TECHNICAL PAPERS
Apr 7, 2010

Laboratory-Scale Flotation Process for Treatment of Soils Contaminated with Both PAH and Lead

Publication: Journal of Environmental Engineering
Volume 136, Issue 10

Abstract

A soil decontaminating process has been studied at laboratory scale for the treatment of one soil polluted by both polycyclic aromatic hydrocarbons (PAHs) and lead (Pb). This process first includes attrition and sieving steps to separate the coarse (>2mm) from the fine (<2mm) fractions, followed by a flotation step using an amphoteric surfactant in acid and saline conditions for the treatment of the fine contaminated particles. Electrodeposition and chemical precipitation using sodium hydroxide have been compared to ensure a possible reuse of wastewaters without disturbing the efficiency of the process. The performance of the process has been estimated considering soil quality after treatment with respect to the limit regulatory levels for commercial or industrial use in Quebec (Canada). Precipitation of lead hydroxides was efficient after five cycles of wastewaters reuse, while electrodeposition did not maintain efficiency of the flotation step with regard to PAH levels in soil after treatment. The complete process including Pb precipitation ensured the removal of 89±8 and 76±10% of total PAH, respectively, for the coarse (>2mm) and fine (<2mm) fractions, while Pb was removed at 88±10 and 65±2% , respectively, for the same fractions of the soil.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This project was funded by the FQRNT and the Montreal Center for Brownfield Rehabilitation.

References

Abramov, A. A., and Forssberg, K. S. E. (2005). “Chemistry and optimal conditions for copper minerals flotation: Theory and practice.” Miner. Process. Extr. Metall. Rev., 26, 77–143.
American Public Health Association (APHA). (1999). Standards Methods for Examination of Water and Wastewaters, 20th Ed., American Public Health Association, Washington, D.C.
Blais, J. F., Dufresne, S., and Mercier, G. (1999). “État du développement technologique en matière d'enlèvement des métaux des effluents industriels.” Revue des Sciences de l'Eau, 12, 687–711.
Blais, J. F., Mercier, G., and Chartier, M. (2001). “Décontamination à l'échelle pilote de sédiments pollués en métaux toxiques par lixiviation chimique et biologique.” Can. J. Chem. Eng., 79, 931–940.
Bouchard, S. (2001). Traitement du minerai, Le Griffon d’Argile, Québec, Canada, 373.
Couillard, D., and Mercier, G. (1992). “Précipitations sélectives des métaux solubilisés biologiquement de boues aérobies d'épuration.” Can. J. Chem. Eng., 70, 1021–1029.
Dermont, G., Bergeron, M., Mercier, G., and Laflèche, M. (2008a). “Metal-contaminated soils: Remediation practices and treatment technologies.” Pract. Period. Hazard. Toxic Radioact. Waste Manage., 12(3), 188–209.
Dermont, G., Bergeron, M., Mercier, G., and Richer-Laflèche, M. (2008b). “Soil washing for metal removal: A review of physical/chemical technologies and field applications.” J. Hazard. Mater., 152, 1–31.
Di Palma, L., and Ferrantelli, P. (2005). “Copper leaching from a sandy soil: Mechanism and parameters affecting EDTA extraction.” J. Hazard. Mater., 122, 85–90.
Di Palma, L., Ferrantelli, P., Merli, C., and Biancifiori, F. (2003). “Recovery of EDTA and metal precipitation from soil flushing solutions.” J. Hazard. Mater., 103, 153–168.
Djedidi, Z., Drogui, P., Cheikh, R. B., Mercier, G., and Blais, J. F. (2005). “Laboratory study of successive soil saline leaching and electrochemical lead recovery.” J. Environ. Eng., 131(2), 305–314.
Drogui, P., Blais, J. F., and Mercier, G. (2007). “Review of electrochemical technologies for environmental applications.” Recent Patents Eng., 1, 257–272.
Edwards, D. A., Luthy, R. G., and Liu, Z. B. (1991). “Solubilization of polycyclic aromatic-hydrocarbons in micellar nonionic surfactant solutions.” Environ. Sci. Technol., 25, 127–133.
Flotron, V., Delteil, C., Padellec, Y., and Camel, V. (2005). “Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process.” Chemosphere, 59, 1427–1437.
Grasso, D., Butkus, M. A., O’sullivan, D., and Nikolaidis, N. P. (1997). “Soil-washing design methodology for a lead-contaminated sandy soil.” Water Res., 31, 3045–3056.
Guha, S., and Jaffe, P. R. (1996). “Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants.” Environ. Sci. Technol., 30, 605–611.
Guha, S., Jaffe, P. R., and Peters, C. A. (1998). “Solubilization of PAH mixtures by a nonionic surfactant.” Environ. Sci. Technol., 32, 930–935.
Huang, H. L., and Lee, W. M. G. (2001). “Enhanced naphthalene solubility in the presence of sodium dodecyl sulfate: Effect of critical micelle concentration.” Chemosphere, 44, 963–972.
Iturbe, R., Torres, L. G., Flores, C. R., and Chávez, C. (2003). “Remediation of TPH/PAHs contaminated soil using soil washing.” Tenth Annual Int. Petroleum Environmental Conf., Integrated Petroleum Environmental Consortium (IPEC), The Univ. of Tulsa, Tulsa, Okla.
Jonsson, S., Persson, Y., Frankki, S., Lundstedt, S., Van Bavel, B., Haglund, P., and Tysklind, M. (2006). “Comparison of Fenton's reagent and ozone oxidation of polycyclic aromatic hydrocarbons in aged contaminated soils.” J. Soils Sediments, 6, 208–214.
Khodadoust, A. P., Bagchi, R., Suidan, M. T., Brenner, R. C., and Sellers, N. G. (2000). “Removal of PAHs from highly contaminated soils found at prior manufactured gas operations.” J. Hazard. Mater., 80, 159–174.
Khodadoust, A. P., Reddy, K. R., and Maturi, K. (2005). “Effect of different extraction agents on metal and organic contaminant removal from a field soil.” J. Hazard. Mater., 117, 15–24.
Lafrance, P., and Lapointe, M. (1998). “Mobilization and co-transport of pyrene in the presence of Pseudomonas aeruginosa UG2 biosurfactant in a sandy soil columns.” Ground Water Monit. Rev., 18, 139–147.
Lim, T. T., Chui, P. C., and Goh, K. H. (2005). “Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil.” Chemosphere, 58, 1031–1040.
Lippmann, M. (2000). Environmental toxicants: Human exposures and their health effects, Wiley, New York.
Mann, M. J. (1999). “Full-scale and pilot-scale soil washing.” J. Hazard. Mater., 66, 119–136.
MDDEPQ. (2001). “Méthode d'analyse: Détermination des HAP, extraction au dichlorométhane: Dosage par GC-MS.” Rep. No. MA. 403-HAP 4.1, Centre d’Expertise en Analyse Environnementale, Québec, Canada.
MDDEPQ. (2006). “Méthode d’analyse: Détermination des BPC, des chlorobenzènes et des HAP: Extraction et purification sur phase solide (SPE) et dosage par GC-MS.” Rep. No. MA. 400-SPE-BPC/Clbz/HAP 1.0, Centre d’Expertise en Analyse Environnementale, Québec, Canada.
Mercier, G., Duchesne, J., and Blackburn, D. (2002). “Removal of metals from contaminated soils by mineral processing techniques followed by chemical leaching.” Water, Air, Soil Pollut., 135, 105–130.
Meunier, N., Drogui, P., Montané, C., Hausier, R., Mercier, G., and Blais, J. F. (2006). “Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate.” J. Hazard. Mater., 137, 581–590.
Ministère du Développement Durable de l’Environnement et des Parcs du Québec (MDDEP). (2002). Bilan sur les terrains contaminés/Statistiques générales en décembre 2001, Gouvernement du Québec, Québec, Canada.
Ministère du Développement Durable de l’Environnement et des Parcs du Québec (MDDEP). (2009) Politique de protection des sols et de réhabilitation des terrains contaminés, Gouvernement du Québec, Québec, Canada.
Mouton, J., Mercier, G., and Blais, J. F. (2009a). “Amphoteric surfactants for PAH and lead polluted-soil treatment using flotation.” Water, Air, Soil Pollut., 197, 381–393.
Mouton, J., Mercier, G., Blais, J. F., and Drogui, P. (2009b). “Experimental assessment of an innovative process for simultaneous PAHs and Pb removal from polluted soils.” Sci. Total Environ., 407, 5402–5410.
Mulligan, C. N., Yong, R. N., and Gibbs, B. F. (2001a). “Remediation technologies for metal-contaminated soils and groundwater: An evaluation.” Eng. Geol. (Amsterdam), 60, 193–207.
Mulligan, C. N., Yong, R. N., and Gibbs, B. F. (2001b). “Surfactant-enhanced remediation of contaminated soil: A review.” Eng. Geol. (Amsterdam), 60, 371–380.
Mulligan, C. N., Yong, R. N., Gibbs, B. F., James, S., and Bennett, H. P. J. (1999). “Metal removal from contaminated soil and sediments by the biosurfactant surfactin.” Environ. Sci. Technol., 33, 3812–3820.
Neale, C. N., Bricka, R. M., and Chao, A. C. (1997). “Evaluating acids and chelating agents for removing heavy metals from contaminated soils.” Environ. Prog., 16, 274–280.
Peters, R. W. (1999). “Chelant extraction of heavy metals from contaminated soils.” J. Hazard. Mater., 66, 151–210.
Ron, E. Z., and Rosenberg, E. (2002). “Biosurfactant and oil bioremediation.” Curr. Opin. Biotechnol., 13, 249–252.
Semer, R., and Reddy, K. R. (1996). “Evaluation of soil washing process to remove mixed contaminants from a sandy loam.” J. Hazard. Mater., 45–57.
Szpyrkowicz, L., Radaelli, M., Bertini, S., Daniele, S., and Casarin, F. (2007). “Simultaneous removal of metals and organic compounds from a heavily polluted soil.” Electrochim. Acta, 52, 3386–3392.
Tomo, K., Toshimitsu, H., Noriaki, K., Takeshi, K., Hideki, K., and Yuji, I. (2007). “Chelating extraction for removal of chromium, copper, and arsenic from treated wood with bioxalate.” Environ. Eng. Sci., 24, 1026–1037.
USEPA. (2004). “Treatment technologies for site clean-up: Annual status report.” Rep. No. EPA-542-R-03-009, U.S. Environmental Protection Agency, Cincinnati.
Van Deuren, J., Lloyd, T., Chhetry, S., Liou, R., and Peck, J. (2010). “Remediation technologies screening matrix and reference guide-version 4.0.” ⟨http://www.frtr.gov/matrix2/section4/4-19.html⟩ (July 13, 2010).
Vanthuyne, M., Maes, A., and Cauwenberg, P. (2003). “The use of flotation techniques in the remediation of heavy metal contaminated sediments and soils: an overview of controlling factors.” Min. Eng., 16, 1131–1141.
Vik, E. A., and Bardos, P. (2002). Remediation of contaminated land—Technology implementation in Europe, Umweltbundesamt—Federal Environment Agency, Clarinet—The Contaminated Land Rehabilitation Network for Environmental Technologies in Europe, Vienna, Austria.
Yeom, I. T., Ghosh, M. M., Cox, C. D., and Robinson, K. G. (1995). “Micellar solubilization of polynuclear aromatic-hydrocarbons in coal tar-contaminated soils.” Environ. Sci. Technol., 29, 3015–3021.
Zhang, L., Somasundaran, P., Osokov, P., and Chou, C. (2001). “Flotation of hydrophobic contaminants from soil.” Colloids Surf., A, 177, 235–246.
Zhang, W., Tsang, D. C. W., and Lo, I. M. C. (2007). “Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing.” Chemosphere, 66, 2025–2034.
Zhao, B. W., Zhu, L. Z., and Gao, Y. Z. (2005a). “A novel solubilization of phenanthrene using Winsor I microemulsion-based sodium castor oil sulfate.” J. Hazard. Mater., 119, 205–211.
Zhao, B. W., Zhu, L. Z., Li, W., and Chen, B. L. (2005b). “Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions.” Chemosphere, 58, 33–40.
Zhou, W. J., and Zhu, L. Z. (2005). “Solubilization of polycyclic aromatic hydrocarbons by anionic-nonionic mixed surfactant.” Colloids Surf., A, 255, 145–152.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 136Issue 10October 2010
Pages: 1063 - 1074

History

Received: Jul 14, 2009
Accepted: Apr 1, 2010
Published online: Apr 7, 2010
Published in print: Oct 2010

Permissions

Request permissions for this article.

Authors

Affiliations

Julia Mouton [email protected]
Ph.D. Student, Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement), Univ. du Québec, 490 rue de la Couronne, Québec QC, Canada G1K 9A9. E-mail: [email protected]
Guy Mercier [email protected]
Professor, Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement), Univ. du Québec, 490 rue de la Couronne, Québec QC, Canada G1K 9A9. E-mail: [email protected]
Jean-François Blais, M.ASCE [email protected]
Professor, Institut National de la Recherche Scientifique (Centre Eau, Terre et Environnement), Univ. du Québec, 490 rue de la Couronne, Québec QC, Canada G1K 9A9 (corresponding author). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share