TECHNICAL PAPERS
Feb 20, 2009

CFD Modeling of Solid Separation in Three Combined Sewer Overflow Chambers

Publication: Journal of Environmental Engineering
Volume 135, Issue 9

Abstract

The knowledge of solid behavior in combined sewer overflow (CSO) chambers is a great challenge for the protection of receiving watercourses. Moreover, great attention must be given to the occurrence of deposits on the bed of the chamber because they may lead to operation problems. In this paper, we investigate the capability of a particle tracking approach to determine the solid separation in CSO chambers. This is done by comparing simulations and experimental data collected in three small-scale models, as reported by Kehrwiller 1995. The trap, reflect, and bed shear stress (BSS) boundary conditions are compared. We propose to use the Shields relationship for evaluating the critical BSS. Finally, we propose a methodology for predicting the solid separation in CSO chambers using computational fluid dynamics.

Get full access to this article

View all available purchase options and get full access to this article.

References

Adamsson, Å., Bergdahl, L., and Lyngfelt, S. (2005). “Measurement and three-dimensional simulation of flow in a rectangular detention tank.” Urban Water, 2(4), 277–287.
Adamsson, Å., Stovin, V. R., and Saul, A. J. (2003). “Bed shear stress boundary condition for storage tank sedimentation.” J. Environ. Eng., 129(7), 651–658.
Ashley, R. M., Bertrand-Krajewski, J. L., Hvited-Jacobsen, T., and Verbanck, M. (2004). Solids in sewers: Characteristics, effects and control of sewer solids and associated pollutants, IWA, London.
Bayazit, M. (1972). “Random walk model for motion of a solid particle in turbulent open-channel flow.” J. Hydraul. Res., 10(1), 1–13.
Coimbra, C. F. M., Shirolkar, J. S., and Queiroz McQuay, M. (1998). “Modeling particle dispersion in a turbulent, multiphase mixing layer.” J. Wind. Eng. Ind. Aerodyn., 73, 79–97.
Dewals, B. J., Kantoush, S. A., Erpicum, S., Pirotton, M., and Schleiss, A. J. (2008). “Experimental and numerical analysis of flow instabilities in rectangular shallow basins.” Environ. Fluid Mech., 8, 31–54.
Dufresne, M., Vazquez, J., Terfous, A., Ghenaim, A., and Poulet, J.-B. (2009). “Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank.” Comput. Fluids, 38(5), 1042–1049.
Fluent, user’s guide. (2002). Fluent Inc., Lebanon.
Hargreaves, D. M., Morvan, H. P., and Wright, N. G. (2007). “Validation of the volume of fluid method for free surface calculation: The broad-crested weir.” Eng. Appl. Comput. Fluid Mech., 1(2), 136–146.
Harwood, R., and Saul, A. J. (2001). “Modelling the performance of combined sewer overflow chambers.” J. Inst. Water Environ. Manage, 15(4), 300–304.
Hirt, C. W., and Nichols, B. D. (1981). “Volume of fluid (VOF) method for the dynamics of free boundaries.” J. Comput. Phys., 39, 201–225.
Jayanti, S., and Narayanan, S. (2004). “Computational study of particle-eddy interaction in sedimentation tanks.” J. Environ. Eng., 130(1), 37–49.
Kang, H., and Choi, S. (2006). “Turbulence modeling of compound open-channel flows with and without vegetation on the floodplain using the Reynolds stress model.” Adv. Water Resour., 29, 1650–1664.
Kantoush, S. (2007). “Symmetric or asymmetric flow patterns in shallow rectangular basins with sediment transport.” Proc., 32nd Congress of IAHR: Harmonizing the Demands of Art and Nature in Hydraulics, IAHR, Venice.
Kehrwiller, J. M. (1995). Etude comparative de l’efficacité des déversoirs d’orage, Rep. Prepared for Ecole Nationale du Génie de l’Eau et de l’Environnement de Strasbourg, Strasbourg, France (in French).
Lee, S. O., Sturm, T. W., Cho, Y. S., and Lee, J. W. (2007). “Experimental and numerical analysis of the turbulent flow through an oil-grit separator.” Proc., 32nd Congress of IAHR: Harmonizing the Demands of Art and Nature in Hydraulics, International Association of Hydraulic Engineering and Research (IAHR), Venice, Italy.
Lipeme-Kouyi, G. (2004). “Expérimentations et modélisations tridimensionnelles de l’hydrodynamique et de la séparation particulaire des déversoirs d’orage.” Ph.D. thesis, Université Louis Pasteur de Strasbourg, Strasbourg, France (in French).
Lipeme-Kouyi, G., Vazquez, J., and Poulet, J. B. (2003). “3D free surface measurement and numerical modelling of flows in storm overflows.” Flow Meas. Instrum., 14, 79–87.
Luyckx, G., Vaes, G., and Berlamont, J. (1999). “Experimental investigation on the efficiency of a high side weir overflow.” Water Sci. Technol., 39(2), 61–68.
Morsi, S. A., and Alexander, A. J. (1972). “An investigation of particle trajectories in two-phase flow systems.” J. Fluid Mech., 55(2), 193–208.
Narasimha, M., Brennan, M., and Holtham, P. N. (2007). “A review of CFD modelling for performance predictions of hydrocyclones.” Eng. Appl. of Computat. Fluid Mech., 1(2), 109–125.
Pollert, J., and Stránský, D. (2003). “Combination of computational techniques—Evaluation of CSO efficiency for suspended solids separation.” Water Sci. Technol., 47(4), 157–166.
Quarini, G., Innes, H., Smith, M., and Wise, D. (1996). “Hydrodynamic modelling of sedimentation tanks.” Proc., Inst. Mech. Eng., Part E. J. Process Mech. Eng., 210(2), 83–91.
Stovin, V. R., and Saul, A. J. (1994). “Sedimentation in storage tank structures.” Water Sci. Technol., 29(1–2), 363–372.
Stovin, V. R., and Saul, A. J. (1996). “Efficiency prediction for storage chambers using computational fluid dynamics.” Water Sci. Technol., 33(9), 163–170.
Stovin, V. R., and Saul, A. J. (1998). “A computational fluid dynamics (CFD) particle tracking approach to efficiency prediction.” Water Sci. Technol., 37(1), 285–293.
Tyack, J. N., and Fenner, R. A. (1999). “Computational fluid dynamics modelling of velocity profiles within a hydrodynamic separator.” Water Sci. Technol., 39(9), 169–176.
Vanoni, A. V. (1975). Sedimentation engineering, ASCE, Reston, Va.
Versteeg, H. K., and Malalasekera, W. (1995). An introduction to computational fluid dynamics—The finite volume method, Prentice-Hall, England, U.K.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 135Issue 9September 2009
Pages: 776 - 787

History

Received: Feb 7, 2008
Accepted: Oct 4, 2008
Published online: Feb 20, 2009
Published in print: Sep 2009

Permissions

Request permissions for this article.

Authors

Affiliations

Matthieu Dufresne [email protected]
Ph.D. Candidate, Laboratoire du Génie de la Conception, Institut National des Sciences Appliquées de Strasbourg, 24 Blvd. de la Victoire, 67084 Strasbourg Cedex, France. E-mail: [email protected]
José Vazquez
Lecturer, Systèmes Hydrauliques Urbains, Ecole Nationale du Génie de l’Eau et de l’Environnement de Strasbourg, 1 quai Koch, BP 61039, 67070 Strasbourg Cedex, France.
Abdelali Terfous
Lecturer, Laboratoire du Génie de la Conception, Institut National des Sciences Appliquées de Strasbourg, 24 Boulevard de la Victoire, 67084 Strasbourg Cedex, France.
Abdellah Ghenaim
Professor, Laboratoire du Génie de la Conception, Institut National des Sciences Appliquées de Strasbourg, 24 Boulevard de la Victoire, 67084 Strasbourg Cedex, France.
Jean-Bernard Poulet
Professor, Laboratoire du Génie de la Conception, Institut National des Sciences Appliquées de Strasbourg, 24 Boulevard de la Victoire, 67084 Strasbourg Cedex, France.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share