Technical Papers
Mar 12, 2019

Implementation of Upscaled Microbial Fuel Cells for Optimized Net Energy Benefit in Wastewater Treatment Systems

Publication: Journal of Environmental Engineering
Volume 145, Issue 5

Abstract

Microbial fuel cells are bioelectrochemical devices that use exoelectrogenic biofilms to convert organic matter into electric energy. Recent research of microbial fuel cells has occurred because of their potential to perform energy net-positive degradation and transformation of wastewater constituents. However, most studies have focused on small-scale (<1  L) batch systems with simple and homogenous feedstocks such as acetate. These studies are useful for identification of isolated variables in a controlled environment, but the system architectures are not scaleable to wastewater treatment applications and the feedstocks do not reflect the heterogeneity of real domestic wastewater. The emerging research evaluating scaled-up microbial fuel cells operating with domestic wastewater substrate has described new and different biofilm characteristics and associated transformations other than those seen in bench studies. Scale-up of wastewater microbial fuel cells presents challenges including feedstock variability, changing environmental conditions, and biofouling. To advise the design of pilot-scale systems, this review discusses process stream selection and system architecture with the aim to maximize net energy benefit, defined as the sum of treatment energy savings and direct energy recovery.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

D.C. Water at Blue Plains supported the preparation of this manuscript via financial support to Aaron Leininger, Wing-Mei Ko, and Birthe V. Kjellerup.

References

Ahmed, M. B., J. L. Zhou, H. H. Ngo, W. Guo, N. S. Thomaidis, and J. Xu. 2017. “Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review.” J. Hazard. Mater. 323 (Part A): 274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045.
Ahn, Y., and B. E. Logan. 2010. “Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures.” Bioresour. Technol. 101 (2): 469–475. https://doi.org/10.1016/j.biortech.2009.07.039.
Al-Mamun, A., M. S. Baawain, F. Egger, A. A. H. Al-Muhtaseb, and H. Y. Ng. 2017. “Optimization of a baffled-reactor microbial fuel cell using autotrophic denitrifying bio-cathode for removing nitrogen and recovering electrical energy.” Biochem. Eng. J. 120: 93–102. https://doi.org/10.1016/j.bej.2016.12.015.
Andreottola, G., P. Foladori, and M. Ragazzi. 2000. “Upgrading of a small wastewater treatment plant in a cold climate region using a moving bed biofilm reactor (MBBR) system.” Water Sci. Technol. 41 (1): 177–185. https://doi.org/10.2166/wst.2000.0027.
Asztalos, J. R., and Y. Kim. 2017. “Lab-scale experiment and model study on enhanced digestion of wastewater sludge using bioelectrochemical systems.” J. Environ. Inform. 29 (2): 98–109.
Cheng, S., H. Liu, and B. E. Logan. 2006. “Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells.” Environ. Sci. Technol. 40 (1): 364–369. https://doi.org/10.1021/es0512071.
Clauwaert, P., K. Rabaey, P. Aelterman, L. De Schamphelaire, T. H. Pham, P. Boeckx, N. Boon, and W. Verstraete. 2007a. “Biological denitrification in microbial fuel cells.” Environ. Sci. Technol. 41 (9): 3354–3360. https://doi.org/10.1021/es062580r.
Clauwaert, P., D. Van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey, and W. Verstraete. 2007b. “Open air biocathode enables effective electricity generation with microbial fuel cells.” Environ. Sci. Technol. 41 (21): 7564–7569. https://doi.org/10.1021/es0709831.
Dong, Y., Y. Qu, W. He, Y. Du, J. Liu, X. Han, and Y. Feng. 2015. “A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode.” Bioresour. Technol. 195 (Nov): 66–72. https://doi.org/10.1016/j.biortech.2015.06.026.
Du, Z., H. Li, and T. Gu. 2007. “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.” Biotechnol. Adv. 25 (5): 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004.
Energy Information Administration (US). 2015. Annual energy outlook 2015 with projections to 2040. Washington, DC: US Dept. of Energy.
Fan, Y., H. Hu, and H. Liu. 2007. “Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration.” J. Power Sour. 171 (2): 348–354. https://doi.org/10.1016/j.jpowsour.2007.06.220.
Feng, Y., W. He, J. Liu, X. Wang, Y. Qu, and N. Ren. 2014. “A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment.” Bioresour. Technol. 156 (Mar): 132–138. https://doi.org/10.1016/j.biortech.2013.12.104.
Ghadge, A. N., D. A. Jadhav, and M. M. Ghangrekar. 2016. “Wastewater treatment in pilot-scale microbial fuel cell using multielectrode assembly with ceramic separator suitable for field applications.” Environ. Prog. Sustainable Energy 35 (6): 1809–1817. https://doi.org/10.1002/ep.12403.
Goldstein, R., and W. Smith. 2002. Water and sustainability (volume 4): US electricity consumption for water supply & treatment-the next half century. Palo Alto, CA: Electric Power Research Institute.
He, W., M. J. Wallack, K. Y. Kim, X. Zhang, W. Yang, X. Zhu, Y. Feng, and B. E. Logan. 2016. “The effect of flow modes and electrode combinations on the performance of a multiple module microbial fuel cell installed at wastewater treatment plant.” Water Res. 105 (Nov): 351–360. https://doi.org/10.1016/j.watres.2016.09.008.
He, Z., and L. T. Angenent. 2006. “Application of bacterial biocathodes in microbial fuel cells.” Electroanalysis: Int. J. Devoted Fundam. Pract. Aspects Electroanal. 18 (19–20): 2009–2015. https://doi.org/10.1002/elan.200603628.
Heidrich, E. S., T. P. Curtis, and J. Dolfing. 2011. “Determination of the internal chemical energy of wastewater.” Environ. Sci. Technol. 45 (2): 827–832. https://doi.org/10.1021/es103058w.
Hiegemann, H., D. Herzer, E. Nettmann, M. Lübken, P. Schulte, K. G. Schmelz, S. Gredigk-Hoffman, and M. Wichern. 2016. “An integrated 45 L pilot microbial fuel cell system at a full-scale wastewater treatment plant.” Bioresour. Technol. 218 (Oct): 115–122. https://doi.org/10.1016/j.biortech.2016.06.052.
Hiegemann, H., M. Lübken, P. Schulte, K. G. Schmelz, S. Gredigk-Hoffmann, and M. Wichern. 2018. “Inhibition of microbial fuel cell operation for municipal wastewater treatment by impact loads of free ammonia in bench-and 45L-scale.” Sci. Total Environ. 624 (May): 34–39. https://doi.org/10.1016/j.scitotenv.2017.12.072.
Huang, L., and B. E. Logan. 2008. “Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell.” Appl. Microbiol. Biotechnol. 80 (2): 349–355. https://doi.org/10.1007/s00253-008-1546-7.
Ishii, S. I., S. Suzuki, T. M. Norden-Krichmar, K. H. Nealson, Y. Sekiguchi, Y. A. Gorby, and O. Bretschger. 2012. “Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment.” PLoS One 7 (2): e30495. https://doi.org/10.1371/journal.pone.0030495.
Jadhav, G. S., and M. M. Ghangrekar. 2009. “Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration.” Bioresour. Technol. 100 (2): 717–723. https://doi.org/10.1016/j.biortech.2008.07.041.
Karra, U., E. Troop, M. Curtis, K. Scheible, C. Tenaglier, N. Patel, and B. Li. 2013. “Performance of plug flow microbial fuel cell (PF-MFC) and complete mixing microbial fuel cell (CM-MFC) for wastewater treatment and power generation.” Int. J. Hydrogen Energy 38 (13): 5383–5388.
Kim, H. W., J. Y. Nam, and H. S. Shin. 2011. “Ammonia inhibition and microbial adaptation in continuous single-chamber microbial fuel cells.” J. Power Sources 196 (15): 6210–6213. https://doi.org/10.1016/j.jpowsour.2011.03.061.
Kim, M., S. M. Youn, S. H. Shin, J. G. Jang, S. H. Han, M. S. Hyun, G. M. Gadd, and H. J. Kim. 2003. “Practical field application of a novel BOD monitoring system.” J. Environ. Monit. 5 (4): 640–643. https://doi.org/10.1039/b304583h.
Logan, B. E. 2008. Microbial fuel cells. New York: Wiley.
Logan, B. E. 2010. “Scaling up microbial fuel cells and other bioelectrochemical systems.” Appl. Microbiol. Biotechnol. 85 (6): 1665–1671. https://doi.org/10.1007/s00253-009-2378-9.
Logan, B. E., M. J. Wallack, K. Y. Kim, W. He, Y. Feng, and P. E. Saikaly. 2015. “Assessment of microbial fuel cell configurations and power densities.” Environ. Sci. Technol. Lett. 2 (8): 206–214. https://doi.org/10.1021/acs.estlett.5b00180.
Lovley, D. R. 2008. “The microbe electric: Conversion of organic matter to electricity.” Curr. Opin. Biotechnol. 19 (6): 564–571. https://doi.org/10.1016/j.copbio.2008.10.005.
Malaeb, L., K. P. Katuri, B. E. Logan, H. Maab, S. P. Nunes, and P. E. Saikaly. 2013. “A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment.” Environ. Sci. Technol. 47 (20): 11821–11828. https://doi.org/10.1021/es4030113.
McCarty, P. L., J. Bae, and J. Kim. 2011. “Domestic wastewater treatment as a net energy producer-can this be achieved?” Environ. Sci. Technol. 45 (17): 7100–7106. https://doi.org/10.1021/es2014264.
Menendez, M. R. 2010. “How we use energy at wastewater plants… and how we can use less.” In Proc., NC AWWA-WEA 90th Annual Conf. Raleigh, NC: The North Carolina Member Association of the Water Environment Federation.
Mohan, S. V., S. V. Raghavulu, and P. N. Sarma. 2008. “Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia.” Biosens. Bioelectron. 24 (1): 41–47. https://doi.org/10.1016/j.bios.2008.03.010.
Nam, J. Y., H. W. Kim, and H. S. Shin. 2010. “Ammonia inhibition of electricity generation in single-chambered microbial fuel cells.” J. Power Sources 195 (19): 6428–6433. https://doi.org/10.1016/j.jpowsour.2010.03.091.
Ødegaard, H., B. Rusten, and T. Westrum. 1994. “A new moving bed biofilm reactor-applications and results.” Water Sci. Technol. 29 (10–11): 157–165. https://doi.org/10.2166/wst.1994.0757.
Paitier, A., A. Godain, D. Lyon, N. Haddour, T. M. Vogel, and J. M. Monier. 2017. “Microbial fuel cell anodic microbial population dynamics during MFC start-up.” Biosens. Bioelectron. 92 (June): 357–363. https://doi.org/10.1016/j.bios.2016.10.096.
Park, Y., H. Cho, J. Yu, B. Min, H. S. Kim, B. G. Kim, and T. Lee. 2017a. “Response of microbial community structure to pre-acclimation strategies in microbial fuel cells for domestic wastewater treatment.” Bioresour. Technol. 233 (June): 176–183. https://doi.org/10.1016/j.biortech.2017.02.101.
Park, Y., S. Park, V. K. Nguyen, J. Yu, C. I. Torres, B. E. Rittmann, and T. Lee. 2017b. “Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater.” Chem. Eng. J. 316 (May): 673–679. https://doi.org/10.1016/j.cej.2017.02.005.
Pynaert, K., B. F. Smets, S. Wyffels, D. Beheydt, S. D. Siciliano, and W. Verstraete. 2003. “Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor.” Appl. Environ. Microbiol. 69 (6): 3626–3635. https://doi.org/10.1128/AEM.69.6.3626-3635.2003.
Rago, L., S. Zecchin, S. Marzorati, A. Goglio, L. Cavalca, P. Cristiani, and A. Schievano. 2018. “A study of microbial communities on terracotta separator and on biocathode of air breathing microbial fuel cells.” Bioelectrochemistry 120 (Apr): 18–26. https://doi.org/10.1016/j.bioelechem.2017.11.005.
Raunkjær, K., T. Hvitved-Jacobsen, and P. H. Nielsen. 1994. “Measurement of pools of protein, carbohydrate and lipid in domestic wastewater.” Water Res. 28 (2): 251–262. https://doi.org/10.1016/0043-1354(94)90261-5.
Rismani-Yazdi, H., S. M. Carver, A. D. Christy, and O. H. Tuovinen. 2008. “Cathodic limitations in microbial fuel cells: An overview.” J. Power Sources 180 (2): 683–694. https://doi.org/10.1016/j.jpowsour.2008.02.074.
Santos, M. L. V., F. J. R. Valadéz, V. M. Solís, C. G. Nava, A. J. C. Martell, and O. Hensel. 2017. “Performance of a microbial fuel cell operated with vinasses using different COD concentrations.” Revista Internacional de Contaminación Ambiental 33 (3): 521–528. https://doi.org/10.20937/RICA.2017.33.03.14.
Shizas, I., and D. M. Bagley. 2004. “Experimental determination of energy content of unknown organics in municipal wastewater streams.” J. Energy Eng. 130 (2): 45–53. https://doi.org/10.1061/(ASCE)0733-9402(2004)130:2(45).
Tice, R. C., and Y. Kim. 2014. “Influence of substrate concentration and feed frequency on ammonia inhibition in microbial fuel cells.” J. Power Sources 271 (Dec): 360–365. https://doi.org/10.1016/j.jpowsour.2014.08.016.
USEPA. 2015. “Water & wastewater pricing—Introduction.” Accessed June 05, 2018. http://water.epa.gov/infrastructure/sustain/Water-and-Wastewater-Pricing-Introduction.cfm.
Virdis, B., K. Rabaey, Z. Yuan, and J. Keller. 2008. “Microbial fuel cells for simultaneous carbon and nitrogen removal.” Water Res. 42 (12): 3013–3024. https://doi.org/10.1016/j.watres.2008.03.017.
Wan, J., J. Gu, Q. Zhao, and Y. Liu. 2016. “COD capture: A feasible option towards energy self-sufficient domestic wastewater treatment.” Sci. Rep. 6 (1): 25054. https://doi.org/10.1038/srep25054.
Wang, Z., T. Lee, B. Lim, C. Choi, and J. Park. 2014. “Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate.” Biotechnol. Biofuels 7 (1): 9. https://doi.org/10.1186/1754-6834-7-9.
Xia, X., J. C. Tokash, F. Zhang, P. Liang, X. Huang, and B. E. Logan. 2013. “Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.” Environ. Sci. Technol. 47 (4): 2085–2091. https://doi.org/10.1021/es3027659.
Xu, J., G. P. Sheng, H. W. Luo, W. W. Li, L. F. Wang, and H. Q. Yu. 2012. “Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell.” Water Res. 46 (6): 1817–1824. https://doi.org/10.1016/j.watres.2011.12.060.
Zhang, X., W. He, L. Ren, J. Stager, P. J. Evans, and B. E. Logan. 2015. “COD removal characteristics in air-cathode microbial fuel cells.” Bioresour. Technol. 176 (Jan): 23–31. https://doi.org/10.1016/j.biortech.2014.11.001.
Zhang, F., Z. Ge, J. Grimaud, J. Hurst, and Z. He. 2013. “Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility.” Environ. Sci. Technol. 47 (9): 4941–4948. https://doi.org/10.1021/es400631r.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 145Issue 5May 2019

History

Received: Jul 6, 2018
Accepted: Nov 7, 2018
Published online: Mar 12, 2019
Published in print: May 1, 2019
Discussion open until: Aug 12, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Aaron Leininger [email protected]
Graduate Student, Dept. of Civil and Environmental Engineering, Univ. of Maryland at College Park, 1147 Glenn L Martin Hall, College Park, MD 20742. Email: [email protected]
Wing-Mei Ko [email protected]
Engineer, Dept. of Civil and Environmental Engineering, Univ. of Maryland at College Park, 1147 Glenn L Martin Hall, College Park, MD 20742. Email: [email protected]
Mark Ramirez [email protected]
Biosolids and Resource Recovery Engineer, DC Water Blue Plains, 5000 Overlook Ave. SW, Washington, DC 20032. Email: [email protected]
Birthe V. Kjellerup [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Maryland at College Park, 1147 Glenn L Martin Hall, College Park, MD 20742 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share