Case Studies
Jul 18, 2018

Long-Term Thermal Effects of Air Convection Embankments in Permafrost Zones: Case Study of the Qinghai–Tibet Railway, China

Publication: Journal of Cold Regions Engineering
Volume 32, Issue 4

Abstract

Long-term thermal effects of air convection embankments (ACEs) over 550-km-long permafrost zones along the Qinghai–Tibet railway were analyzed on the basis of 14-year records (2002–2016) of ground temperature. The results showed that, after embankment construction, permafrost tables beneath the ACEs moved upward quickly in the first 3 years and then remained stable over the next 10 years. The magnitude of this upward movement showed a positive correlation with embankment thickness. Shallow permafrost temperature beneath the ACEs decreased over a 5-year period after embankment construction in cold permafrost zones, but increased sharply concurrent with permafrost table upward movement in warm permafrost zones. Deep permafrost beneath all the ACEs showed a slow warming trend due to climate warming. Overall, the thermal effects of ACEs significantly uplifted underlying permafrost tables after embankment construction and then maintained them well in a warming climate. The different thermal effects of ACEs in cold and warm permafrost zones related to the working principle of the ACEs and natural ground thermal regime in the two zones.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This study is supported by the National Natural Science Foundation of China (Grant Nos. 41772325, 41630636), the National key Basic Research Program of China (973 Program) (No. 2012CB026106), and the Fund of the State Key Laboratory of Frozen Soil Engineering (Grant Nos. SKLFSE-ZY-17). The authors are grateful for two anonymous reviewers for their insightful comments and constructive suggestions. The authors also thank the editor coordinator, the associate editor, and the editor for their kind help in the revision of the manuscript.

References

Chen, J., Z. Y. Hu, S. Dou, and Z. Y. Qian. 2006. “Yin–Yang slope problem along Qinghai–Tibetan lines and its radiation mechanism.” Cold Reg. Sci. Technol. 44 (3): 217–224. https://doi.org/10.1016/j.coldregions.2005.12.001.
Cheng, G. D., Y. M. Lai, Z. Z. Sun, and F. Jiang. 2007. “The ‘thermal semi–conductor’ effect of crushed rocks.” Permafrost Periglacial Processes 18 (2): 151–160. https://doi.org/10.1002/ppp.575.
Cheng, G. D., Z. Z. Sun, and F. J. Niu. 2008. “Application of the roadbed cooling approach in Qinghai–Tibet railway engineering.” Cold Reg. Sci. Technol. 53 (3): 241–258. https://doi.org/10.1016/j.coldregions.2007.02.006.
Cheng, G. D., and T. H. Wu. 2007. “Responses of permafrost to climate change and their environmental significance, Qinghai-Xizang (Tibet) plateau.” J. Geophys. Res. 112 (F2): 10. https://doi.org/10.1029/2006JF000631.
Chou, Y. L., Y. Sheng, Y. W. Li, Y. P. Zhu, and J. P. Li. 2010. “Sunny–shady slope effect on the thermal and deformation stability of the highway embankment in warm permafrost regions.” Cold Reg. Sci. Technol. 63 (1–2): 78–86. https://doi.org/10.1016/j.coldregions.2010.05.001.
Darrow, M. M., and D. D. Jensen. 2016. “Modelling the thermal performance of air convection embankment (ACE) with thermal berm over ice-rich permafrost, Lost Chicken Creek, Alaska.” Cold Reg. Sci. Technol. 130: 43–58. https://doi.org/10.1016/j.coldregions.2016.07.012.
Doré, G., F. J. Niu, and H. Brooks. 2016. “Adaptation methods for transportation infrastructure built on degrading permafrost.” Permafrost Periglacial Processes 27 (4): 352–364. https://doi.org/10.1002/ppp.1919.
Esch, D. C., and T. E. Osterkamp. 1990. “Cold regions engineering: Climate warming concerns for Alaska.” J. Cold Reg. Eng. 4 (1): 6–14. https://doi.org/10.1061/(ASCE)0887-381X(1990)4:1(6).
French, H. M. 2007. The periglacial environment. Chichester, UK: Wiley.
Goering, D. J. 1998. “Experimental investigation of air convection embankments for permafrost-resistant roadway design.” In Proc., 7th Int. Conf. on Permafrost, 319–326. Yellowknife, Canada: Collection Nordicana.
Goering, D. J. 2003. “Passively cooled railway embankments for use in permafrost areas.” J. Cold Reg. Eng. 17 (3): 119–133. https://doi.org/10.1061/(ASCE)0887-381X(2003)17:3(119).
Goering, D. J., and P. Kumar. 1996. “Winter-time convection in open-graded embankments.” Cold Reg. Sci. Technol. 24 (1): 57–74. https://doi.org/10.1016/0165-232X(95)00011-Y(95)00011-Y.
Guo, L., Z. Q. Zhang, X. B. Wang, Q. H. Yu, Y. H. You, C. Yuan, Y. L. Xie, and T. T. Gou. 2018. “Stability analysis of transmission tower foundations in permafrost equipped with thermosyphons and vegetation cover on the Qinghai-Tibet Plateau.” Int. J. Heat Mass Transfer 121: 367–376. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.009.
Harris, C., et al. 2009. “Permafrost and climate in Europe: Monitoring and modeling thermal, geomorphologic and geotechnical responses.” Earth Sci. Rev. 92 (3–4): 117–171. https://doi.org/10.1016/j.earscirev.2008.12.002.
Harris, S. A., and D. E. Pedersen. 1998. “Thermal regimes beneath coarse blocky materials.” Permafrost Periglacial Processes 9 (2): 107–120. https://doi.org/10.1002/(SICI)1099-1530(199804/06)9:2%3C107::AID-PPP277%3E3.0.CO;2-G.
He, P., G. D. Cheng, W. Ma, and Q. B. Wu. 2006. “Researches on ventilation properties of block stones layer.” [In Chinese.] China J. Geotech. Eng. 28 (6): 789–792.
Humlum, O. 1997. “Active layer thermal regime at three rock glaciers in Greenland.” Permafrost Periglacial Processes 8 (4): 383–408. https://doi.org/10.1002/(SICI)1099-1530(199710/12)8:4%3C383::AID-PPP265%3E3.0.CO;2-V.
Instanes, A., O. Anisimov, L. Brigham, D. Goering, L. N. Khrustalev, B. Ladanyi, and J. O. Larsen. 2005. Arctic climate impact assessment: Buildings, support systems, and industrial facilities, 908–944. New York: Cambridge University Press.
Jin, H. J., L. Zhao, S. L. Wang, and R. Jin. 2006. “Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway.” Sci. China Ser. D Earth Sci. 49 (11): 1170–1183. https://doi.org/10.1007/s11430-006-2003-z.
Lai, Y. M., M. Y. Zhang, Z. Q. Liu, and W. B. Yu. 2006. “Numerical analysis for cooling effect of open boundary ripped-rock embankment on Qinghai-Tibetan railway.” Sci. China Ser. D Earth Sci. 49 (7): 764–772. https://doi.org/10.1007/s11430-006-0764-z.
Liu, M. H., F. J. Niu, W. Ma, J. H. Fang, Z. J. Lin, and J. Luo. 2017. “Experimental investigation on the enhanced cooling performance of a new crushed-rock revetment embankment in warm permafrost regions.” Appl. Therm. Eng. 120: 121–129. https://doi.org/10.1016/j.applthermaleng.2017.03.118.
Ma, W., G. D. Cheng, and Q. B. Wu. 2009. “Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad.” Cold. Reg. Sci. Technol. 59 (1): 3–11. https://doi.org/10.1016/j.coldregions.2009.07.007.
Ma, W., G. L. Feng, Q. B. Wu, and J. J. Wu. 2008a. “Analyses of temperature fields under the embankment with crushed-rock structures along the Qinghai–Tibet Railway.” Cold Reg. Sci. Technol. 53 (3): 259–270. https://doi.org/10.1016/j.coldregions.2007.08.001.
Ma, W., Y. H. Mu, Q. B. Wu, Z. Z. Sun, and Y. Z. Liu. 2011. “Characteristics and mechanisms of embankment deformation along the Qinghai–Tibet Railway in permafrost regions.” Cold Reg. Sci. Technol. 67 (3): 178–186. https://doi.org/10.1016/j.coldregions.2011.02.010.
Ma, W., Q. B. Wu, Y. Z. Liu, and H. Bing. 2008b. “Analysis of the cooling mechanism of a crushed rock embankment in warm and lower temperature permafrost regions along the Qinghai-Tibet Railway.” Sci. Cold Arid Reg. 1: 14–25. https://doi.org/10.1016/j.coldregions.2011.02.010.
Mikhailov, G. P. 1971. “Temperature regime of embankment consisting of coarse rock on permafrost.” [In Russian.] Transp. Constr. 12: 32–33.
Mu, Y. H., W. Ma, F. J. Niu, G. Y. Li, D. Y. Wang, and Y. Z. Liu. 2014. “Monitoring and analyzing the thermal conditions of traditional embankments along the Qinghai-Tibet Railway.” [In Chinese.] J. Glaciol. Geocryol. 36 (4): 953–961. https://doi.org/10.7522/j.issn.1000-2040.2014.0115.
Nelson, F. E., O. A. Anisimov, and N. I. Shiklomanov. 2002. “Climate change and hazard zonation in the circum-arctic permafrost regions.” Nat. Hazard. 26 (3): 203–225. https://doi.org/10.1023/A:1015612918401.
Niu, F. J., G. D. Cheng, Y. H. Niu, M. Y. Zhang, J. Luo, and Z. J. Lin. 2016. “A naturally-occurring ‘cold earth’ spot in Northern China.” Sci. Rep. 6 (1): 34184. https://doi.org/10.1038/srep34184.
Niu, F. J., M. H. Liu, G. D. Cheng, Z. J. Lin, J. Luo, and G. A. Yin. 2015. “Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions.” Sci. China Earth Sci. 58 (9): 1669–1676. https://doi.org/10.1007/s11430-015-5063-0.
Pei, W. S., M. Y. Zhang, S. Y. Li, Y. M. Lai, and L. Jin. 2017. “Enhancement of convective cooling of the porous crushed-rock layer in cold regions based on experimental investigations.” Int. Commun. Heat Mass Transfer 87: 14–21. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.019.
Peng, H., W. Ma, Y. H. Mu, and L. Jin. 2015. “Impacts of permafrost degradation on embankment deformation of Qinghai-Tibet Highway in permafrost regions.” J. Cent. South Univ. 22 (3): 1079–1086. https://doi.org/10.1007/s11771-015-2619-2.
Qi, J. L., Y. Sheng, J. M. Zhang, and Z. Wen. 2007. “Settlement of embankments in permafrost regions in the Qinghai-Tibet Plateau.” Nor. Geografisk Tidsskr. Norw. J. Geogr. 61 (2): 49–55. https://doi.org/10.1080/00291950701409249.
Qin, Y. H., J. M. Zhang, G. Y. Li, and G. Z. Qu. 2010. “Settlement characteristics of unprotected embankment along the Qinghai–Tibet Railway.” Cold Reg. Sci. Technol. 60 (1): 84–91. https://doi.org/10.1016/j.coldregions.2009.08.002.
Richard, F., L. Anne-Marie, and W. B. Yu. 2011. “Impacts of permafrost degradation on a road embankment at Umiujaq in Nunavik (Quebec), Canada.” Can. Geotech. J. 48 (5): 720–740. https://doi.org/10.1139/t10-101.
Rooney, J. W. 1997. “Rock fill embankment application for convective foundation cooling on the BAM Railway system” In Proc., 5th Int. Symp. on Cold Region Development, 399–402. Reston, VA: ASCE.
Smith, S. L., and D. W. Riseborough. 2010. “Modeling the thermal response of permafrost terrain to right-of-way disturbance and climate warming.” Cold Reg. Sci. Technol. 60 (1): 92–103. https://doi.org/10.1016/j.coldregions.2009.08.009.
Streletskiy, D. A., F. E. Shikomanov, and F. E. Nelson. 2012. “Permafrost, infrastructure, and climate change: A GIS-based landscape approach to geotechnical modeling.” Arct. Antarct. Alp. Res. 44 (3): 368–380. https://doi.org/10.1657/1938-4246-44.3.368.
Sun, Z. Z., W. Ma, and D. Q. Li. 2005. “In situ test on cooling effectiveness of air convection embankment with crushed rock slope protection in permafrost regions.” J. Cold Reg. Eng. 19 (2): 38–51. https://doi.org/10.1061/(ASCE)0887-381X(2005)19:2(38).
Swada, Y., M. Ishikawa, and Y. Ono. 2003. “Thermal regime of sporadic permafrost in a block slope on Mt. Nishi-Nupukaushinupuri, Hokkaido Island, northern Japan.” Geomorphology 52 (1–2): 121–130. https://doi.org/10.1016/S0169-555X(02)00252-0.
Tai, B. W., J. K. Liu, T. F. Wang, Y. H. Tian, and J. H. Fang. 2017. “Thermal characteristics and declining permafrost table beneath three cooling embankments in warm permafrost regions.” Appl. Therm. Eng. 123: 435–447. https://doi.org/10.1016/j.applthermaleng.2017.05.031.
Tong, C. J., and Q. B. Wu. 1996. “The effect of climate warming on the Qinghai-Tibet Highway.” Cold Reg. Sci. Technol. 24 (1): 101–106. https://doi.org/10.1016/0165-232X(95)00012-Z(95)00012-Z.
Wang, J. C., and Q. B. Wu. 2017. “Settlement analysis of embankment-bridge transition section in the permafrost regions of Qinghai-Tibet Railway.” [In Chinese.] J. Glaciol. Geocryol. 39 (1): 79–85. https://doi.org/10.7522/j.issn.1000-0240.2017.0010.
Wang, S. L., H. J. Jin, S. X. Li, and L. Zhao. 2000. “Permafrost degradation on the Qinghai–Tibet Plateau and its environmental impacts.” Permafrost Periglacial Processes 11 (1): 43–53. https://doi.org/10.1002/(SICI)1099-1530(200001/03)11:1%3C43::AID-PPP332%3E3.0.CO;2-H.
Wu, Q. B., H. B. Cheng, G. L. Jiang, W. Ma, and Y. Z. Liu. 2007. “Cooling mechanism of embankment with block stone interlayer in Qinghai-Tibet railway.” Sci. China Ser. E Technol. Sci. 50 (3): 319–328. https://doi.org/10.1007/s11431-007-0036-y.
Wu, Q. B., Y. Z. Liu, and Z. Y. Hu. 2011. “The thermal effect of differential solar exposure on embankments along the Qinghai-Tibet Railway.” Cold Reg. Sci. Technol. 66 (1): 30–38. https://doi.org/10.1016/j.coldregions.2011.01.001.
Wu, Q. B., Y. Z. Liu, J. M. Zhang, and C. J. Tong. 2002. “A review of recent frozen soil engineering in permafrost regions along Qinghai–Tibet highway, China.” Permafrost Periglacial Processes 13 (3): 199–205. https://doi.org/10.1002/ppp.420.
Wu, Q. B., and T. J. Zhang. 2008. “Recent permafrost warming on the Qinghai-Tibetan plateau.” J. Geophys. Res. 113 (13): D13108. https://doi.org/10.1029/2007JD009539.
Wu, Q. B., and T. J. Zhang. 2010. “Changes in active layer thickness over the Qinghai-Tibetan plateau from 1995–2007.” J. Geophys. Res. 115: D09107. https://doi.org/10.1029/2009JD012974.
Wu, Q. B., Z. Q. Zhang, S. R. Gao, and W. Ma. 2016. “Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai–Tibet Plateau, China.” Cryosphere 10 (4): 1695–1706. https://doi.org/10.5194/tc-10-1695-2016.
Wu, Q. B., S. Y. Zhao, W. Ma, Y. Z. Liu, and L. X. Zhang. 2005. “Monitoring and analysis of cooling effect of block-stone embankment for Qinghai–Tibet Railway.” [In Chinese.] Chin. J. Geotech. Eng. 27 (12): 1386–1390.
Xu, J. F., and D. J. Goering. 2008. “Experimental validation of passive permafrost cooling systems.” Cold Reg. Sci. Technol. 53 (3): 283–297. https://doi.org/10.1016/j.coldregions.2007.09.002.
Zacharda, M., M. Gude, and V. Růžička. 2007. “Thermal regime of three low elevation scree slopes in central Europe.” Permafrost Periglacial Processes 18 (3): 301–308. https://doi.org/10.1002/ppp.598.
Zhang, M. Y., Y. M. Lai, W. B. Yu, and J. L. Qi. 2006. “Laboratory investigation of the heat transfer characteristics of a trapezoidal crushed-rock layer under impermeable and permeable boundaries.” Exp. Heat Transfer 19 (4): 251–264. https://doi.org/10.1080/08916150600616535.
Zhang, T. J., T. H. W. Baker, G. D. Cheng, and Q. B. Wu. 2008a. “The Qinghai-Tibet railroad: A milestone project and its environment impact.” Cold Reg. Sci. Technol. 53 (3): 229–240. https://doi.org/10.1016/j.coldregions.2008.06.003.
Zhang, T. J., R. G. Barry, K. Knowles, J. A. Heginbottom, and J. Brown. 2008b. “Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere.” Polar Geogr. 31 (1–2): 47–68. https://doi.org/10.1080/10889370802175895.
Zhao, L., Q. B. Wu, S. S. Marchenko, and N. Sharkhuu. 2010. “Thermal state of permafrost and active layer in Central Asia during the international polar year.” Permafrost Periglacial Processes 21 (2): 198–207. https://doi.org/10.1002/ppp.688.

Information & Authors

Information

Published In

Go to Journal of Cold Regions Engineering
Journal of Cold Regions Engineering
Volume 32Issue 4December 2018

History

Received: Sep 21, 2017
Accepted: Apr 10, 2018
Published online: Jul 18, 2018
Published in print: Dec 1, 2018
Discussion open until: Dec 18, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Email: [email protected]
Professor, State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China (corresponding author). Email: [email protected]
Professor, State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Email: [email protected]
Yongzhi Liu [email protected]
Professor, State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Email: [email protected]
Richard Fortier [email protected]
Professor, Département de géologie et génie géologique, Université Laval, Québec, QC, Canada G1V 0A6. Email: [email protected]
Yunchen Mao, Ph.D. [email protected]
State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share