Technical Papers
Sep 7, 2018

Competent Heavy Metal Adsorption by Modified MWCNTs and Optimization Process by Experimental Design

Publication: Journal of Environmental Engineering
Volume 144, Issue 11

Abstract

In this research, carboxylated multiwalled carbon nanotubes (c-MWCNTs) were improved with 5-amino-3-(2-thienyl) pyrazole (p-MWCNTs) for adsorption of Cd2+ and As3+ from aqueous solutions. Field emission scanning electron microscopy, Fourier transform infrared spectra spectroscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis were employed to characterize the p-MWCNTs. The central composite design inspected the effects of the pH, adsorbent dose, and initial metal ions concentration on the adsorption process. Further, the optimum adsorption conditions were acquired as 20 mg of the adsorbents, pH=78, and 20  mg·L1 of metal ions concentration. Furthermore, for analysis of variance, the quadratic model was applied and indicated that pH was the most effective parameter in the adsorption process. Also, various adsorption isotherm models were examined. The results showed that the Langmuir isotherm correlated the experimental results in this work well, while kinetic data could be characterized by the pseudo-second-order adsorption rate kinetics. Moreover, the thermodynamic evaluations discovered that the sorption process was spontaneous and endothermic in nature. Finally, the adsorption–desorption study demonstrated a good regeneration capacity of the adsorbent for considering wastewater containing Cd2+ and As3+.

Get full access to this article

View all available purchase options and get full access to this article.

References

Agrafioti, E., D. Kalderis, and E. Diamadopoulos. 2014. “Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge.” J. Environ. Manage. 133: 309–314. https://doi.org/10.1016/j.jenvman.2013.12.007.
Akl, M. A., and A. M. Abou-Elanwar. 2015. “Adsorption studies of Cd(II) from water by acid modified multiwalled carbon nanotubes.” J. Nanomed. Nanotechnol. 6 (6): 327–336. https://doi.org/10.4172/2157-7439.1000327.
Alimohammady, M., and M. Jahangiri. 2017. “Synthesis of MnO2 nanowires adsorbent for gold recovery from electroplating wastewater using Taguchi method.” J. Appl. Chem. 11 (41): 75–81.
Alimohammady, M., M. Jahangiri, F. Kiani, and H. Tahermansouri. 2017a. “A new modified MWCNTs with 3-aminopyrazole as a nanoadsorbent for Cd(II) removal from aqueous solutions.” J. Environ. Chem. Eng. 5 (4): 3405–3417. https://doi.org/10.1016/j.jece.2017.06.045.
Alimohammady, M., M. Jahangiri, F. Kiani, and H. Tahermansouri. 2017b. “Highly efficient simultaneous adsorption of Cd(II), Hg(II) and As(III) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole: Central composite design optimization.” New J. Chem. 41 (17): 8905–8919. https://doi.org/10.1039/C7NJ01450C.
Alimohammady, M., M. Jahangiri, F. Kiani, and H. Tahermansouri. 2018. “Design and evaluation of functionalized multi-walled carbon nanotubes by 3-aminopyrazole for the removal of Hg(II) and As(III) ions from aqueous solution.” Res. Chem. Intermed. 44 (1): 69–92. https://doi.org/10.1007/s11164-017-3091-4.
Al-Khaldi, F. A., B. Abu-Sharkh, A. M. Abulkibash, and M. A. Atieh. 2015. “Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: A comparative study.” Desalin. Water Treat. 53 (5): 1417–1429. https://doi.org/10.1080/19443994.2013.847805.
Anirudhan, T. S., and S. S. Sreekumari. 2011. “Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons.” J. Environ. Sci. 23 (12): 1989–1998. https://doi.org/10.1016/S1001-0742(10)60515-3.
Anitha, D., O. Sridevi, and R. Subha. 2015. “Removal of mercury from aqueous solution: Review on current status and development.” In Vol. 1 of Proc., Int. Conf. on Systems, Science, Control, Communication, Engineering and Technology, edited by T. Ramachandran, K. Kokula Krishna Hari, B. Thiruvengadam, and J. Daniel, 195–198. Chennai, India: Association of Scientists, Developers and Faculties.
Ayanda, O. S., D. Malomo, O. O. Oketayo, S. M. Nelana, and E. B. Naidoo. 2017. “Arsenic(III) removal from aqueous solutions by adsorption onto fly ash.” Asian J. Chem. 29 (10): 2227–2231. https://doi.org/10.14233/ajchem.
Ayoub, G. M., L. Semerjian, A. Acra, M. E. Fadel, and B. Koopman. 2001. “Heavy metal removal by coagulation with seawater liquid bittern.” J. Environ. Eng. 127 (3): 196–207. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:3(196).
Breyfogle, F. W. 1992. Statistical methods for testing, development, and manufacturing. New York: Wiley.
Chegrouche, S., A. Mellah, and M. Barkat. 2009. “Removal of strontium from aqueous solutions by adsorption onto activated carbon: Kinetic and thermodynamic studies.” Desalination 235 (1–3): 306–318. https://doi.org/10.1016/j.desal.2008.01.018.
Chen, B., Z. Zhu, J. Ma, M. Yang, J. Hong, X. Hu, Y. Qiu, and J. Chen. 2014. “One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal.” J. Colloid Interface Sci. 434: 9–17. https://doi.org/10.1016/j.jcis.2014.07.046.
Dickson, D., G. Liu, and Y. Cai. 2017. “Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates.” J. Environ. Manage. 186: 261–267. https://doi.org/10.1016/j.jenvman.2016.07.068.
Dil, E. A., M. Ghaedi, and A. Asfaram. 2017. “The performance of nanorods material as adsorbent for removal of azo dyes and heavy metal ions: Application of ultrasound wave, optimization and modeling.” Ultrason. Sonochem. 34: 792–802. https://doi.org/10.1016/j.ultsonch.2016.07.015.
Do, D. D. 1998. Adsorption analysis: Equilibria and kinetics. Singapore: World Scientific.
Dutta, A., L. Zhou, C. O. Castillo-Araiza, and E. D. Herdt. 2016. “Cadmium(II), lead(II), and copper(II) biosorption on baker’s yeast (Saccharomyces cerevesiae).” J. Environ. Eng. 142 (9): C6015002. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001041.
Fang, X., J. Li, X. Li, S. Pan, X. Zhang, X. Sun, J. Shen, W. Han, and L. Wang. 2017. “Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal.” Chem. Eng. J. 314: 38–49. https://doi.org/10.1016/j.cej.2016.12.125.
Fang, X., X. Xu, S. Wang, and D. Wang. 2013. “Adsorption kinetics and equilibrium of Cu(II) from aqueous solution by polyaniline/coconut shell’s activated carbon composites.” J. Environ. Eng. 139 (10): 1279–1284. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000743.
Foo, K. Y., and B. H. Hameed. 2010. “Insights into the modeling of adsorption isotherm systems.” Chem. Eng. J. 156 (1): 2–10. https://doi.org/10.1016/j.cej.2009.09.013.
Fosso-Kankeu, E., H. Mittal, F. Waanders, and S. S. Ray. 2017. “Thermodynamic properties and adsorption behaviour of hydrogel nanocomposites for cadmium removal from mine effluents.” J. Ind. Eng. Chem. 48: 151–161. https://doi.org/10.1016/j.jiec.2016.12.033.
Gao, Z., T. J. Bandosz, Z. Zhao, M. Han, and J. Qiu. 2009. “Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes.” J. Hazard. Mater. 167 (1): 357–365. https://doi.org/10.1016/j.jhazmat.2009.01.050.
Garba, Z. N., and A. A. Rahim. 2014. “Process optimization of K2C2O4-activated carbon from Prosopis africana seed hulls using response surface methodology.” J. Anal. Appl. Pyrolysis 107: 306–312. https://doi.org/10.1016/j.jaap.2014.03.016.
Ghaedi, M., S. Hajati, M. Zare, and S. Y. S. Jaberi. 2015. “Experimental design for simultaneous analysis of malachite green and methylene blue; derivative spectrophotometry and principal component-artificial neural network.” RSC Adv. 5 (49): 38939–38947. https://doi.org/10.1039/C5RA02531A.
Glatstein, D. A., N. Bruna, C. Gallardo-Benavente, D. Bravo, M. E. C. Pérez, F. M. Francisca, and J. M. Pérez-Donoso. 2018. “Arsenic and cadmium bioremediation by antarctic bacteria capable of biosynthesizing CdS fluorescent nanoparticles.” J. Environ. Eng. 144 (3): 04017107. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001293.
Gupta, V. K., O. Moradi, I. Tyagi, S. Agarwal, H. Sadegh, R. Shahryari-Ghoshekandi, A. S. H. Makhlouf, M. Goodarzi, and A. Garshasbi. 2016. “Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: A review.” Crit. Rev. Environ. Sci. Technol. 46 (2): 93–118. https://doi.org/10.1080/10643389.2015.1061874.
Hadavifar, M., N. Bahramifar, H. Younesi, and Q. Li. 2014. “Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups.” Chem. Eng. J. 237: 217–228. https://doi.org/10.1016/j.cej.2013.10.014.
Hassani, A., R. D. C. Soltani, M. Kıranşan, S. Karaca, C. Karaca, and A. Khataee. 2016. “Ultrasound-assisted adsorption of textile dyes using modified nanoclay: Central composite design optimization.” Korean J. Chem. Eng. 33 (1): 178–188. https://doi.org/10.1007/s11814-015-0106-y.
Hering, J. G., I. A. Katsoyiannis, G. A. Theoduloz, M. Berg, and S. J. Hug. 2017. “Arsenic removal from drinking water: Experiences with technologies and constraints in practice.” J. Environ. Eng. 143 (5): 03117002. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001225.
Hu, J., G. Chen, and I. M. Lo. 2006. “Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms.” J. Environ. Eng. 132 (7): 709–715. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:7(709).
Hu, J. L., X. W. He, C. R. Wang, J. W. Li, and C. H. Zhang. 2012. “Cadmium adsorption characteristic of alkali modified sewage sludge.” Bioresour. Technol. 121: 25–30. https://doi.org/10.1016/j.biortech.2012.06.100.
Huang, X., N. Y. Gao, and Q. l. Zhang. 2007. “Thermodynamics and kinetics of cadmium adsorption onto oxidized granular activated carbon.” J. Environ. Sci. 19 (11): 1287–1292. https://doi.org/10.1016/S1001-0742(07)60210-1.
Ibrahim, H. S., A. A. El-Kady, N. S. Ammar, L. Meesuk, P. Wathanakul, and M. A. Abdel-Wahhab. 2012. “Application of isotherm and kinetic models for the removal of lead ions from aqueous solutions.” J. Environ. Eng. 139 (3): 349–357. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000646.
Issa, N. B., V. N. Rajaković-Ognjanović, B. M. Jovanović, and L. V. Rajaković. 2010. “Determination of inorganic arsenic species in natural waters—Benefits of separation and preconcentration on ion exchange and hybrid resins.” Anal. Chim. Acta 673 (2): 185–193. https://doi.org/10.1016/j.aca.2010.05.027.
Jahangiri, M., F. Kiani, H. Tahermansouri, and A. Rajabalinezhad. 2015. “The removal of lead ions from aqueous solutions by modified multi-walled carbon nanotubes with 1-isatin-3-thiosemicarbazone.” J. Mol. Liq. 212: 219–226. https://doi.org/10.1016/j.molliq.2015.09.010.
Khan, T. A., S. A. Chaudhry, and I. Ali. 2015. “Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution.” J. Mol. Liq. 202: 165–175. https://doi.org/10.1016/j.molliq.2014.12.021.
Kiran, M. G., K. Pakshirajan, and G. Das. 2016. “Heavy metal removal using sulfate-reducing biomass obtained from a lab-scale upflow anaerobic-packed bed reactor.” J. Environ. Eng. 142 (9): C4015010. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001005.
Koistinen, M. P., K. Kujala, and H. Rönkkömäki. 2014. “Adsorption of Ni(II) and Cd(II) in compacted peat and the utilization of the adsorption properties in hydraulic-barrier layers in tailing impoundments.” J. Environ. Eng. 141 (5): 04014086. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000916.
Kołodyńska, D., J. Krukowska, and P. Thomas. 2017. “Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon.” Chem. Eng. J. 307: 353–363. https://doi.org/10.1016/j.cej.2016.08.088.
Kumar, A. S. K., and S.-J. Jiang. 2016. “Chitosan-functionalized graphene oxide: A novel adsorbent an efficient adsorption of arsenic from aqueous solution.” J. Environ. Chem. Eng. 4 (2): 1698–1713. https://doi.org/10.1016/j.jece.2016.02.035.
Kumar, U., and M. Bandyopadhyay. 2006. “Sorption of cadmium from aqueous solution using pretreated rice husk.” Bioresour. Technol. 97 (1): 104–109. https://doi.org/10.1016/j.biortech.2005.02.027.
Li, X., L. Yang, Y. Li, Z. Ye, and A. He. 2012. “Efficient removal of Cd2+ from aqueous solutions by adsorption on PS-EDTA resins: Equilibrium, isotherms, and kinetic studies.” J. Environ. Eng. 138 (9): 940–948. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000553.
Mackie, A., M. Laliberté, and M. Walsh. 2015. “Comparison of single and two-stage ballasted flocculation processes for enhanced removal of arsenic from mine water.” J. Environ. Eng. 142 (2): 04015062. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001030.
Majumder, C. 2018. “Arsenic(V) removal using activated alumina: Kinetics and modeling by response surface.” J. Environ. Eng. 144 (3): 04017115. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001337.
Maleki, A., A. H. Mahvi, M. A. Zazouli, H. Izanloo, and A. H. Barati. 2011. “Aqueous cadmium removal by adsorption on barley hull and barley hull ash.” Asian J. Chem. 23 (3): 1373–1376.
Mohammadnezhad, G., R. Soltani, S. Abad, and M. Dinari. 2017. “A novel porous nanocomposite of aminated silica MCM-41 and nylon-6: Isotherm, kinetic, and thermodynamic studies on adsorption of Cu(II) and Cd(II).” J. Appl. Polym. Sci. 134 (40): 45383. https://doi.org/10.1002/app.v134.40.
Montgomery, D. C. 2017. Design and analysis of experiments. New York: Wiley.
Morillo, D., G. Pérez, and M. Valiente. 2015. “Efficient arsenic(V) and arsenic(III) removal from acidic solutions with novel forager sponge-loaded superparamagnetic iron oxide nanoparticles.” J. Colloid Interface Sci. 453: 132–141. https://doi.org/10.1016/j.jcis.2015.04.048.
Naghizadeh, A. 2015. “Comparison between activated carbon and multiwall carbon nanotubes in the removal of cadmium(II) and chromium(VI) from water solutions.” J. Water Supply Res. Technol. 64 (1): 64–73. https://doi.org/10.2166/aqua.2014.022.
Naowanon, W., R. Chueachot, S. Klinsrisuk, and S. Amnuaypanich. 2018. “Biphasic synthesis of amine-functionalized mesoporous silica nanospheres (MSN-NH2) and its application for removal of ferrous (Fe2+2+) ions.” Powder Technol. 323: 548–557. https://doi.org/10.1016/j.powtec.2016.09.014.
Natarajan, R., and R. Manivasagan. 2015. “Biosorptive removal of heavy metal onto raw activated sludge: Parametric, equilibrium, and kinetic studies.” J. Environ. Eng. 142 (9): C4015002. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000961.
Obregón-Valencia, D., and M. R. Sun-Kou. 2014. “Comparative cadmium adsorption study on activated carbon prepared from aguaje (Mauritia flexuosa) and olive fruit stones (Olea europaea L.).” J. Environ. Chem. Eng. 2 (4): 2280–2288. https://doi.org/10.1016/j.jece.2014.10.004.
Ogundipe, K. D., and A. Babarinde. 2017. “Comparative study on batch equilibrium biosorption of Cd(II), Pb(II) and Zn(II) using plantain (Musa paradisiaca) flower: Kinetics, isotherm, and thermodynamics.” Chem. Int. 3 (2): 135–149.
Qin, H., T. Gong, Y. Cho, C. Lee, and T. Kim. 2014. “A conductive copolymer of graphene oxide/poly (1-(3-aminopropyl) pyrrole) and the adsorption of metal ions.” Polym. Chem. 5 (15): 4466–4473. https://doi.org/10.1039/c4py00102h.
Rocha, C. G., D. A. M. Zaia, R. V. da Silva Alfaya, and A. A. da Silva Alfaya. 2009. “Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents.” J. Hazard. Mater. 166 (1): 383–388. https://doi.org/10.1016/j.jhazmat.2008.11.074.
Roy, S., and P. Bose. 2009. “Modeling arsenite adsorption on rusting metallic iron.” J. Environ. Eng. 136 (4): 405–411. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000169.
Saleh, T. A., A. Sari, and M. Tuzen. 2016. “Chitosan-modified vermiculite for As(III) adsorption from aqueous solution: Equilibrium, thermodynamic and kinetic studies.” J. Mol. Liq. 219: 937–945. https://doi.org/10.1016/j.molliq.2016.03.060.
Santasnachok, C., W. Kurniawan, and H. Hinode. 2015. “The use of synthesized zeolites from power plant rice husk ash obtained from Thailand as adsorbent for cadmium contamination removal from zinc mining.” J. Environ. Chem. Eng. 3 (3): 2115–2126. https://doi.org/10.1016/j.jece.2015.07.016.
Shakya, M., P. Sharma, S. S. Meryem, Q. Mahmood, and A. Kumar. 2015. “Heavy metal removal from industrial wastewater using fungi: Uptake mechanism and biochemical aspects.” J. Environ. Eng. 142 (9): C6015001. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000983.
Shannon, M. A., P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes. 2008. “Science and technology for water purification in the coming decades.” Nature 452 (7185): 301–310. https://doi.org/10.1038/nature06599.
Sharma, S. K. 2014. Heavy metals in water: Presence, removal and safety. Cambridge, UK: Royal Society of Chemistry.
Sun, T., Z. Zhao, Z. Liang, J. Liu, W. Shi, and F. Cui. 2017. “Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO234 magnetic nanoparticles.” Appl. Surf. Sci. 416: 656–665. https://doi.org/10.1016/j.apsusc.2017.04.137.
Tahermansouri, H., R. M. Ahi, and F. Kiani. 2014. “Kinetic, equilibrium and isotherm studies of cadmium removal from aqueous solutions by oxidized multi-walled carbon nanotubes and the functionalized ones with thiosemicarbazide and their toxicity investigations: A comparison.” J. Chin. Chem. Soc. 61 (11): 1188–1198. https://doi.org/10.1002/jccs.201400197.
Tahermansouri, H., A. Mirosanloo, S. H. Keshel, and M. Gardaneh. 2016. “Synthesis, characterization, and toxicity of multi-walled carbon nanotubes functionalized with 4-hydroxyquinazoline.” Carbon Lett. 17 (1): 45–52. https://doi.org/10.5714/CL.2016.17.1.045.
Tan, P., J. Sun, Y. Hu, Z. Fang, Q. Bi, Y. Chen, and J. Cheng. 2015. “Adsorption of Cu2+2+2+ from aqueous single metal solutions on graphene oxide membranes.” J. Hazard. Mater. 297: 251–260. https://doi.org/10.1016/j.jhazmat.2015.04.068.
Tavakkoli, N., S. Habibollahi, and S. A. Tehrani. 2017. “Separation and preconcentration of arsenic(III) ions from aqueous media by adsorption on MWCNTs.” Arabian J. Chem. 10: S3682–S3686. https://doi.org/10.1016/j.arabjc.2014.04.007.
Tawabini, B., S. Al-Khaldi, M. Atieh, and M. Khaled. 2010. “Removal of mercury from water by multi-walled carbon nanotubes.” Water Sci. Technol. 61 (3): 591–598. https://doi.org/10.2166/wst.2010.897.
Tawabini, B. S., S. F. Al-Khaldi, M. M. Khaled, and M. A. Atieh. 2011. “Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes.” J. Environ. Sci. Health A 46 (3): 215–223. https://doi.org/10.1080/10934529.2011.535389.
Uwamariya, V., B. Petrusevski, P. Lens, and G. L. Amy. 2015. “Effect of pH and calcium on the adsorptive removal of cadmium and copper by iron oxide-coated sand and granular ferric hydroxide.” J. Environ. Eng. 142 (9): C4015015. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001009.
Vuković, G. D., A. D. Marinković, M. Čolić, M. Đ. Ristić, R. Aleksić, A. A. Perić Grujić, and P. S. Uskoković. 2010. “Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes.” Chem. Eng. J. 157 (1): 238–248. https://doi.org/10.1016/j.cej.2009.11.026.
Wiles, D. M., B. A. Gingras, and T. Suprunchuk. 1967. “The C═S stretching vibration in the infrared spectra of some thiosemicarbazones.” Can. J. Chem. 45 (5): 469–473. https://doi.org/10.1139/v67-081.
Wong, C. W., J. P. Barford, G. Chen, and G. McKay. 2014. “Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin.” J. Environ. Chem. Eng. 2 (1): 698–707. https://doi.org/10.1016/j.jece.2013.11.010.
Xu, D., X. Tan, C. Chen, and X. Wang. 2008. “Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes.” J. Hazard. Mater. 154 (1): 407–416. https://doi.org/10.1016/j.jhazmat.2007.10.059.
Yang, K., W. Wu, Q. Jing, and L. Zhu. 2008. “Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes.” Environ. Sci. Technol. 42 (21): 7931–7936. https://doi.org/10.1021/es801463v.
Yoon, Y., M. Zheng, Y.-T. Ahn, W. K. Park, W. S. Yang, and J.-W. Kang. 2017. “Synthesis of magnetite/non-oxidative graphene composites and their application for arsenic removal.” Sep. Purif. Technol. 178: 40–48. https://doi.org/10.1016/j.seppur.2017.01.025.
Yu, Y., C. Zhang, L. Yang, and J. P. Chen. 2017. “Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms.” Chem. Eng. J. 315: 630–638. https://doi.org/10.1016/j.cej.2016.09.068.
Zare-Dorabei, R., S. M. Ferdowsi, A. Barzin, and A. Tadjarodi. 2016. “Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) ions from aqueous solutions by graphene oxide modified with 2,2′-dipyridylamine: Central composite design optimization.” Ultrason. Sonochem. 32: 265–276. https://doi.org/10.1016/j.ultsonch.2016.03.020.
Zhang, C., Z. Yu, G. Zeng, B. Huang, H. Dong, J. Huang, Z. Yang, J. Wei, L. Hu, and Q. Zhang. 2016. “Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd.” Chem. Eng. J. 284: 247–259. https://doi.org/10.1016/j.cej.2015.08.096.
Zhang, J., T. Ding, Z. Zhang, L. Xu, and C. Zhang. 2015. “Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells.” PLoS One 10 (4): e0123395. https://doi.org/10.1371/journal.pone.0123395.
Zhang, J., W. Shan, J. Ge, Z. Shen, Y. Lei, and W. Wang. 2011. “Kinetic and equilibrium studies of liquid-phase adsorption of phosphate on modified sugarcane bagasse.” J. Environ. Eng. 138 (3): 252–258. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000408.
Zhou, Y., S. Xia, Z. Zhang, J. Zhang, and S. W. Hermanowicz. 2016. “Associated adsorption characteristics of Pb(II) and Zn(II) by a novel biosorbent extracted from waste-activated sludge.” J. Environ. Eng. 142 (7): 04016032. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001104.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 144Issue 11November 2018

History

Received: Nov 18, 2017
Accepted: May 9, 2018
Published online: Sep 7, 2018
Published in print: Nov 1, 2018
Discussion open until: Feb 7, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Mobina Alimohammady [email protected]
Graduated Ph.D. Student, Faculty of Chemical, Petroleum and Gas Engineering, Semnan Univ., Semnan 3513119111, I.R. Iran. Email: [email protected]
Mansour Jahangiri [email protected]
Faculty Member, Faculty of Chemical, Petroleum and Gas Engineering, Semnan Univ., Semnan 3513119111, I.R. Iran (corresponding author). Email: [email protected]
Farhoush Kiani [email protected]
Faculty Member, Dept. of Chemistry, Ayatollah Amoli Branch, Islamic Azad Univ., P.O. Box 678, Amol 4635143358, I.R. Iran. Email: [email protected]
Hasan Tahermansouri [email protected]
Faculty Member, Dept. of Chemistry, Ayatollah Amoli Branch, Islamic Azad Univ., P.O. Box 678, Amol 4635143358, I.R. Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share