watres.2010.12.006.
Downes, C. J., J. W. Mitchell, E. S. Viotto, and N. J. Eggers. 1984. “Determination of cyanuric acid levels in swimming pool waters by u.v. absorbance, HPLC and melamine cyanurate precipitation.” Water Res. 18 (3): 277–280. https://doi.org/10.1016/0043-1354(84)90100-3.
Dufour, A. P., O. Evans, T. D. Behymer, and R. Cantú. 2006. “Water ingestion during swimming activities in a pool: A pilot study.” J. Water Health 4 (4): 425–430. https://doi.org/10.2166/wh.2006.0026.
Dziuban, E. J., J. L. Liang, G. F. Craun, V. Hill, P. A. Yu, J. Painter, M. R. Moore, R. L. Calderon, S. L. Roy, and M. J. Beach. 2006. “Surveillance for waterborne disease and outbreaks associated with recreational water—United States, 2003-2004.” MMWR Surveill. Summ. 55 (12): 1–30.
Govern Balear. 2013 “IBESTAT: Institut Balear d’Estadística. Conselleria de Economía i Competitivitat.” Accessed September 2, 2018. http://ibestat.caib.es/.
Gumerman, R. C., R. L. Culp, and S. P. Hansen. 1979. Estimating water treatment costs volume 2 cost curves applicable to 1 to 200 mgd treatment plants. Cincinnati: Environmental Protection Agency, Office of Research and Development, Municipal Environmental Research Laboratory.
Heeb, M. B., I. Kristiana, D. Trogolo, J. S. Arey, and U. von Gunten. 2017. “Formation and reactivity of inorganic and organic chloramines and bromamines during oxidative water treatment.” Water Res. 110 (Mar): 91–101. https://doi.org/10.1016/j.watres.2016.11.065.
Hoff, J. 1986. Inactivation of microbial agents by chemical disinfectants. Cincinnati: USEPA.
Jacobs, J. H., S. Spaan, G. B. G. J. van Rooy, C. Meliefste, V. A. C. Zaat, J. M. Rooyackers, and D. Heederik. 2007. “Exposure to trichloramine and respiratory symptoms in indoor swimming pool workers.” Eur. Respir. J. 29 (4): 690–698. https://doi.org/10.1183/09031936.00024706.
Junli, H., W. Li, R. Nenqi, L. X. Li, S. R. Fun, and Y. Guanle. 1997. “Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water.” Water Res. 31 (3): 455–460. https://doi.org/10.1016/S0043-1354(96)00276-X.
Korich, D. G., J. R. Mead, M. S. Madore, N. A. Sinclair, and C. R. Sterling. 1990. “Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability.” Appl. Environ. Microbiol. 56 (5): 1423–1428.
Li, J., K. Li, Y. Zhou, X. Li, and T. Tao. 2017. “Kinetic analysis of Legionella inactivation using ozone in wastewater.” Chemosphere 168 (Feb): 630–637. https://doi.org/10.1016/j.chemosphere.2016.11.014.
Lim, M. Y., J.-M. Kim, J. E. Lee, and G. Ko. 2010. “Characterization of ozone disinfection of murine norovirus.” Appl. Environ. Microbiol. 76 (4): 1120–1124. https://doi.org/10.1128/AEM.01955-09.
Matas, J., M. Adrover, J. Frau, A. Martí, A. Doménech-Sánchez, P. Muntarer, and C. Reolid. 2013. Desinfección de aguas recreativas. Palma, Spain: Clúster de la Indústria Química de les Illes Balears.
Ministerio de Sanidad Servicios Sociales e Igualdad. 2013. Vol. 244 of Real Decreto 742/2013, de 27 de septiembre, por el que se establecen los criterios técnico - Sanitarios de las piscinas, 83123–83135. Madrid, Spain: Boletín Oficial del Estado.
Murphy, J. L., M. J. Arrowood, X. Lu, M. C. Hlavsa, M. J. Beach, and V. R. Hill. 2015. “Effect of cyanuric acid on the inactivation of Cryptosporidium parvum under hyperchlorination conditions.” Environ. Sci. Technol. 49 (12): 7348–7355. https://doi.org/10.1021/acs.est.5b00962.
OCU (Organización de Consumidores y Usuarios). 2016. Precio del agua: más cara en Barcelona y Murcia. Madrid, Spain: OCU Ediciones SA.
Ofori, I., S. Maddila, J. Lin, and S. B. Jonnalagadda. 2017. “Chlorine dioxide oxidation of Escherichia coli in water - A study of the disinfection kinetics and mechanism.” J. Environ. Sci. Health. Part A 52 (7): 598–606. https://doi.org/10.1080/10934529.2017.1293993.
Oh, J., D. E. Salcedo, C. A. Medriano, and S. Kim. 2014. “Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes.” J. Environ. Sci. 26 (6): 1238–1242. https://doi.org/10.1016/S1001-0742(13)60594-X.
Pak, G., D. E. Salcedo, H. Lee, J. Oh, S. K. Maeng, K. G. Song, S. W. Hong, H.-C. Kim, K. Chandran, and S. Kim. 2016. “Comparison of antibiotic resistance removal efficiencies using ozone disinfection under different pH and suspended solids and humic substance concentrations.” Environ. Sci. Technol. 50 (14): 7590–7600. https://doi.org/10.1021/acs.est.6b01340.
Parrat, J., G. Donzé, C. Iseli, D. Perret, C. Tomicic, and O. Schenk. 2012. “Assessment of occupational and public exposure to trichloramine in Swiss indoor swimming pools: A proposal for an occupational exposure limit.” Ann. Occup. Hyg. 56 (3): 264. https://doi.org/10.1093/annhyg/mer125.
Rice, R. G., and M. Gomez-Taylor. 1986. “Occurrence of by-products of strong oxidants reacting with drinking water contaminants—Scope of the problem.” Environ. Health Perspect. 69 (Nov): 31–44. https://doi.org/ 10.2307/3430368.
Rice, S. A., B. van den Akker, F. Pomati, and D. Roser. 2012. “A risk assessment of Pseudomonas aeruginosa in swimming pools: A review.” J. Water Health 10 (2): 181–196. https://doi.org/10.2166/wh.2012.020.
Rosenman, K. D., M. Millerick-May, M. J. Reilly, J. Flattery, J. Weinberg, R. Harrison, M. Lumia, A. C. Stephens, and M. Borjan. 2015. “Swimming facilities and work-related asthma.” J. Asthma 52 (1): 52–58. https://doi.org/10.3109/02770903.2014.950428.
Rotman, H. H., M. J. Fliegelman, T. Moore, R. G. Smith, D. M. Anglen, C. J. Kowalski, and J. G. Weg. 1983. “Effects of low concentrations of chlorine on pulmonary function in humans.” J. Appl. Physiol. 54 (4): 1120–1124. https://doi.org/10.1152/jappl.1983.54.4.1120.
Sánchez-Diener, I., et al. 2017. “Interplay among resistance profiles, high-risk clones and virulence in the Caenorhabditis elegans Pseudomonas aeruginosa infection model.” Antimicrob. Agents Chemother. 61 (12): e01586–17. https://doi.org/10.1128/AAC.01586-17.
Sollo, F. W., T. E. Larson, and F. F. McGurk. 1971. “Colorimetric methods for bromine.” Environ. Sci. Technol. 5 (3): 240–246. https://doi.org/10.1021/es60050a009.
Suppes, L. M., L. Abrell, A. P. Dufour, and K. A. Reynolds. 2014. “Assessment of swimmer behaviors on pool water ingestion.” J. Water Health 12 (2): 269–279. https://doi.org/10.2166/wh.2013.123.
Symons, J. M., J. Carswell, A. A. Stevens, R. M. Clark, E. E. Geldreich, and J. O. T. Love. 1981. Treatment techniques for controlling trihalomethanes in drinking water. Cincinnati: Drinking Water Research Division, Municipal Environmental Research Laboratory, Office of Research and Development, USEPA.
Teo, T. L. L., H. M. Coleman, and S. J. Khan. 2015. “Chemical contaminants in swimming pools: Occurrence, implications and control.” Environ. Int. 76 (Mar): 16–31. https://doi.org/10.1016/j.envint.2014.11.012.
Thurston-Enriquez, J. A., C. N. Haas, J. Jacangelo, and C. P. Gerba. 2005. “Inactivation of enteric adenovirus and feline calicivirus by ozone.” Water Res. 39 (15): 3650–3656. https://doi.org/10.1016/j.watres.2005.06.006.
Yang, F., Z. Yang, H. Li, F. Jia, and Y. Yang. 2018. “Occurrence and factors affecting the formation of trihalomethanes, haloacetonitriles and halonitromethanes in outdoor swimming pools treated with trichloroisocyanuric acid.” Environ. Sci. Water Res. Technol. 4 (2): 218–225. https://doi.org/10.1039/C7EW00245A.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 1January 2020

History

Received: Jan 18, 2019
Accepted: Apr 30, 2019
Published online: Oct 24, 2019
Published in print: Jan 1, 2020
Discussion open until: Mar 24, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

María Rosende, Ph.D. [email protected]
FI-TRACE GROUP Researcher, Dept. of Chemistry, Univ. of the Balearic Islands, Carretera de Valldemossa km 7,5, E-07122 Palma de Mallorca, Spain. Email: [email protected]
Professor, Dept. of Chemistry, Univ. of the Balearic Islands, Carretera de Valldemossa km 7,5, E-07122 Palma de Mallorca, Spain. ORCID: https://orcid.org/0000-0002-8413-3008. Email: [email protected]
Researcher, Dept. of Chemistry, Univ. of the Balearic Islands, Carretera de Valldemossa km 7,5, E-07122 Palma de Mallorca, Spain. ORCID: https://orcid.org/0000-0003-4376-8864. Email: [email protected]
Antoni Palerm [email protected]
Researcher, Dept. of Laboratory, Saniconsult Ibérica S.L., Can Foradí 37 bajos, E-07009 Palma de Mallorca, Spain. Email: [email protected]
Researcher, Dept. of Laboratory, Saniconsult Ibérica S.L., Can Foradí 37 bajos, E-07009 Palma de Mallorca, Spain. Email: [email protected]
Professor, Dept. of Chemistry, Univ. of the Balearic Islands, Carretera de Valldemossa km 7,5, E-07122 Palma de Mallorca, Spain. ORCID: https://orcid.org/0000-0003-2562-9975. Email: [email protected]
Director, Dept. of Management, Clúster de la Industria Química de les Illes Balears, Centre Empresarial Son Espanyol Local 9, Parc Bit, Palma de Mallorca E07122, Spain. Email: [email protected]
Joan Miquel Matas [email protected]
Director, Dept. of Management, Clúster de la Industria Química de les Illes Balears, Centre Empresarial Son Espanyol Local 9, Parc Bit, Palma de Mallorca E07122, Spain. Email: [email protected]
Director, Dept. of Laboratory, Saniconsult Ibérica S.L., Can Foradí 37 bajos, E-07009 Palma de Mallorca, Spain; Área de Microbiología and Instituto Universitario de Investigación en Ciencias de la Salud, Univ. of the Balearic Islands, Carretera de Valldemossa km 7,5, E-07122 Palma de Mallorca, Spain (corresponding author). ORCID: https://orcid.org/0000-0002-7892-8349. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share