60th Anniversary State-of-the-Art Reviews
Aug 16, 2016

Reflection on Molecular Approaches Influencing State-of-the-Art Bioremediation Design: Culturing to Microbial Community Fingerprinting to Omics

Publication: Journal of Environmental Engineering
Volume 142, Issue 10

Abstract

Bioremediation is generally viewed as a cost-effective and sustainable technology because it relies on microbes to transform pollutants into benign compounds. Advances in molecular biological analyses allow unprecedented microbial detection and are increasingly incorporated into bioremediation. Throughout history, state-of-the-art techniques have informed bioremediation strategies. However, the insights those techniques provided were not as in depth as those provided by recently developed omics tools. Advances in next-generation sequencing (NGS) have now placed metagenomics and metatranscriptomics within reach of environmental engineers. As NGS costs decrease, metagenomics and metatranscriptomics have become increasingly feasible options to rapidly scan sites for specific degradative functions and identify microorganisms important in pollutant degradation. These omic techniques are capable of revolutionizing biological treatment in environmental engineering by allowing highly sensitive characterization of previously uncultured microorganisms. Omics enables the discovery of novel microorganisms for use in bioaugmentation and supports systematic optimization of biostimulation strategies. This review describes the omics journey from its roots in biology and medicine to its current status in environmental engineering, including potential future directions in commercial application.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by the Duke Superfund Research Program, funded by the National Institute of Environmental Health Sciences project P42-ES010356.

References

Abarenkov, K., et al. (2010). “The UNITE database for molecular identification of fungi—Recent updates and future perspectives.” New Phytol., 186(2), 281–285.
Akyon, B., Stachler, E., Wei, N., and Bibby, K. (2015). “Microbial mats as a biological treatment approach for saline wastewaters: The case of produced water from hydraulic fracturing.” Environ. Sci. Technol., 49(10), 6172–6180.
Alberti, A., et al. (2014). “Comparison of library preparation methods reveals their impact on interpretation of metatranscriptomic data.” BMC Genom., 15, 912.
Al Kharusi, S., Abed, R. M. M., and Dobretsov, S. (2016). “EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils.” Chemosphere, 147, 279–286.
Amann, R. I., Ludwig, W., and Schleifer, K. H. (1995). “Phylogenetic identification and in-situ detection of individual microbial cells without cultivation.” Microbiol. Rev., 59(1), 143–169.
Andreoni, V., et al. (2004). “Bacterial communities and enzyme activities of PAHs polluted soils.” Chemosphere, 57(5), 401–412.
Avery, O. T., MacLeod, C. M., and McCarty, M. (1944). “Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III.” J. Exp. Med., 79(2), 137–158.
Barbi, F. P., et al. (2014). “PCR primers to study the diversity of expressed fungal genes encoding lignocellulolytic enzymes in soils using high-throughput sequencing.” PLoS One, 9(12), e116264.
Beijerinck, M. W. (1888). “Die Bakterien de Papilionaceenknollchen.” Botanische Zeitung, 46, 725–804.
Bernard, R. G., Jack, J. P., and Cheryl, L. P. (2010). Molecular biotechnology: Principles and applications of recombinant DNA, B. R. Glick, J. J. Pasternak, and C. L. Patten, eds., ASM Press, Washington, DC.
Bittinger, K., et al. (2010). “QIIME allows analysis of high-throughput community sequencing data.” Nat. Meth., 7(5), 335–336.
Blankenberg, D., et al. (2001). “Galaxy: A web-based genome analysis tool for experimentalists.” Current protocols in molecular biology, Wiley, Hoboken, NJ.
Bouchez, T., et al. (2000). “Ecological study of a bioaugmentation failure.” Environ. Microbiol., 2(2), 179–190.
Bragg, L., and Tyson, G. (2014). “Metagenomics using next-generation sequencing.” Environ. Microbiol., I. T. Paulsen, and A. J. Holmes, eds., Humana Press, New York City, 183–201.
Cameron, M. D., Timofeevski, S., and Aust, S. D. (2000). “Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics.” Appl. Microbiol. Biotechnol., 54(6), 751–758.
Cardenas, E., et al. (2010). “Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach.” Appl. Environ. Microbiol., 76(20), 6778–6786.
Chariton, A. A., et al. (2014). “A molecular-based approach for examining responses of eukaryotes in microcosms to contaminant-spiked estuarine sediments.” Environ. Toxicol. Chem., 33(2), 359–369.
CLC Genomics Workbench [Computer software]. Qiagen, Redwood City, CA.
Cole, J. R., et al. (2014). “Ribosomal Database Project: Data and tools for high throughput rRNA analysis.” Nucl. Acids Res., 42, D633–D642.
Colombo, M., Cavalca, L., Bernasconi, S., and Andreoni, V. (2011). “Bioremediation of polyaromatic hydrocarbon contaminated soils by native microflora and bioaugmentation with Sphingobium chlorophenolicum strain C3 R: A feasibility study in solid- and slurry-phase microcosms.” Int. Biodeterior. Biodegrad., 65(1), 191–197.
DeSantis, T. Z., et al. (2006). “Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.” Appl. Environ. Microbiol., 72, 5069–5072.
Dhakar, K., Jain, R., Tamta, S., and Pandey, A. (2014). “Prolonged Laccase production by a cold and pH tolerant strain of Penicillium pinophilum (MCC 1049) isolated from a low temperature environment.” Enzyme Res., 2014, 6.
Ding, C., et al. (2015). “Enrichment and characterization of a psychrotolerant consortium degrading crude oil alkanes under methanogenic conditions.” Microbiol. Ecol., 70(2), 433–444.
Dixon, P. (2003). “VEGAN, a package of R functions for community ecology.” J. Veg. Sci., 14(6), 927–930.
Dojka, M. A., Hugenholtz, P., Haack, S. K., and Pace, N. R. (1998). “Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation.” Appl. Environ. Microbiol., 64(10), 3869–3877.
Dore, J., et al. (2015). “Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete Hebeloma cylindrosporum and its involvement in ectomycorrhizal symbiosis.” New Phytol., 208(4), 1169–1187.
Eggen, T. (1999). “Application of fungal substrate from commercial mushroom production—Pleuorotus ostreatus—for bioremediation of creosote contaminated soil.” Int. Biodeterior. Biodegrad., 44(2–3), 117–126.
Eisenstein, M. (2012). “Oxford Nanopore announcement sets sequencing sector abuzz.” Nat. Biotechnol., 30(4), 295–296.
Erdogmus, S. F., Mutlu, B., Korean, S. E., Guven, K., and Konuk, M. (2013). “Aromatic hydrocarbon degradation by halophilic Archaea isolated from Camalti Saltern, Turkey.” Water Air Soil Pollut., 224, 1449.
ESCTP. (2011). “Application of nucleic acid-based tools for monitoring monitored natural attenuation (MNA), biostimulation, and bioaugmentation at chlorinated solvent sites.” Dept. of Defense, Alexandria, VA.
Feng, S., Zhang, X. J., Wang, Q. F., Wan, R., Chen, C., and Xie, S. G. (2012). “Heterogeneity of ammonia-oxidizing community structures in a pilot-scale drinking water biofilter.” Int. Biodeterior. Biodegrad., 70, 148–152.
Festa, S., Coppotelli, B. M., and Morelli, I. S. (2016). “Comparative bioaugmentation with a consortium and a single strain in a phenanthrene-contaminated soil: Impact on the bacterial community and biodegradation.” Appl. Soil Ecol., 98, 8–19.
Fischer, S. G., and Lerman, L. S. (1983). “DNA fragments differing by single base pair substitutions are separated in denaturing gradient gels correspondence with melting theory.” Proc. Natl. Acad. Sci., 80(6), 1579–1583.
Geml, J., et al. (2014). “Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient.” Mol. Ecol., 23(10), 2452–2472.
Galaxy version 16.04 [Computer software]. Galaxy Project, State College, PA.
Glass, E. M., Wilkening, J., Wilke, A., Antonopoulos, D., and Meyer, F. (2010). “Using the Metagenomics RAST Server (MG-RAST) for analyzing shotgun metagenomes.” Cold Spring Harbor Protocols, 2010(1), in press.
Glenn, T. C. (2011). “Field guide to next-generation DNA sequencers.” Mol. Ecol. Res., 11(5), 759–769.
Gonzalez, J. M., Portillo, M. C., Belda-Ferre, P., and Mira, A. (2012). “Amplification by PCR artificially reduces the proportion of the rare biosphere in microbial communities.” PLoS One, 7(1), e29973.
Gramss, G., Voigt, K.-D., and Kirsche, B. (1999). “Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils.” Biodegradation, 10(1), 51–62.
Grant, R. J., Muckian, L. M., Clipson, N. J. W., and Doyle, E. M. (2007). “Microbial community changes during the bioremediation of creosote-contaminated soil.” Lett. Appl. Microbiol., 44(3), 293–300.
Gunde-Cimerman, N., Ramos, J., and Plemenitaš, A. (2009). “Halotolerant and halophilic fungi.” Mycol. Res., 113(11), 1231–1241.
Gunsch, C. K., Kinney, K. A., Szaniszlo, P. J., and Whitman, C. P. (2006). “Quantification of homogentisate-1, 2-dioxygenase expression in a fungus degrading ethylbenzene.” J. Microbiol. Meth., 67(2), 257–265.
Gunsch, C. K., Kinney, K. A., Szaniszlo, P. J., and Whitman, C. P. (2007). “Relative gene expression quantification in a fungal gas-phase biofilter.” Biotechnol. Bioeng., 98(1), 101–111.
Harboe, M. (1973). “Armauer Hansen—The man and his work.” Int. J. Leprosy Mycobacterial Dis. Official Organ Int. Leprosy Assoc., 41(4), 417–424.
He, S., et al. (2010). “Validation of two ribosomal RNA removal methods for microbial metatranscriptomics.” Nat. Meth., 7(10), 807–812.
Hitchens, A. P., and Leikind, M. C. (1939). “The Introduction of Agar-agar into Bacteriology.” J. Bacteriol., 37(5), 485–493.
Illumina. (2016). “An introduction to next-generation sequencing technology.” 1–15.
Jiang, J., Liu, H., Li, Q., Gao, N., Yao, Y., and Xu, H. (2015). “Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.” Ecotoxicol. Environ. Saf., 120, 386–393.
Kato, H., et al. (2015). “Time-series metagenomic analysis reveals robustness of soil microbiome against chemical disturbance.” DNA Res, 22(6), 413–424.
KEGG Orthology [Computer software]. Kanehisa Laboratories, Kyoto, Japan.
Knudsen, B. E., Ellegaard-Jensen, L., Albers, C. N., Rosendahl, S., and Aamand, J. (2013). “Fungal hyphae stimulate bacterial degradation of 2, 6-dichlorobenzamide (BAM).” Environ. Pollut., 181, 122–127.
Koch, R. (1876). “Untersuchungen ueber Bakterien V. Die Aetiologie der Milzbrand-Krankheit, begruendent auf die entwicklungsgeschichte des Bacillus Anthracis.” Beitr. z. Biol. D. Pflanzen, 2(2), 277–310.
Konopka, A., and Wilkins, M. J. (2012). “Application of meta-transcriptomics and -proteomics to analysis of in situ physiological state.” Front. Microbiol., 3, 9.
Lade, H. S., Waghmode, T. R., Kadam, A. A., and Govindwar, S. P. (2012). “Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium.” Int. Biodeterior. Biodegrad., 72, 94–107.
Lander, E. S., et al. (2001). “Initial sequencing and analysis of the human genome.” Nature, 409(6822), 860–921.
Laveran, A. (1880). “A new parasite found in the blood of malarial patients: Parasitic origin of malarial attacks.” Bull. Mem. Soc. Med. Hosp. Paris, 17, 158–164.
Ledeker, B. M., and De Long, S. K. (2013). “The effect of multiple primer-template mismatches on quantitative PCR accuracy and development of a multi-primer set assay for accurate quantification of pcrA gene sequence variants.” J. Microbiol. Meth., 94(3), 224–231.
Leitao, A. L., et al. (2011). “Penicillium chrysogenum var. halophenolicum, a new halotolerant strain with potential in the remediation of aromatic compounds in high salt environments.” Microbiol. Res, 167(2), 79–89.
Leys, N., Ryngaert, A., Bastiaens, L., Verstraete, W., Top, E. M., and Springael, D. (2004). “Occurrence and phylogenetic diversity of Sphingomonas strains in soils contaminated with polycyclic aromatic hydrocarbons.” Appl. Environ. Microbiol., 70(4), 1944–1955.
Lindahl, B. D., et al. (2013). “Fungal community analysis by high-throughput sequencing of amplified markers—A user’s guide.” New Phytol., 199(1), 288–299.
Lister, J. (1878). “On the lactic fermentation and its bearings on pathology.” Trans. Pathol. Soc. Lond., 29, 425–467.
Liu, W. T., Marsh, T. L., Cheng, H., and Forney, L. J. (1997). “Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA.” Appl. Environ. Microbiol., 63(11), 4516–4522.
Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D., and Dangl, J. L. (2013). “Practical innovations for high-throughput amplicon sequencing.” Nat. Meth., 10(10), 999–1002.
Luo, F., et al. (2014). “Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation.” Appl. Environ. Microbiol., 80(14), 4095–4107.
MacNaughton, S. J., Stephen, J. R., Venosa, A. D., Davis, G. A., Chang, Y. J., and White, D. C. (1999). “Microbial population changes during bioremediation of an experimental oil spill.” Appl. Environ. Microbiol., 65(8), 3566–3574.
Mancera-Lopez, M. E., Esparza-Garcíaa, F., Chavez-Gomez, B., Rodriguez-Vasquez, R., Saucedo-Castaneda, G., and Barrera-Cortes, J. (2008). “Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi.” Int. Biodeterior. Biodegrad., 61(2), 151–160.
McKew, B. A., et al. (2007a). “Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria.” Environ. Microbiol., 9(6), 1562–1571.
McKew, B. A., Coulon, F., Osborn, A. M., Timmis, K. N., and McGenity, T. J. (2007b). “Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, U.K.” Environ. Microbiol., 9(1), 165–176.
MG-RAST version 3.2 [Computer software]. Argonne National Laboratory, Argonne, IL.
Mikheyev, A. S., and Tin, M. M. Y. (2014). “A first look at the Oxford Nanopore MinION sequencer.” Mol. Ecol. Resour., 14(6), 1097–1102.
Mills, D. K., Fitzgerald, K., Litchfield, C. D., and Gillevet, P. M. (2003). “A comparison of DNA profiling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils.” J. Microbiol. Meth., 54(1), 57–74.
MOTHUR version 1.37.6 [Computer software]. GitHub, San Francisco.
Muller, O. (1933). Uber die O2-Kapazitat des Blutes gesunder und kranker Pferde und Rinder nebst Berucksichtigung weiterer Blutkonstanten, Universitat Zurich, Zurich, Switzerland.
Muyzer, G., Dewaal, E. C., and Uitterlinden, A. G. (1993). “Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA.” Appl. Environ. Microbiol., 59(3), 695–700.
Myers, R. M., Fischer, S. G., Maniatis, T., and Lerman, L. S. (1985). “Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis.” Nucleic Acids Res., 13(9), 3111–3129.
Myllykangas, S., Buenrostro, J., and Ji, H. P. (2012). Overview of sequencing technology platforms, Springer, New York.
North, N. N., Dollhopf, S. L., Petrie, L., Istok, J. D., Balkwill, D. L., and Kostka, J. E. (2004). “Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate.” Appl. Environ. Microbiol., 70(8), 4911–4920.
Olsen, G. J., et al. (1992). “The ribosomal database project.” Nucleic Acids Res., 20, 2199–2200.
Pasteur, L. (1861). “Animalcules infusoires vivant sans gaz oxygene libre et determinant des fermentations.” Compt. Rend. Acad. Sci. (Paris), 52, 344–347.
Pettersson, E., Lundeberg, J., and Ahmadian, A. (2009). “Generations of sequencing technologies.” Genomics, 93(2), 105–111.
Potin, O., Veignie, E., and Rafin, C. (2004). “Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil.” FEMS Microbiol. Ecol., 51(1), 71–78.
Qasemian, L., Billette, C., Guiral, D., Alazard, E., Moinard, M., and Farnet, A.-M. (2012). “Halotolerant laccases from Chaetomium sp., Xylogone sphaerospora, and Coprinopsis sp. isolated from a Mediterranean coastal area.” Fungal Biol., 116(10), 1090–1098.
QIIME version 1.9 [Computer software]. QIIME Development Team, Boulder, CO.
Quail, M. A., et al. (2012). “A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers.” BMC Genom., 13, 341.
Quast, C., et al. (2013). “The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools.” Nucl. Acids Res., 41(D1), D590–D596.
Rafin, C., de Foucault, B., and Veignie, E. (2013). “Exploring micromycetes biodiversity for screening benzo[a]pyrene degrading potential.” Environ. Sci. Pollut. Res. Int., 20(5), 3280–3289.
Ravelet, C., Krivobok, S., Sage, L., and Steiman, R. (2000). “Biodegradation of pyrene by sediment fungi.” Chemosphere, 40(5), 557–563.
Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., and Löffler, F. E. (2006). “Quantitative PCR targeting 16 S rRNA and reductive Dehalogenase genes simultaneously monitors multiple Dehalococcoides strains.” Appl. Environ. Microbiol., 72(4), 2765–2774.
Roling, W. F. M., et al. (2002). “Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation.” Appl. Environ. Microbiol., 68(11), 5537–5548.
Rothberg, J. M., et al. (2011). “An integrated semiconductor device enabling non-optical genome sequencing.” Nature, 475(7356), 348–352.
Salipante, S. J., et al. (2014). “Performance comparison of Illumina and Ion Torrent next-generation sequencing platforms for 16 S rRNA-based bacterial community profiling.” Appl. Environ. Microbiol., 80(24), 7583–7591.
Sanford, R. A., et al. (2007). “Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields.” Environ. Microbiol., 9(11), 2885–2893.
Sanger, F., Nicklen, S., and Coulson, A. R. (1977). “DNA sequencing with chain-terminating inhibitors.” Proc. Natl. Acad. Sci., 74(12), 5463–5467.
Schamfuß, S., Neu, T. R., van der Meer, J. R., Tecon, R., Harms, H., and Wick, L. Y. (2013). “Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria.” Environ. Sci. Technol., 47(13), 6908–6915.
Schloesing, J., and Muntz, A. (1877). “Sur la Nitrification par les Ferments Organises.” Comptes Rendus de l’Academie des Sciences, Paris, 301–303.
Schloss, P. D., et al. (2009). “Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities.” Appl. Environ. Microbiol., 75(23), 7537–7541.
Shendure, J., and Ji, H. (2008). “Next-generation DNA sequencing.” Nat. Biotech., 26(10), 1135–1145.
Sheppard, P. J., et al. (2014). “The application of a carrier-based bioremediation strategy for marine oil spills.” Marine Pollut. Bull., 84(1–2), 339–346.
Snoeyenbos-West, O. L., Nevin, K. P., Anderson, R. T., and Lovley, D. R. (2000). “Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments.” Microbiol. Ecol., 39(2), 153–167.
Stephenson, D., and Stephenson, T. (1992). “Bioaugmentation for enhancing biological wastewater treatment.” Biotechnol. Adv., 10(4), 549–559.
Stevens, N. C. A. (1989). “The application of bioaugmentation to waste water treatment.” Int. Biodeterior., 25(1–3), 87–95.
Suenaga, H., et al. (2009). “Novel organization of aromatic degradation pathway genes in a microbial community as revealed by metagenomic analysis.” ISME J., 3(12), 1335–1348.
Sutton, N., et al. (2014). “Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.” Appl. Microbiol. Biotechnol., 98(6), 2751–2764.
Torrento, C., Urmeneta, J., Otero, N., Soler, A., Vinas, M., and Cama, J. (2011). “Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite.” Chem. Geol., 287(1–2), 90–101.
U.S. EPA. (2013). “Superfund remedy report.” Washington, DC.
van Herwijnen, R., et al. (2006). “Effect of bioaugmentation and supplementary carbon sources on degradation of polycyclic aromatic hydrocarbons by a soil-derived culture.” Fems Microbiol. Ecol., 55(1), 122–135.
Venter, J. C., et al. (2004). “Environmental genome shotgun sequencing of the Sargasso Sea.” Science, 304(5667), 66–74.
Vishnivetskaya, T. A., et al. (2010). “Microbial community changes in response to ethanol or methanol amendments for U(VI) reduction.” Appl. Environ. Microbiol., 76(17), 5728–5735.
Vogel, T. M., Criddle, C. S., and McCarty, P. L. (1987). “Transformations of halogenated aliphatic-compounds.” Environ. Sci. Technol., 21(8), 722–736.
Wang, C., Liu, H., Li, J., and Sun, H. (2014). “Degradation of PAHs in soil by Lasiodiplodia theobromae and enhanced benzo[a]pyrene degradation by the addition of Tween-80.” Environ. Sci. Pollut. Res., 21(18), 10614–10625.
Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). “Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.” Appl. Environ. Microbiol., 73(16), 5261–5267.
Wang, Q. F., Xie, S. G., and Hu, R. (2013). “Bioaugmentation with Arthrobacter sp strain DAT1 for remediation of heavily atrazine-contaminated soil.” Int. Biodeterior. Biodegrad., 77, 63–67.
Wang, S., Nomura, N., Nakajima, T., and Uchiyama, H. (2012). “Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation.” J. Biosci. Bioeng., 113(5), 624–630.
Warmink, J. A., Nazir, R., Corten, B., and van Elsas, J. D. (2011). “Hitchhikers on the fungal highway: The helper effect for bacterial migration via fungal hyphae.” Soil Biol. Biochem., 43(4), 760–765.
Web of Science. (2016). “Web of science—Please sign in to access Web of Science, Thomson Reuters.” 〈http://apps.webofknowledge.com/〉 (Jul. 14, 2016).
Wick, L. Y., et al. (2006). “Effect of fungal hyphae on the access of bacteria to phenanthrene in soil.” Environ. Sci. Technol., 41(2), 500–505.
Williams, K. H., et al. (2011). “Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater.” Geomicrobiol. J., 28(5-6), 519–539.
Wolinsky, H. (2007). “The thousand-dollar genome: Genetic brinkmanship or personalized medicine?” EMBO Rep., 8(10), 900–903.
Ye, J.-S., et al. (2011). “Biodegradation of anthracene by Aspergillus fumigatus.” J. Hazard. Mater., 185(1), 174–181.
Yilmaz, P., et al. (2013). “The SILVA and “all-species living tree project (LTP)” taxonomic frameworks.” Nucleic Acids Res, 42(D1), D643–D648.
Yu, Y. L., Wang, X., Luo, Y. M., Yang, J. F., Yu, J. Q., and Fan, D. F. (2005). “Fungal degradation of metsulfuron-methyl in pure cultures and soil.” Chemosphere, 60(4), 460–466.
Zafra, G., Moreno-Montaño, A., Absalón, Á., and Cortés-Espinosa, D. (2015). “Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum.” Environ. Sci. Pollut. Res., 22(2), 1034–1042.
Zhao, X.-H., Wang, W., and Wei, D.-Z. (2013). “Identification of Petriella setifera LH and characterization of its crude carboxymethyl cellulase for application in denim biostoning.” J. Microbiol., 51(1), 82–87.
Zhuang, K., Ma, E., Lovley, D. R., and Mahadevan, R. (2012). “The design of long-term effective uranium bioremediation strategy using a community metabolic model.” Biotechnol. Bioeng., 109(10), 2475–2483.
Zhuang, W.-Q., et al. (2014). “Incomplete Wood-Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi.” Proc. Natl. Acad. Sci., 111(17), 6419–6424.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 142Issue 10October 2016

History

Received: Oct 16, 2015
Accepted: Mar 31, 2016
Published online: Aug 16, 2016
Published in print: Oct 1, 2016
Discussion open until: Jan 16, 2017

Permissions

Request permissions for this article.

Authors

Affiliations

Lauren M. Czaplicki
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Duke Univ., Durham, NC 27708-0287.
Claudia K. Gunsch, Ph.D., A.M.ASCE [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Duke Univ., Durham, NC 27708-0287 (corresponding author). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share