Technical Papers
Nov 16, 2018

Adsorption Behavior of Azo Dyes on Carbon Nanotubes Grown on Alumina: Process Optimization, Kinetics, and Equilibrium Study

Publication: Journal of Environmental Engineering
Volume 145, Issue 2

Abstract

In the present study, carbon nanotubes (CNTs) are synthesized using the chemical vapor deposition method modified by growing the CNTs on alumina (CNT/alumina). The maximum Congo red (CR) dye removal of 96.4% and 94% is obtained using CNT/alumina and CNTs, respectively, as adsorbents for 10  mg/L initial dye concentration and an adsorbent dose of 15 mg at pH 2 and 30°C. For Direct red (DR) 80 dye, the maximum removal of 90.5% and 87% is achieved using CNT/alumina and CNTs as adsorbents, respectively, for an initial dye concentration of 10  mg/L with an adsorbent dose of 25 mg at pH 4 and 303 K. The adsorption process fits the Langmuir isotherm. For CR dye, the enthalpy (ΔH) is 13.39  kJ·mol1 for CNTs and 25.9  kJ·mol1 for CNT/alumina. For DR 80 dye, the value of ΔH (12.446  kJ·mol1 for CNTs and 24.086  kJ·mol1 for CNT/alumina) indicates that adsorption of both the dyes onto both adsorbents is endothermic. The values of Gibbs free energy for both dyes are negative for the temperature range between 303 and 323 K, confirming that adsorption is spontaneous and thermodynamically favorable.

Get full access to this article

View all available purchase options and get full access to this article.

References

Agarwal, M., M. Dave, and S. Upadhayaya. 2011. “Adsorption of formaldehyde on treated activated carbon and activated alumina.” Curr. World Environ. 1 (1): 53–59. https://doi.org/10.12944/CWE.6.1.06.
Agarwal, M., and D. Patel. 2015. “Modified zero valent iron (ZVI) nanoparticles for removal of manganese from water.” Int. J. Environ. Res. 9 (3): 1055–1068. https://doi.org/10.22059/ijer.2015.993.
Ahmad, F., W. M. A. W. Daud, M. A. Ahmad, and R. Radzi. 2012. “Cocoa (Theobroma cacao) shell-based activated carbon by CO2 activation in removing of Cationic dye from aqueous solution: Kinetics and equilibrium studies.” Chem. Eng. Res. Des. 90 (10): 1480–1490. https://doi.org/10.1016/j.cherd.2012.01.017.
Ahmad, M. A., N. A. Ahmad Puad, and O. S. Bello. 2014. “Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation.” Water Resour. Ind. 6: 18–35. https://doi.org/10.1016/j.wri.2014.06.002.
Ahmaruzzaman, M., and V. K. Gupta. 2011. “Rice husk and its ash as low-cost adsorbents in water and wastewater treatment.” Ind. Eng. Chem. Res. 50 (24): 13589–13613. https://doi.org/10.1021/ie201477c.
Anjum, M., R. Miandad, M. Waqas, F. Gehany, and M. A. Barakat. 2016. “Remediation of wastewater using various nano-materials.” Arabian J. Chem., in press. https://doi.org/10.1016/j.arabjc.2016.10.004.
Annadurai, G., R. Juang, and D. Lee. 2002. “Use of cellulose-based wastes for adsorption of dyes from aqueous solutions.” J. Hazard. Mater. 92 (3): 263–274. https://doi.org/10.1016/S0304-3894(02)00017-1.
Arami, M., N. Y. Limaee, N. M. Mahmoodi, and N. S. Tabrizi. 2005. “Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies.” J. Colloid Interface Sci. 288 (2): 371–376. https://doi.org/10.1016/j.jcis.2005.03.020.
Asfaram, A., M. Ghaedi, S. Agarwal, I. Tyagi, and V. K. Gupta. 2015. “Removal of basic dye Auramine-O by ZnS:Cu nanoparticles loaded on activated carbon: Optimization of parameters using response surface methodology with central composite design.” RSC Adv. 5 (24): 18438–18450. https://doi.org/10.1039/C4RA15637D.
Atar, N., and A. Olgun. 2009. “Removal of basic and acid dyes from aqueous solutions by a waste containing boron impurity.” Desalination 249 (1): 109–115. https://doi.org/10.1016/j.desal.2008.12.045.
Atar, N., A. Olgun, and F. Çolak. 2008. “Thermodynamic, equilibrium and kinetic study of the biosorption of Basic blue 41 using Bacillus macerans.” Eng. Life Sci. 8 (5): 499–506. https://doi.org/10.1002/elsc.200800036.
Bahgat, M., A. A. Farghali, W. E. E. Rouby, M. Khedr, and M. Y. Mohassab-Ahmed. 2013. “Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite.” Appl. Nanosci. 3 (3): 251–261. https://doi.org/10.1007/s13204-012-0127-3.
Banerjee, S., R. K. Gautam, A. Jaiswal, P. K. Gautam, and M. C. Chattopadhyaya. 2015. “Study on adsorption behavior of Acid Orange 10 onto modified wheat husk modified wheat husk.” Desalin. Water Treat. 57 (26): 37–41. https://doi.org/10.1080/19443994.2015.1046151.
Banerjee, S., G. C. Sharma, R. Kumar, M. C. Chattopadhyaya, S. N. Upadhyay, and Y. Chandra. 2016. “Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent.” J. Mol. Liq. 213: 162–172. https://doi.org/10.1016/j.molliq.2015.11.011.
Bhargavi, R. J., U. Maheshwari, and S. Gupta. 2015. “Synthesis and use of alumina nanoparticles as an adsorbent for the removal of Zn(II) and CBG dye from wastewater.” Int. J. Ind. Chem. 6 (1): 31–41. https://doi.org/10.1007/s40090-014-0029-1.
Bisht, R., M. Agarwal, and K. Singh. 2016. “Heavy metal removal from wastewater using various adsorbents: A review.” J. Water Reuse Desalin. 7 (4): 1–33. https://doi.org/10.2166/wrd.2016.104.
Bozgeyik, K., and T. Kopac. 2016. “Equilibrium, kinetics and thermodynamics of bovine serum albumin adsorption on single-walled carbon nanotubes.” Chem. Eng. Commun. 203 (9): 1198–1206. https://doi.org/10.1080/00986445.2016.1160225.
Cheng, Z., L. Zhang, X. Guo, X. Jiang, and T. Li. 2015. “Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium.” Spectrochim. Acta, Part A 137: 1126–1143. https://doi.org/10.1016/j.saa.2014.08.138.
Dehgani, M. H., M. M. Taher, A. K. Bajpai, B. Heibati, I. Tyagi, M. Asif, S. Agarwal, and V. K. Gupta. 2015. “Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes.” Chem. Eng. J. 279: 344–352. https://doi.org/10.1016/j.cej.2015.04.151.
Dias, A. A., R. M. Bezerra, P. M. Lemos, and A. N. Pereira. 2003. “In vivo and laccase-catalysed decolourization of xenobiotic azo dyes by a basidiomycetous fungus: Characterization of its ligninolytic system.” World J. Microbiol. Biotechnol. 19 (9): 969–975. https://doi.org/10.1023/B:WIBI.0000007331.94390.5c.
Doulati Ardejani, F., K. Badii, N. Yousefi Limaee, N. M. Mahmoodi, M. Arami, S. Z. Shafaei, and A. R. Mirhabibi. 2007. “Numerical modelling and laboratory studies on the removal of Direct Red 23 and Direct Red 80 dyes from textile effluents using orange peel, a low-cost adsorbent.” Dyes Pigm. 73 (2): 178–185. https://doi.org/10.1016/j.dyepig.2005.11.011.
Fathi, M. R., A. Asfaram, and A. Farhangi. 2015. “Removal of Direct Red 23 from aqueous solution using corn stalks: Isotherms, kinetics and thermodynamic studies.” Spectrochim. Acta, Part A 135: 364–372. https://doi.org/10.1016/j.saa.2014.07.008.
Fu, Y., and T. U. Viraraghavan. 2002. “Removal of Congo Red from an aqueous solution by fungus Aspergillus niger.” Adv. Environ. Res. 7 (1): 239–247. https://doi.org/10.1016/S1093-0191(01)00123-X.
Gao, H., S. Zhao, X. Cheng, X. Wang, and L. Zheng. 2013. “Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent.” Chem. Eng. J. 223: 84–90. https://doi.org/10.1016/j.cej.2013.03.004.
Garg, A., M. Mainrai, and S. Barman. 2015. “Experimental investigation on adsorption of Amido black 10B dye onto zeolite synthesized from fly ash.” Chem. Eng. Commun. 202 (1): 123–130. https://doi.org/10.1080/00986445.2013.836636.
Ghaedi, M., S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, and V. K. Gupta. 2015. “Modeling of competitive ultrasonic assisted removal of the dyes—Methylene blue and Safranin-O using Fe3O4 nanoparticles.” Chem. Eng. J. 268: 28–37. https://doi.org/10.1016/j.cej.2014.12.090.
Gomez, V., M. S. Larrechi, and M. P. Callao. 2007. “Kinetic and adsorption study of acid dye removal using activated carbon.” Chemosphere 69 (7): 1151–1158. https://doi.org/10.1016/j.chemosphere.2007.03.076.
Gong, J.-L., B. Wang, G.-M. Zeng, C.-P. Yang, C.-G. Niu, Q.-Y. Niu, W.-J. Zhou, and L. Yi. 2009. “Removal of cationic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent.” J. Hazard. Mater. 164: 1517–1522. https://doi.org/10.1016/j.jhazmat.2008.09.072.
Gupta, V. K., S. Agarwal, and T. A. Saleh. 2011a. “Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal.” J. Hazard. Mater. 185 (1): 17–23. https://doi.org/10.1016/j.jhazmat.2010.08.053.
Gupta, V. K., N. Atar, M. L. Yola, Z. Üstündaǧ, and L. Uzun. 2014a. “A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds.” Water Res. 48 (1): 210–217. https://doi.org/10.1016/j.watres.2013.09.027.
Gupta, V. K., R. Jain, A. Nayak, S. Agarwal, and M. Shrivastava. 2011b. “Removal of the hazardous dye—Tartrazine by photodegradation on titanium dioxide surface.” Mater. Sci. Eng. 31 (5): 1062–1067. https://doi.org/10.1016/j.msec.2011.03.006.
Gupta, V. K., R. Kumar, A. Nayak, T. A. Saleh, and M. A. Barakat. 2013. “Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review.” Adv. Colloid Interface Sci. 193: 24–34. https://doi.org/10.1016/j.cis.2013.03.003.
Gupta, V. K., A. Nayak, and S. Agarwal. 2015. “Bioadsorbents for remediation of heavy metals: Current status and their future prospects.” Environ. Eng. Res. 20 (1): 1–18. https://doi.org/10.4491/eer.2015.018.
Gupta, V. K., A. Nayak, S. Agarwal, and I. Tyagi. 2014c. “Potential of activated carbon from waste rubber tire for the adsorption of phenolics: Effect of pre-treatment conditions.” J. Colloid Interface Sci. 417: 420–430. https://doi.org/10.1016/j.jcis.2013.11.067.
Gupta, V. K., and T. A. Saleh. 2013. “Sorption of pollutants by porous carbon, carbon nanotubes and fullerene: An overview.” Environ. Sci. Pollut. Res. 20 (5): 2828–2843. https://doi.org/10.1007/s11356-013-1524-1.
Haddad, E. M., R. Slimani, and R. Mamouni. 2013. “Removal of two textile dyes from aqueous solutions onto calcined bones.” J. Assoc. Arab Univ. Basic Appl. Sci. 14 (1): 51–59. https://doi.org/10.1016/j.jaubas.2013.03.002.
He, C. N., F. Tian, and S. J. Liu. 2009. “A carbon nanotube/alumina network structure for fabricating alumina matrix composites.” J. Alloys Compd. 478 (1–2): 816–819. https://doi.org/10.1016/j.jallcom.2008.12.027.
Hisarli, G., C. Tezcan, and G. Atun. 2012. “Adsorption kinetics and equilibria of basic dyes onto zeolite in single and binary component systems.” Chem. Eng. Commun. 199 (11): 1412–1436. https://doi.org/10.1080/00986445.2012.668590.
Hosseini, A., M. Allahyari, and S. D. Besheli. 2012. “Synthesis of carbon nanotubes, nano fibbers and nano union by electric arc discharge method using NaCl accuse as solution and Fe and Ni particles and catalysts.” Int. J. Sci. Environ. Technol. 1 (3): 217–229.
Karagoz, S., T. Tay, S. Ucar, and M. Erdem. 2008. “Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption.” Bioresour. Technol. 99 (14): 6214–6222. https://doi.org/10.1016/j.biortech.2007.12.019.
Karthikeyan, S., V. K. Gupta, R. Boopathy, A. Titus, and G. Sekaran. 2012. “A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: Kinetic and spectroscopic studies.” J. Mol. Liq. 173: 153–163. https://doi.org/10.1016/j.molliq.2012.06.022.
Khani, H., M. K. Rofouei, P. Arab, V. K. Gupta, and Z. Vafaei. 2010. “Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion(II).” J. Hazard. Mater. 183 (1–3): 402–409. https://doi.org/10.1016/j.jhazmat.2010.07.039.
Khosla, E. 2015. “Adsorption of azo dye methyl orange over aluminum oxide nano particles.” Int. J. Basic Appl. Chem. Sci. 5 (4): 37–46.
Konicki, W., E. Mijowska, and I. Jasin. 2012. “Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite: Kinetics, equilibrium and thermodynamics.” Chem. Eng. J. 210: 87–95. https://doi.org/10.1016/j.cej.2012.08.025.
Li, L., S. Liu, and T. Zhu. 2010. “Application of activated carbon derived from scrap tires for adsorption of Rhodamine B.” J. Environ. Sci. 22 (8): 1273–1280. https://doi.org/10.1016/S1001-0742(09)60250-3.
Madrakian, T., A. Afkhami, M. Ahmadi, and H. Bagheri. 2011. “Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes.” J. Hazard. Mater. 196: 109–114. https://doi.org/10.1016/j.jhazmat.2011.08.078.
Mahmoodi, N. M., and J. Ghobadi. 2015. “Extended isotherm and kinetics of binary system dye removal using carbon nanotube from wastewater.” Desalin. Water Treat. 54 (10): 2777–2793. https://doi.org/10.1080/19443994.2014.903525.
Malakootian, M., and N. Yousefi. 2009. “The efficiency of electrocoagulation process using aluminum electrodes in removal of hardness from water.” Iran. J. Environ. Health Sci. Eng. 6 (2): 131–136.
Mishra, A. K., T. Arockiadoss, and S. Ramaprabhu. 2010. “Study of removal of azo dye by functionalized multi walled carbon nanotubes.” Chem. Eng. J. 162 (3): 1026–1034. https://doi.org/10.1016/j.cej.2010.07.014.
Mittal, A., J. Mittal, A. Malviya, and V. K. Gupta. 2010. “Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials.” J. Colloid Interface Sci. 344 (2): 497–507. https://doi.org/10.1016/j.jcis.2010.01.007.
Mo, Y. H., A. K. M. F. Kibria, and K. S. Nahm. 2001. “The growth mechanism of carbon nanotubes from thermal cracking of acetylene over nickel catalyst supported on alumina.” Synth. Met. 122 (2): 443–447. https://doi.org/10.1016/S0379-6779(00)00565-8.
Mohammadi, N., H. Khani, V. K. Gupta, E. Amereh, and S. Agarwal. 2011. “Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies.” J. Colloid Interface Sci. 362 (2): 457–462. https://doi.org/10.1016/j.jcis.2011.06.067.
Nandi, B. K., A. Goswami, A. K. Das, B. Mondal, and M. K. Purkait. 2008. “Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent.” Sep. Sci. Technol. 43 (6): 1382–1403. https://doi.org/10.1080/01496390701885331.
Nassar, M. M., and M. S. Elgeundi. 1991. “Comparative cost of color removal from textile effluents using natural adsorbents.” J. Chem. Technol. Biotechnol. 50 (2): 257–264. https://doi.org/10.1002/jctb.280500210.
Nigam, P., I. M. Banat, D. Singh, and R. Marchant. 1996. “Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes.” Process Biochem. 31 (5): 435–442. https://doi.org/10.1016/0032-9592(95)00085-2.
Oguzie, E. E., C. O. Akalezi, C. K. Enenebeaku, and J. N. Aneke. 2010. “Corrosion inhibition and adsorption behavior of malachite green dye on aluminum corrosion.” Chem. Eng. Commun. 198 (1): 46–60. https://doi.org/10.1080/00986445.2010.493118.
Oladoja, N. A., and A. K. Akinlabi. 2009. “Congo Red biosorption on palm kernel seed coat.” Ind. Eng. Chem. Res. 48 (13): 6188–6196. https://doi.org/10.1021/ie801003v.
Rajendran, S., M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumainathan. 2016. “Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite.” Sci. Rep. 6: 31641. https://doi.org/10.1038/srep31641.
Robati, D., B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, and V. K. Gupta. 2016. “Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase.” Chem. Eng. J. 284: 687–697. https://doi.org/10.1016/j.cej.2015.08.131.
Rodríguez, A., G. Ovejero, J. L. Sotelo, M. Mestanza, and J. García. 2010. “Adsorption of dyes on carbon nanomaterials from aqueous solutions.” J. Environ. Sci. Health Part A 45 (12): 1642–1653. https://doi.org/10.1080/10934529.2010.506137.
Safarik, I., L. Filipe, T. Rego, M. Borovska, E. Mosiniewicz-szablewska, F. Weyda, and M. Safarikova. 2007. “New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes.” Enzyme Microb. Technol. 40 (6): 1551–1556. https://doi.org/10.1016/j.enzmictec.2006.10.034.
Saleh, T. A., and V. K. Gupta. 2011. “Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B.” J. Colloid Interface Sci. 362 (2): 337–344. https://doi.org/10.1016/j.jcis.2011.06.081.
Saleh, T. A., and V. K. Gupta. 2012a. “Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide.” J. Colloid Interface Sci. 371 (1): 101–106. https://doi.org/10.1016/j.jcis.2011.12.038.
Saleh, T. A., and V. K. Gupta. 2012b. “Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance.” Sep. Purif. Technol. 89: 245–251. https://doi.org/10.1016/j.seppur.2012.01.039.
Saleh, T. A., and V. K. Gupta. 2014. “Processing methods, characteristics and adsorption behavior of tire derived carbons: A review.” Adv. Colloid Interface Sci. 211: 93–101. https://doi.org/10.1016/j.cis.2014.06.006.
Saravanan, R., V. K. Gupta, T. Prakash, V. Narayanan, and A. Stephen. 2013a. “Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method.” J. Mol. Liq. 178: 88–93. https://doi.org/10.1016/j.molliq.2012.11.012.
Saravanan, R., S. Joicy, V. K. Gupta, V. Narayanan, and A. Stephen. 2013b. “Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts.” Mater. Sci. Eng., C 33 (8): 4725–4731. https://doi.org/10.1016/j.msec.2013.07.034.
Saravanan, R., N. Karthikeyan, V. K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, and A. Stephen. 2013c. “ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light.” Mater. Sci. Eng., C 33 (4): 2235–2244. https://doi.org/10.1016/j.msec.2013.01.046.
Saravanan, R., M. M. Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen. 2016a. “ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activities.” RSC Adv. 5 (44): 34645–34651. https://doi.org/10.1039/C5RA02557E.
Saravanan, R., M. Mansoob Khan, V. K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, and A. Stephen. 2015. “ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.” J. Colloid Interface Sci. 452: 126–133. https://doi.org/10.1016/j.jcis.2015.04.035.
Saravanan, R., E. Sacari, F. Gracia, M. M. Khan, E. Mosquera, and V. K. Gupta. 2016d. “Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes.” J. Mol. Liq. 221: 1029–1033. https://doi.org/10.1016/j.molliq.2016.06.074.
Saravanan, R., E. Thirumal, V. K. Gupta, V. Narayanan, and A. Stephen. 2013d. “The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures.” J. Mol. Liq. 177: 394–401. https://doi.org/10.1016/j.molliq.2012.10.018.
Sharma, R., A. K. Sharma, and V. Sharma. 2015. “Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics.” Cogent Eng. 47 (1): 1–10. https://doi.org/10.1080/23311916.2015.1094017.
Sheibani, M., M. Ghaedi, F. Marahel, and A. Ansari. 2014. “Congo red removal using oxidized multiwalled carbon nanotubes: Kinetic and isotherm study.” Desalin. Water Treat. 53 (3): 844–852. https://doi.org/10.1080/19443994.2013.867540.
Song, Y., B. Dong, N. Gao, and Y. Deng. 2015. “Comparative evaluation of aluminum sulfate and ferric sulfate-induced coagulations as pretreatment of microfiltration for treatment of surface water.” Int. J. Environ. Res. Public Health 12 (6): 6700–6709. https://doi.org/10.3390/ijerph120606700.
Upadhyayula, V. K. K., S. Deng, M. C. Mitchell, and G. B. Smith. 2009. “Application of carbon nanotube technology for removal of contaminants in drinking water: A review.” Sci. Total Environ. 408 (1): 1–13. https://doi.org/10.1016/j.scitotenv.2009.09.027.
Wang, S., C. W. Ng, W. Wang, Q. Li, and L. Li. 2012. “A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems.” J. Chem. Eng. Data 57 (5): 1563–1569. https://doi.org/10.1021/je3001552.
Yao, Y., F. Xu, M. Chen, Z. Xu, and Z. Zhu. 2010. “Adsorption behavior of methylene blue on carbon nanotubes.” Bioresour. Technol. 101 (9): 3040–3046. https://doi.org/10.1016/j.biortech.2009.12.042.
Zare, K., H. Sadegh, R. Shahryari-Ghoshekandi, B. Maazinejad, V. Ali, I. Tyagi, S. Agarwal, and V. K. Gupta. 2015. “Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: Kinetic, equilibrium studies and its comparison with other adsorbents.” J. Mol. Liq. 212: 266–271. https://doi.org/10.1016/j.molliq.2015.09.027.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 145Issue 2February 2019

History

Received: May 22, 2018
Accepted: Jul 18, 2018
Published online: Nov 16, 2018
Published in print: Feb 1, 2019
Discussion open until: Apr 16, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Madhu Agarwal [email protected]
Associate Professor, Dept. of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India (corresponding author). Email: [email protected]
Priti Kumari
M.Tech Student, Dept. of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India.
Swati Dubey
Ph.D. Scholar, Dept. of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India.
Ragini Gupta
Associate Professor, Dept. of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India.
Rajeev Kumar Dohare
Associate Professor, Dept. of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share