Abstract

Bacterial profile, nutrients removal performance, and membrane fouling behavior were evaluated in an anoxic/oxic electro-membrane bioreactor (A/O e-MBR) treating municipal wastewater at different hydraulic retention times (HRTs) (30, 20, and 15 h). The results demonstrated that HRT reduction from 30 to 15 h had a negligible effect on chemical oxygen demand (COD), ammonium (NH4+-N), and total phosphorus (TP) removal, showing efficiencies above of 98%, 99%, and 95%, respectively, for any experimental runs. On the other hand, total nitrogen (TN) removal improved significantly from 80.7% to 90.5% as the HRT was reduced from 30 to 15 h. Activity batch assays have shown a higher specific nitrate uptake rate (SNUR) at the shorter HRT. Results of DNA sequencing analysis indicated a larger amount of denitrifying bacteria genus and a greater relative abundance of Nitrospira genus at shorter HRTs, supporting the higher SNUR and the greater TN removal. The membrane fouling rate increased by about 16 times during the period with HRT of 15 h. Besides, some fouling propensity parameters have shown a worse mixed liquor filterability in this period.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the Brazilian National Council for Scientific and Technological Development (CNPq) and Coordination of Superior Level Staff Improvement (CAPES) for their financial support.

References

Bani-Melhem, K., and M. Elektorowicz. 2011. “Performance of the submerged membrane electro-bioreactor (SMEBR) with iron electrodes for wastewater treatment and fouling reduction.” J. Membr. Sci. 379 (1–2): 434–439. https://doi.org/10.1016/j.memsci.2011.06.017.
Baytshtok, V., H. Lu, H. Park, S. Kim, R. Yu, and K. Chandran. 2009. “Impact of varying electron donors on the molecular microbial ecology and biokinetics of methylotrophic denitrifying bacteria.” Biotechnol. Bioeng. 102 (6): 1527–1536. https://doi.org/10.1002/bit.22213.
Borea, L., V. Naddeo, and V. Belgiorno. 2016. “Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.” Environ. Sci. Pollut. Res. 24 (1): 1–13. https://doi.org/10.1007/s11356-016-7786-7.
Caporaso, J. G., et al. 2012. “Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.” ISME J. 6 (8): 1621–1624. https://doi.org/10.1038/ismej.2012.8.
Chen, R., Y. Nie, Y. Hu, R. Miao, T. Utashiro, Q. Li, M. Xu, and Y. Y. Li. 2017. “Fouling behaviour of soluble microbial products and extracellular polymeric substances in a submerged anaerobic membrane bioreactor treating low-strength wastewater at room temperature.” J. Membr. Sci. 531 (1): 1–9. https://doi.org/10.1016/j.memsci.2017.02.046.
Choi, C., M. Kim, E. Yang, and I. S. Kim. 2016. “Effects of aeration on/off times and hydraulic retention times in an intermittently aerated membrane bioreactor.” Desalin. Water Treat. 57 (16): 7574–7581. https://doi.org/10.1080/19443994.2015.1030112.
Chon, D. H., M. N. Rome, Y. M. Kim, K. Y. Park, and C. Park. 2011. “Investigation of the sludge reduction mechanism in the anaerobic side-stream reactor process using several control biological wastewater treatment processes.” Water Res. 45 (18): 6021–6029. https://doi.org/10.1016/j.watres.2011.08.051.
Daims, H., et al. 2015. “Complete nitrification by Nitrospira bacteria.” Nature 528 (7583): 504–509. https://doi.org/10.1038/nature16461.
Deng, L., W. Guo, H. H. Ngo, B. Du, Q. Wei, N. H. Tran, C. N. Nguyen, S. S. Chen, and J. Li. 2016. “Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor.” Bioresour. Technol. 210 (1): 11–17. https://doi.org/10.1016/j.biortech.2016.01.056.
Drews, A. 2010. “Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures.” J. Membr. Sci. 363 (1–2): 1–28. https://doi.org/10.1016/j.memsci.2010.06.046.
Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. “Colorimetric method for determination of sugars and related substances.” Anal. Chem. 28 (3): 350–356. https://doi.org/10.1021/ac60111a017.
Eaton, A., L. Clesceri, and A. Greenberg. 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC: American Public Health Association (APHA).
ElNaker, N. A., A. F. Yousef, and S. W. Hasan. 2018. “Effect of hydraulic retention time on microbial community structure in wastewater treatment electro-bioreactors.” Microbiol. Open e00590. https://doi.org/10.1002/mbo3.590.
Ensano, B. M. B., L. Borea, V. Naddeo, V. Belgiorno, M. D. G. de Luna, and F. C. Ballesteros. 2016. “Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review.” Front. Environ. Sci. 4 (57): 1–15. https://doi.org/10.3389/fenvs.2016.00057.
Fu, Z., F. Yang, Y. An, and Y. Xue. 2009. “Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic/oxic-membrane bioreactor (A/O-MBR).” Biochem. Eng. J. 43 (2): 191–196. https://doi.org/10.1016/j.bej.2008.09.021.
Gao, D., Y. Tao, and R. An. 2012. “Digested sewage treatment using membrane-based process at different hydraulic retention times.” Desalination 286 (1): 187–192. https://doi.org/10.1016/j.desal.2011.11.020.
Ge, S., S. Wang, X. Yang, S. Qiu, B. Li, and Y. Peng. 2015. “Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review.” Chemosphere 140 (1): 85–98. https://doi.org/10.1016/j.chemosphere.2015.02.004.
Giwa, A., S. Daer, I. Ahmed, P. R. Marpu, and S. W. Hasan. 2016. “Experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatment.” J. Water Process Eng. 11 (1): 88–97. https://doi.org/10.1016/j.jwpe.2016.03.011.
Guo, H., Y. Dang, X. Yan, G. Zhang, H. Cao, K. H. Merja, and D. Sun. 2016. “Raising nutrients removal efficiency by improving the internal recycling strategy in an anoxic/oxic-membrane bioreactor package plant.” Desalin. Water Treat. 57 (23): 10815–10825. https://doi.org/10.1080/19443994.2015.1037796.
Hasan, S. W., M. Elektorowicz, and J. A. Oleszkiewicz. 2014. “Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater.” Chemosphere 97 (1): 71–77. https://doi.org/10.1016/j.chemosphere.2013.11.009.
Hu, M., X. Wang, X. Wen, and Y. Xia. 2012. “Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis.” Bioresour. Technol. 117 (1): 72–79. https://doi.org/10.1016/j.biortech.2012.04.061.
Hua, L. C., C. Huang, Y. C. Su, T. N. P. Nguyen, and P. C. Chen. 2015. “Effects of electro-coagulation on fouling mitigation and sludge characteristics in a coagulation-assisted membrane bioreactor.” J. Membr. Sci. 495 (1): 29–36. https://doi.org/10.1016/j.memsci.2015.07.062.
Ibeid, S., M. Elektorowicz, and J. A. Oleszkiewicz. 2011. “Complete removal of total nitrogen (N) and phosphorus (P) in a single membrane electro-bioreactor.” Proc. Water Environ. Fed. 2011 (11): 4864–4873. https://doi.org/10.2175/193864711802765778.
Ibeid, S., M. Elektorowicz, and J. A. Oleszkiewicz. 2013. “Novel electrokinetic approach reduces membrane fouling.” Water Res. 47 (16): 6358–6366. https://doi.org/10.1016/j.watres.2013.08.007.
Iversen, V., H. Koseoglu, N. O. Yigit, A. Drews, M. Kitis, B. Lesjean, and M. Kraume. 2009. “Impacts of membrane flux enhancers on activated sludge respiration and nutrient removal in MBRs.” Water Res. 43 (3): 822–830. https://doi.org/10.1016/j.watres.2008.11.022.
Judd, S. 2011. The MBR book: Principles and applications of membrane bioreactors in water and wastewater treatment. 2nd ed., edited by C. Judd. Oxford, UK: Elsevier.
Katsou, E., T. Alvarino, S. Malamis, S. Suarez, N. Frison, F. Omil, and F. Fatone. 2016. “Effects of selected pharmaceuticals on nitrogen and phosphorus removal bioprocesses.” Chem. Eng. J. 295 (1): 509–517. https://doi.org/10.1016/j.cej.2016.01.012.
Li, Z., P. Lu, D. Zhang, G. Chen, S. Zeng, and Q. He. 2016. “Population balance modeling of activated sludge flocculation: Investigating the influence of extracellular polymeric substances (EPS) content and zeta potential on flocculation dynamics.” Sep. Purif. Technol. 162 (1): 91–100. https://doi.org/10.1016/j.seppur.2016.02.011.
Liao, B. Q., D. G. Allen, I. G. Droppo, G. G. Leppard, and S. N. Liss. 2001. “Surface properties of sludge and their role in bioflocculation and settleability.” Water Res. 35 (2): 339–350. https://doi.org/10.1016/S0043-1354(00)00277-3.
Lin, H., M. Zhang, F. Wang, F. Meng, B. Q. Liao, H. Hong, J. Chen, and W. Gao. 2014. “A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: Characteristics, roles in membrane fouling and control strategies.” J. Membr. Sci. 460 (1): 110–125. https://doi.org/10.1016/j.memsci.2014.02.034.
Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. “Protein measurement with the Folin phenol reagent.” J. Biol. Chem. 193 (1): 265–275.
McIlroy, S. J., R. H. Kirkegaard, B. McIlroy, M. Nierychlo, J. M. Kristensen, S. M. Karst, M. Albersten, and P. H. Nielsen. 2017. “MiDAS 2.0: An ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups.” Database 2017 (1): 1–9. https://doi.org/10.1093/database/bax016.
Meng, F., S. R. Chae, A. Drews, M. Kraume, H. S. Shin, and F. Yang. 2009. “Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material.” Water Res. 43 (6): 1489–1512. https://doi.org/10.1016/j.watres.2008.12.044.
Meng, F., H. Zhang, Y. Li, X. Zhang, and F. Yang. 2005. “Application of fractal permeation model to investigate membrane fouling in membrane bioreactor.” J. Membr. Sci. 262 (1–2): 107–116. https://doi.org/10.1016/j.memsci.2005.04.013.
Metcalf and Eddy. 2003. Wastewater engineering—Treatment and reuse. 4th ed. Boston: McGraw-Hill.
Miao, Y., X. Guo, W. Jiang, X. X. Zhang, and B. Wu. 2017. “Mechanisms of microbial community structure and biofouling shifts under multivalent cations stress in membrane bioreactors.” J. Hazard. Mater. 327 (1): 89–96. https://doi.org/10.1016/j.jhazmat.2016.12.028.
Ramesh, A., D. J. Lee, M. L. Wang, J. P. Hsu, R. S. Juang, K. J. Hwang, J. C. Liu, and S. J. Tseng. 2006. “Biofouling in membrane bioreactor.” Sep. Sci. Technol. 41 (7): 1345–1370. https://doi.org/10.1080/01496390600633782.
Santos, A., W. Ma, and S. J. Judd. 2011. “Membrane bioreactors: Two decades of research and implementation.” Desalination 273 (1): 148–154. https://doi.org/10.1016/j.desal.2010.07.063.
Sato, Y., T. Hori, R. R. Navarro, H. Habe, H. Yanagishita, and A. Ogata. 2016. “Fine-scale monitoring of shifts in microbial community composition after high organic loading in a pilot-scale membrane bioreactor.” J. Biosci. Bioeng. 121 (5): 550–556. https://doi.org/10.1016/j.jbiosc.2015.10.003.
Scholes, E., V. Verheyen, and P. Brook-Carter. 2016. “A review of practical tools for rapid monitoring of membrane bioreactors.” Water Res. 102 (1): 252–262. https://doi.org/10.1016/j.watres.2016.06.031.
Shen, L. G., Q. Lei, J. R. Chen, H. C. Hong, Y. M. He, and H. J. Lin. 2015. “Membrane fouling in a submerged membrane bioreactor: Impacts of floc size.” Chem. Eng. J. 269 (1): 328–334. https://doi.org/10.1016/j.cej.2015.02.002.
Song, K. G., Y. Kim, and K. H. Ahn. 2008. “Effect of coagulant addition on membrane fouling and nutrient removal in a submerged membrane bioreactor.” Desalination 221 (1–3): 467–474. https://doi.org/10.1016/j.desal.2007.01.107.
Szabó, E., R. Liébana, M. Hermansson, O. Modin, F. Persson, and B. M. Wilén. 2017. “Microbial population dynamics and ecosystem functions of anoxic/aerobic granular sludge in sequencing batch reactors operated at different organic loading rates.” Front. Microbiol. 8 (770): 1–14. https://doi.org/10.3389/fmicb.2017.00770.
Tafti, A. D., S. M. Seyyed Mirzaii, M. R. Andalibi, and M. Vossoughi. 2015. “Optimized coupling of an intermittent DC electric field with a membrane bioreactor for enhanced effluent quality and hindered membrane fouling.” Sep. Purif. Technol. 152 (1): 7–13. https://doi.org/10.1016/j.seppur.2015.07.004.
Tansel, B., J. Sager, J. Garland, S. Xu, L. Levine, and P. Bisbee. 2006. “Deposition of extracellular polymeric substances (EPS) and microtopographical changes on membrane surfaces during intermittent filtration conditions.” J. Membr. Sci. 285 (1): 225–231. https://doi.org/10.1016/j.memsci.2006.08.031.
Wang, Y., P.-Y. Qian, B. Methe, D. Lovley, and D. Chandler. 2009. “Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies.” PloS One 4 (10): e7401. https://doi.org/10.1371/journal.pone.0007401.
Wang, Z., X. Mei, Z. Wu, S. Ye, and D. Yang. 2012. “Effects of biopolymer discharge from MBR mixture on sludge characteristics and membrane fouling.” Chem. Eng. J. 193 (1): 77–87. https://doi.org/10.1016/j.cej.2012.04.019.
Wei, V., J. A. Oleszkiewicz, and M. Elektorowicz. 2009. “Nutrient removal in an electrically enhanced membrane bioreactor.” Water Sci. Technol. 60 (12): 3159–3163. https://doi.org/10.2166/wst.2009.625.
Xiao, K., X. Wang, X. Huang, T. D. Waite, and X. Wen. 2011. “Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration.” J. Membr. Sci. 373 (1–2): 140–151. https://doi.org/10.1016/j.memsci.2011.02.041.
Xu, S., D. Wu, and Z. Hu. 2014. “Impact of hydraulic retention time on organic and nutrient removal in a membrane coupled sequencing batch reactor.” Water Res. 55 (1): 12–20. https://doi.org/10.1016/j.watres.2014.01.046.
Zhang, L., C. Zhang, C. Hu, H. Liu, Y. Bai, and J. Qu. 2015. “Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors.” Water Res. 85 (1): 422–431. https://doi.org/10.1016/j.watres.2015.08.055.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 144Issue 11November 2018

History

Received: Dec 21, 2017
Accepted: May 10, 2018
Published online: Aug 24, 2018
Published in print: Nov 1, 2018
Discussion open until: Jan 24, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

André A. Battistelli [email protected]
Ph.D. Student, Dept. of Sanitary and Environmental Engineering, Federal Univ. of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil (corresponding author). Email: [email protected]
Rayra E. Costa [email protected]
Ph.D. Student, Dept. of Sanitary and Environmental Engineering, Federal Univ. of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil. Email: [email protected]
Naiara M. Justino [email protected]
Ph.D. Student, Dept. of Sanitary and Environmental Engineering, Federal Univ. of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil. Email: [email protected]
Daniele D. Silveira, Ph.D. [email protected]
Postdoctoral Researcher, Dept. of Sanitary and Environmental Engineering, Federal Univ. of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil. Email: [email protected]
Maria Ángeles Lobo-Recio, Ph.D. [email protected]
Professor, Dept. of Energy Engineering, Federal Univ. of Santa Catarina, Jardim das Avenidas, Araranguá, SC 88906-072, Brazil. Email: [email protected]
Tiago J. Belli, Ph.D. [email protected]
Professor, Dept. of Sanitary Engineering, State Univ. of Santa Catarina, Ibirama, SC 89140-000, Brazil. Email: [email protected]
Flávio R. Lapolli, Ph.D. [email protected]
Professor, Dept. of Sanitary and Environmental Engineering, Federal Univ. of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share