State-of-the-Art Reviews
Jun 27, 2019

States of Practice and Research on Applying GPR Technology for Labeling and Scanning Constructed Facilities

Publication: Journal of Performance of Constructed Facilities
Volume 33, Issue 5

Abstract

Ground Penetration Radar (GPR) is now a mature technology with various applications for scanning different types of constructed facilities including underground utilities and structural systems. Several models of GPR scanners are commercially available and selecting the optimum machine for certain applications is a significant decision-making task for practitioners and researchers. As a result, there is a demand for reviewing the latest states of practice and research on applying GPR technologies to assist practitioners and researchers with their scanning tasks. This paper is an attempt to address the aforementioned issue through conducting an in-depth review on existing models of GPR scanners as well as a comprehensive review on undergoing research activities in this area. The results of this study are summarized in five sections: The first section provides a brief overview on the general structure of a GPR scanning system. The second section reviews the commercially available GPR machines plus the advantages, limitations, and specific application of each model. The latest state of research for scanning and labeling constructed facilities using GPR scanners is presented in the third section. The next section briefly reviews the postprocessing steps required to convert the raw data obtained from GPR scanners into rich information about the desired objects. Finally, the results of a comparative study conducted by the authors to evaluate the performance of two popular models of GPR scanners (StructureScan Mini XT and Handy Search NJJ-105) in scanning a number of structural elements (concrete walls, columns, and slabs) as case studies are presented.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to thank Penhall Technologies Co. for providing the StructureScan Mini XT scanner and their scanning services. The authors also appreciate the technical support provided by Dr. Amanda Bordelon on using the Handy Search NJJ-105 scanner. Finally, the authors would like to thank Mr. Richard Peterson, an undergraduate student of civil engineering at the University of Utah, for his assistance with coordinating and handling scanning tasks.

References

Agliata, R., T. A. Bogaard, R. Greco, L. Mollo, E. C. Slob, and S. C. Steele-Dunne. 2018. “Non-invasive estimation of moisture content in tuff bricks by GPR.” Constr. Build. Mater. 160 (Jan): 698–706. https://doi.org/10.1016/j.conbuildmat.2017.11.103.
Alani, A. M., and F. Tosti. 2018. “GPR applications in structural detailing of a major tunnel using different frequency antenna systems.” Constr. Build. Mater. 158 (Jan): 1111–1122. https://doi.org/10.1016/j.conbuildmat.2017.09.100.
Al-Nuaimy, W., Y. Huang, M. Nakhkash, M. T. C. Fang, V. T. Nguyen, and A. Eriksen. 2000. “Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition.” J. Appl. Geophys. 43 (2–4): 157–165. https://doi.org/10.1016/S0926-9851(99)00055-5.
Angelopoulos, M. C., W. H. Pollard, and N. J. Couture. 2013. “The application of CCR and GPR to characterize ground ice conditions at Parsons Lake, Northwest Territories.” Cold Reg. Sci. Technol. 85 (Jan): 22–33. https://doi.org/10.1016/j.coldregions.2012.07.005.
Annan, A. P. 1999. Practical processing of GPR data. Mississauga, ON, Canada: Sensors and Software.
Annan, A. P., N. Diamanti, J. D. Redman, and S. R. Jackson. 2016. “Ground-penetrating radar for assessing winter roads GPR for assessing winter roads.” Geophysics 81 (1): WA101–WA109. https://doi.org/10.1190/geo2015-0138.1.
Annan, A. P., J. E. Scaife, and P. Giamou. 1990. “Mapping buried barrels with magnetics and ground-penetrating radar.” In SEG Technical Program Expanded Abstracts 1990, 422–423. Tulsa, OK: Society of Exploration Geophysicists.
Anxue, Z., J. Yansheng, W. Wenbing, and W. Cheng. 2000. “Experimental studies on GPR velocity estimation and imaging method using migration in frequency-wavenumber domain.” In Proc., 5th Int. Symp. on Antennas, Propagation, and EM Theory. ISAPE 2000 (IEEE Cat. No. 00EX417), 468–473. Piscataway, NJ: IEEE.
Ao, K. 2018. “Ice basement mapping of eisriesenwelt cave with ground penetrating radar.” Ph.D. thesis, Institute for Cartography, TU München.
Ayala-Cabrera, D., M. Herrera, J. Izquierdo, and R. Pérez-García. 2014. “GPR data analysis using multi-agent and clustering approaches: A tool for technical management of water supply systems.” Digital Signal Process. 27 (Apr): 140–149. https://doi.org/10.1016/j.dsp.2013.12.012.
Balayssac, J. P., and V. Garnier. 2017. Non-destructive testing and evaluation of civil engineering structures. 1st ed. Oxford, UK: Elsevier.
Bao, Q. Z., Q. C. Li, and W. C. Chen. 2014. “GPR data noise attenuation on the curvelet transform.” Appl. Geophys. 11 (3): 301–310. https://doi.org/10.1007/s11770-014-0444-2.
Barkat, B., A. M. Zoubir, and C. L. Brown. 2000. “Application of time-frequency techniques for the detection of anti-personnel landmines.” In Proc., 10th IEEE Workshop on Statistical Signal and Array Processing, 594–597. Piscataway, NJ: IEEE.
Barraca, N., M. Almeida, H. Varum, F. Almeida, and M. S. Matias. 2016. “A case study of the use of GPR for rehabilitation of a classified Art Deco building: The InovaDomus house.” J. Appl. Geophys. 127 (Apr): 1–13. https://doi.org/10.1016/j.jappgeo.2016.02.002.
Barrile, V., and R. Pucinotti. 2005. “Application of radar technology to reinforced concrete structures: A case study.” NDT & E Int. 38 (7): 596–604. https://doi.org/10.1016/j.ndteint.2005.02.003.
Bavusi, M., A. Loperte, V. Lapenna, and F. Soldovieri. 2010. “Rebars and defects detection by a GPR survey at a L’Aquila school damaged by the earthquake of April 2009.” In Proc., 13th Int. Conf. on Ground Penetrating Radar (GPR), 1–5. Piscataway, NJ: IEEE.
Benedetto, A., and F. Benedetto. 2011. “Remote sensing of soil moisture content by GPR signal processing in the frequency domain.” IEEE Sens. J. 11 (10): 2432–2441. https://doi.org/10.1109/JSEN.2011.2119478.
Benedetto, A., and S. Pensa. 2007. “Indirect diagnosis of pavement structural damages using surface GPR reflection techniques.” J. Appl. Geophys. 62 (2): 107–123. https://doi.org/10.1016/j.jappgeo.2006.09.001.
Benedetto, F., F. Tosti, and A. M. Alani. 2017. “An entropy-based analysis of GPR data for the assessment of railway ballast conditions.” IEEE Trans. Geosci. Remote Sens. 55 (7): 3900–3908. https://doi.org/10.1109/TGRS.2017.2683507.
Berthelier, J. J., S. Bonaime, V. Ciarletti, R. Clairquin, F. Dolon, A. Le Gall, D. Nevejans, R. Ney, and A. Reineix. 2005. “Initial results of the Netlander imaging ground-penetrating radar operated on the Antarctic Ice Shelf.” Geophys. Res. Lett. 32 (22): 1–4. https://doi.org/10.1029/2005GL024203.
Birkenfeld, S. 2010. “Automatic detection of reflexion hyperbolas in GPR data with neural networks.” In Proc., World Automation Congress, 1–6. Piscataway, NJ: IEEE.
Bradley, M. R., T. R. Witten, R. McCummins, M. Crowe, S. Stewart, and M. Duncan. 1999. “Mine detection with a multichannel stepped-frequency ground-penetrating radar.” In Vol. 3710 of Detection and Remediation Technologies for Mines and Minelike Targets IV, 953–961. Bellingham, WA: International Society for Optics and Photonics.
Bungey, J. H. 2003. “Assessment of concrete in bridge structures. In Concrete Bridge Engineering, 39–76. Abingdon, UK: CRC Press.
Castro, M., P. Druschel, A. M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. 2003. “SplitStream: High-bandwidth multicast in cooperative environments.” In Vol. 37 of ACM SIGOPS Operating Systems Review, 298–313. New York: Association for Computing Machinery.
Catakli, A., H. Mahdi, and H. Al-Shukri. 2012. “Attribute analyses of GPR data for heavy minerals exploration.” In Applied Imagery Pattern Recognition Workshop (AIPR), 2012 IEEE, 1–9. Piscataway, NJ: IEEE.
Cataldo, A., R. Persico, G. Leucci, E. De Benedetto, G. Cannazza, L. Matera, and L. De Giorgi. 2014. “Time domain reflectometry, ground penetrating radar and electrical resistivity tomography: A comparative analysis of alternative approaches for leak detection in underground pipes.” NDT & E Int. 62 (Mar): 14–28. https://doi.org/10.1016/j.ndteint.2013.10.007.
Chang, C. W., C. H. Lin, and H. S. Lien. 2009. “Measurement radius of reinforcing steel bar in concrete using digital image GPR.” Constr. Build. Mater. 23 (2): 1057–1063. https://doi.org/10.1016/j.conbuildmat.2008.05.018.
Chen, C. S., and Y. Jeng. 2011. “Nonlinear data processing method for the signal enhancement of GPR data.” J. Appl. Geophys. 75 (1): 113–123. https://doi.org/10.1016/j.jappgeo.2011.06.017.
Choi, W. C., M. Picornell, and S. Hamoush. 2016. “Performance of 90-year-old concrete in a historical structure.” Constr. Build. Mater. 105 (Feb): 595–602. https://doi.org/10.1016/j.conbuildmat.2015.12.158.
Clarke, C. M., E. Utsi, and V. Utsi. 1999. “Ground penetrating radar investigations at North Ballachulish Moss, Highland, Scotland.” Archaeol. Prospection 6 (2): 107–121. https://doi.org/10.1002/(SICI)1099-0763(199906)6:2%3C107::AID-ARP121%3E3.0.CO;2-0.
Congedo, F., G. Monti, and L. Tarricone. 2010. “Modified bowtie antenna for GPR applications.” In Proc., 13th Int. Conf. on Ground Penetrating Radar (GPR), 1–5. Piscataway, NJ: IEEE.
Conyers, L. B. 2016. Interpreting ground-penetrating radar for archaeology. New York: Routledge.
Dabous, S. A., S. Yaghi, S. Alkass, and O. Moselhi. 2017. “Concrete bridge deck condition assessment using IR Thermography and Ground Penetrating Radar technologies.” Autom. Constr. 81 (Sep): 340–354. https://doi.org/10.1016/j.autcon.2017.04.006.
De Jongh, R. V., A. G. Yarovoy, L. P. Ligthart, I. V. Kaploun, and A. D. Schukin. 1999. “Design and analysis if new GPR antenna concepts.” In Proc., 7th Int. Conf. on Ground Penetrating Radar. Piscataway, NJ: IEEE.
Dérobert, X., J. Iaquinta, G. Klysz, and J. P. Balayssac. 2008. “Use of capacitive and GPR techniques for the non-destructive evaluation of cover concrete.” NDT & E Int. 41 (1): 44–52. https://doi.org/10.1016/j.ndteint.2007.06.004.
Diallo, M. C., L. Z. Cheng, E. Rosa, C. Gunther, and M. Chouteau. 2019. “Integrated GPR and ERT data interpretation for bedrock identification at Cléricy, Québec, Canada.” Eng. Geol. 248 (Jan): 230–241. https://doi.org/10.1016/j.enggeo.2018.09.011.
Dossi, M., E. Forte, M. Pipan, R. R. Colucci, and A. Bortoletto. 2016. “Automated reflection picking and inversion: Application to ground and airborne GPR surveys.” In Proc., 16th Int. Conf. on Ground Penetrating Radar (GPR), 1–6. Piscataway, NJ: IEEE.
Dou, Q., L. Wei, D. R. Magee, and A. G. Cohn. 2017. “Real-time hyperbola recognition and fitting in GPR data.” IEEE Trans. Geosci. Remote Sens. 55 (1): 51–62. https://doi.org/10.1109/TGRS.2016.2592679.
Du, Q., X. Zhang, Y. Li, Y. Liu, and L. Zhang. 2017. “Effect on the stresses and strains within pavements due to uneven settlements of subgrade.” In Proc., 2nd Int. Conf. on New Energy and Renewable Resources (ICNERR 2017). Lancaster, PA: DEStech.
Fernandes, F. M., and J. C. Pais. 2017. “Laboratory observation of cracks in road pavements with GPR.” Constr. Build. Mater. 154 (Nov): 1130–1138. https://doi.org/10.1016/j.conbuildmat.2017.08.022.
Fisher, E., G. A. McMechan, A. P. Annan, and S. W. Cosway. 1992. “Examples of reverse-time migration of single-channel, ground-penetrating radar profiles.” Geophys. 57 (4): 577–586. https://doi.org/10.1190/1.1443271.
Forte, E., M. Dossi, M. Pipan, and R. R. Colucci. 2014. “Velocity analysis from common offset GPR data inversion: Theory and application to synthetic and real data.” Geophys. J. Int. 197 (3) 1471–1483. https://doi.org/10.1093/gji/ggu103.
Forte, E., M. Pipan, D. Casabianca, R. Di Cuia, and A. Riva. 2012. “Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes.” J. Appl. Geophys. 81 (Jun): 76–87. https://doi.org/10.1016/j.jappgeo.2011.09.009.
Francke, J. 2010. “Applications of GPR in mineral resource evaluations.” In Proc., 13th Int. Conf. on Ground Penetrating Radar (GPR), 1–5. Piscataway, NJ: IEEE.
Giannopoulos, A. 2005. “Modelling ground penetrating radar by GprMax.” Constr. Build. Mater. 19 (10): 755–762. https://doi.org/10.1016/j.conbuildmat.2005.06.007.
Gibb, S., and H. M. La. 2016. “Automated rebar detection for ground-penetrating radar.” In Proc., Int. Symp. on Visual Computing, 815–824. Cham, Switzerland: Springer.
Gizzi, F. T., and G. Leucci. 2018. “Global research patterns on ground penetrating radar (GPR)” Surv. Geophys. 39 (6): 1039–1068. https://doi.org/10.1007/s10712-018-9475-1.
Greaves, R. J., D. P. Lesmes, J. M. Lee, and M. N. Toksöz. 1996. “Velocity variations and water content estimated from multi-offset, ground-penetrating radar.” Geophys. 61 (3): 683–695. https://doi.org/10.1190/1.1443996.
GSSI. 2018a. “About GSSI—Ground penetrating radar equipment manufacturer.” Accessed June 13, 2018. https://www.geophysical.com/about-gssi.
GSSI. 2018b. “Explore our range of products.” Accessed July 2, 2018. https://www.geophysical.com/products.
Guangyou, F. 2005. “New design of the antipodal Vivaldi antenna for a GPR system.” Microwave Opt. Technol. Lett. 44 (2): 136–139. https://doi.org/10.1002/mop.20568.
Gurbuz, A. C., J. H. McClellan, and W. R. Scott. 2009. “A compressive sensing data acquisition and imaging method for stepped frequency GPRs.” IEEE Trans. Signal Process. 57 (7): 2640–2650. https://doi.org/10.1109/TSP.2009.2016270.
Habicht, H. L., A. Rosentau, A. Jõeleht, A. Heinsalu, A. Kriiska, M. Kohv, T. Hang, and R. Aunap. 2017. “GIS-based multiproxy coastline reconstruction of the eastern Gulf of Riga, Baltic Sea, during the Stone Age.” Boreas 46 (1): 83–99. https://doi.org/10.1111/bor.12157.
Hafsi, M., P. Bolon, and R. Dapoigny. 2017. “Detection and localization of underground networks by fusion of electromagnetic signal and GPR images.” In Vol. 10338 of Proc., 13th Int. Conf. on Quality Control by Artificial Vision 2017, 1033803. New York: International Society for Optics and Photonics.
Hansen, J. D., J. K. Pringle, and J. Goodwin. 2014. “GPR and bulk ground resistivity surveys in graveyards: Locating unmarked burials in contrasting soil types.” Forensic Sci. Int. 237 (Apr): e14–e29. https://doi.org/10.1016/j.forsciint.2014.01.009.
Harkat, H., A. Ruano, M. G. Ruano, and S. D. Bennani. 2018. “Classifier design by a multi-objective genetic algorithm approach for GPR automatic target detection.” IFAC-PapersOnLine 51 (10): 187–192. https://doi.org/10.1016/j.ifacol.2018.06.260.
Hashim, M. S., S. N. Saip, N. Hani, B. Pradhan, and S. Abdullahi. 2016. “Accuracy assessment of NOGGIN Plus and MALÅ RAMAC X3M single channel ground penetrating RADAR (GPR) for underground util ity mapping.” IOP Conf. Ser Earth Environ. Sci. 37 (1): 1–9. https://doi.org/10.1088/1755-1315/37/1/012025.
Hertl, I., and M. Strycek. 2007. “UWB antennas for ground penetrating radar application.” In Proc., ICECom 2007: 19th Int. Conf. on Applied Electromagnetics and Communications, 1–4. Piscataway, NJ: IEEE.
HILTI. 2018. “PS 100-B X-SCAN.” Accessed July 2, 2018. https://www.hilti.com/measuring-systems/detection-systems/r83732.
Hugenschmidt, J. 2002. “Concrete bridge inspection with a mobile GPR system.” Constr. Build. Mater. 16 (3): 147–154. https://doi.org/10.1016/S0950-0618(02)00015-6.
Hugenschmidt, J., A. Kalogeropoulos, F. Soldovieri, and G. Prisco. 2010. “Processing strategies for high-resolution GPR concrete inspections.” NDT & E Int. 43 (4): 334–342. https://doi.org/10.1016/j.ndteint.2010.02.002.
IDS GeoRadar. 2018. “Ground penetrating radar.” Accessed July 2, 2018. https://idsgeoradar.com/products/ground-penetrating-radar.
IDS GeoRadar. 2019a. “Stream EM.” Accessed April 22, 2019. https://idsgeoradar.com/products/ground-penetrating-radar/stream-em.
IDS GeoRadar. 2019b. “Stream X.” Accessed April 22, 2019. https://idsgeoradar.com/products/ground-penetrating-radar/stream-x.
Japan Radio Co., LTD. 2019. “Introducing next-generation High-resolution Handy Search.” Accessed April 22, 2019. https://www.jrc.co.jp/eng/product/lineup/njj105/pdf/NJJ-105.pdf.
Jayakumar, M. S. 1999. “Antenna optimization for ground penetrating radar using the finite difference time domain technique.” Ph.D. dissertation, South Dakota School of Mines and Technology.
Jazayeri, S., S. Kruse, I. Hasan, and N. Yazdani. 2018. “Sparse blind deconvolution and full-waveform inversion of surface GPR data, an engineering example.” In SEG Technical Program Expanded Abstracts 2018, 5482–5486. Tulsa, OK: Society of Exploration Geophysicists.
Jeng, Y., and C. S. Chen. 2012. “Subsurface GPR imaging of a potential collapse area in urban environments.” Eng. Geol. 147 (Oct): 57–67. https://doi.org/10.1016/j.enggeo.2012.07.009.
Jol, H. M. 2008. Ground penetrating radar theory and applications. Amsterdam, Netherlands: Elsevier.
Kanli, A. I., G. Taller, P. Nagy, P. Tildy, Z. Pronay, and E. Toros. 2015. “GPR survey for reinforcement of historical heritage construction at fire tower of Sopron.” J. Appl. Geophys. 112 (Jan): 79–90. https://doi.org/10.1016/j.jappgeo.2014.11.005.
Karamzadeh, S., O. F. Kiliç, A. S. Hepbiçer, and F. Demirbaş. 2016. “Bow tie antenna design for GPR applications.” Int. J. Electron. Mech. Mechatron. Eng. 6 (2): 1187–1194. https://www.researchgate.net/publication/309398058_Bow_Tie_Antenna_Design_for_GPR_Applications.
Kaur, P., K. J. Dana, F. A. Romero, and N. Gucunski. 2016. “Automated GPR rebar analysis for robotic bridge deck evaluation.” IEEE Trans. Cybern. 46 (10): 2265–2276. https://ieeexplore.ieee.org/abstract/document/7302049.
Kim, J. H., S. J. Cho, and M. J. Yi. 2007. “Removal of ringing noise in GPR data by signal processing.” Geosci. J. 11 (1): 75–81. https://doi.org/10.1007/BF02910382.
Kovin, O. N. 2010. “Fracture imaging in the Upper Kama Potash mine using 3-D GPR data.” In Proc., 23rd EEGS Symp. on the Application of Geophysics to Engineering and Environmental Problems. Tulsa, OK: Society of Exploration Geophysicists.
Koyadan Koroth, A., and A. Bhattacharya. 2017. “Improving the detect ability and imaging capability of ground penetrating radar using novel antenna concepts.” In Vol. 19 of Proc., EGU General Assembly Conf. Abstracts, 7562. Munich, Germany: European Geosciences Union.
Kruschwitz, S. 2016. NDT for microstructure and moisture investigation of porous building material.” In Proc., Int. Symp. Non-Destructive Testing in Civil Engineering (NDT-CE). Berlin: Federal Institute for Materials Research and Testing.
Lachowicz, J., and M. Rucka. 2016. “Experimental and numerical investigations for GPR evaluation of reinforced concrete footbridge.” In Proc., 16th Int. Conf. on Ground Penetrating Radar (GPR), 1–6. Piscataway, NJ: IEEE.
Lahouar, S., and I. L. Al-Qadi. 2008. “Automatic detection of multiple pavement layers from GPR data.” NDT & E Int. 41 (2): 69–81. https://doi.org/10.1016/j.ndteint.2007.09.001.
Lai, W. L., T. Kind, and H. Wiggenhauser. 2011. “Frequency-dependent dispersion of high-frequency ground penetrating radar wave in concrete.” NDT & E Int. 44 (3): 267–273. https://doi.org/10.1016/j.ndteint.2010.12.004.
Lai, W. W., R. K. Chang, J. F. Sham, and K. Pang. 2016. “Perturbation mapping of water leak in buried water pipes via laboratory validation experiments with high-frequency ground penetrating radar (GPR)” Tunnelling Underground Space Technol. 52 (Feb): 157–167. https://doi.org/10.1016/j.tust.2015.10.017.
Lai, W. W. L., X. Dérobert, and P. Annan. 2018. “A review of ground penetrating radar application in civil engineering: A 30-year journey from locating and testing to imaging and diagnosis.” NDT & E Int. 96 (Jun): 58–78. https://doi.org/10.1016/j.ndteint.2017.04.002.
Lameri, S., F. Lombardi, P. Bestagini, M. Lualdi, and S. Tubaro. 2017. “Landmine detection from GPR data using convolutional neural networks.” In Proc., 25th European Signal Processing Conf. (EUSIPCO), 508–512. Piscataway, NJ: IEEE.
Lauro, S. E., E. Mattei, P. M. Barone, E. Pettinelli, G. Vannaroni, G. Valerio, D. Comite, A. Galli, and A. Galli. 2013. “Estimation of subsurface dielectric target depth for GPR planetary exploration: Laboratory measurements and modeling.” J. Appl. Geophys. 93 (Jun): 93–100. https://doi.org/10.1016/j.jappgeo.2013.04.001.
Le Bastard, C., V. Baltazart, Y. Wang, and J. Saillard. 2007. “Thin-pavement thickness estimation using GPR with high-resolution and superresolution methods.” IEEE Trans. Geosci. Remote Sens. 45 (8): 2511–2519. https://doi.org/10.1109/TGRS.2007.900982.
Lee, K. L., and M. M. Mokji. 2014. “Automatic target detection in GPR images using Histogram of Oriented Gradients (HOG).” In Proc., 2nd Int. Conf. on Electronic Design (ICED), 181–186. Piscataway, NJ: IEEE.
Leiva-Villacorta, F., J. P. Aguiar-Moya, and L. G. Loría-Salazar. 2014. “Accelerated pavement testing first results at the Lanammeucr APT facility.” In Proc., 94th Annual Meeting of the Transportation Research Board. Washington, DC: National Academies of Sciences.
Leng, Z., and I. L. Al-Qadi. 2014. “An innovative method for measuring pavement dielectric constant using the extended CMP method with two air-coupled GPR systems.” NDT & E Int. 66 (Sep): 90–98. https://doi.org/10.1016/j.ndteint.2014.05.002.
Liu, H., and M. Sato. 2014. “In situ measurement of pavement thickness and dielectric permittivity by GPR using an antenna array.” Ndt & E Int. 64 (Jun): 65–71. https://doi.org/10.1016/j.ndteint.2014.03.001.
Loisel, J., Z. Yu, A. Parsekian, J. Nolan, and L. Slater. 2013. “Quantifying landscape morphology influence on peatland lateral expansion using ground-penetrating radar (GPR) and peat core analysis.” J. Geophys. Res. Biogeosci. 118 (2): 373–384. https://doi.org/10.1002/jgrg.20029.
Loken, M. 2005. “Current state of the art and practice of using GPR for Minnesota roadway applications.” Accessed May 16, 2019. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.562.470&rep=rep1&type=pdf.
Long, Z. J., B. A. Xing, L. I. U. Hai, and Q. H. Liu. 2017. “Hyperbola recognition from ground penetrating radar using deep convolutional neural networks.” In In Proc., 2nd Int. Conf. on Artificial Intelligence: Techniques and Applications (AITA2017). Lancaster, PA: DEStech.
Long, Z. J., Y. X. Zhang, H. Liu, J. W. Wu, W. Z. Ouyang, Y. Y. Xia, and Q. H. Liu. 2016. GPR inspection of asphalt pavement using an off-ground antenna array.” In Proc., 16th Int. Conf. on Ground Penetrating Radar (GPR), 1–4. Piscataway, NJ: IEEE.
Lualdi, M., L. Zanzi, and L. Binda. 2003. “Acquisition and processing requirements for high quality 3D reconstructions from GPR investigations.” In Proc., Int. Symp. on Non-Destructive Testing in Civil Engineering (NDT-CE). Berlin: Federal Institute for Materials Research and Testing.
Machguth, H., O. Eisen, F. Paul, and M. Hoelzle. 2006. “Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers.” Geophys. Res. Lett. 33 (13): 1–5. https://doi.org/10.1029/2006GL026576.
Mahdi, A. S. 2013. “Using GPR technique assessment for study the sub-grade of asphalt and concrete conditions.” IRAQI J. Sci. 54 (3): 725–738.
Martinez, A., and A. P. Brynes. 2001. Vol. 247 of Modeling dielectric-constant values of geologic materials: An aid to ground-penetrating radar data collection and interpretation. Lawrence, Kansas: Kansas Geological Survey.
Mass, C., and J. Schmalzl. 2013. “Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar.” Comput. Geosci. 58 (Aug): 116–125.
Mechbal, Z., and A. Khamlichi. 2018. “Sensitivity of the inverse problem solution related to detection of rebars buried in concrete by using GPR scanning.” In Vol. 191 of Proc., MATEC Web of Conf., 00010. Paris: EDP Sciences.
Mertens, L., R. Persico, L. Matera, and S. Lambot. 2016. “Automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium.” IEEE Trans. Geosci. Remote Sens. 54 (1): 580–596. https://doi.org/10.1109/TGRS.2015.2462727.
Metwaly, M. 2015. “Application of GPR technique for subsurface utility mapping: A case study from urban area of Holy Mecca, Saudi Arabia.” Meas. 60 (Jan): 139–145. https://doi.org/10.1016/j.measurement.2014.09.064.
Moran, M. L., R. J. Greenfield, S. A. Arcone, and A. J. Delaney. 2000. “Multidimensional GPR array processing using Kirchhoff migration.” J. Appl. Geophys. 43 (2–4): 281–295. https://doi.org/10.1016/S0926-9851(99)00065-8.
Morey, R. M. 1998. Vol. 255 of Ground penetrating radar for evaluating subsurface conditions for transportation facilities. Washington, DC: Transportation Research Board.
Nayak, R., S. Maiti, and S. K. Patra. 2016. “Design and simulation of compact UWB Bow-tie antenna with reduced end-fire reflections for GPR applications.” In Int. Conf. on Wireless Communications, Signal Processing and Networking (WiSPNET), 1786–1790. Piscataway, NJ: IEEE.
Orlando, L. 2013. “GPR to constrain ERT data inversion in cavity searching: Theoretical and practical applications in archeology.” J. Appl. Geophys. 89 (Feb): 35–47. https://doi.org/10.1016/j.jappgeo.2012.11.006.
Orlando, L., and E. Slob. 2009. “Using multicomponent GPR to monitor cracks in a historical building.” J. Appl. Geophys. 67 (4): 327–334. https://doi.org/10.1016/j.jappgeo.2008.09.003.
Pe’er, U. 2018. “Depth estimation and ray tracing model selection of buried utilities on ground penetrating radar data.” In Proc., 41st Int. Conf. on Telecommunications and Signal Processing (TSP), 1–5. Piscataway, NJ: IEEE.
Pe’er, U., and J. G. Dy. 2017. “Automated target detection for geophysical applications.” IEEE Trans. Geosci. Remote Sens. 55 (3): 1563–1572.
Pérez-Gracia, V., O. Caselles, J. Clapés, and S. Santos-Assunçao. 2017. “GPR building inspection: Examples of building structures assessed with Ground Penetrating Radar.” In Proc., 9th Int. Workshop on Advanced Ground Penetrating Radar (IWAGPR), 1–4. Piscataway, NJ: IEEE.
Pérez-Gracia, V., D. Di Capua, R. González-Drigo, and L. Pujades. 2009. “Laboratory characterization of a GPR antenna for high-resolution testing: Radiation pattern and vertical resolution.” NDT & E Int. 42 (4): 336–344. https://doi.org/10.1016/j.ndteint.2008.12.007.
Pieraccini, M., N. Rojhani, and L. Miccinesi. 2017. “Comparison between horn and bow-tie antennas for Ground Penetrating Radar.” In Proc., 9th Int. Workshop on Advanced Ground Penetrating Radar (IWAGPR), 1–5. Piscataway, NJ: IEEE.
Plati, C., and A. Loizos. 2013. “Estimation of in-situ density and moisture content in HMA pavements based on GPR trace reflection amplitude using different frequencies.” J. Appl. Geophys. 97 (Oct): 3–10. https://doi.org/10.1016/j.jappgeo.2013.04.007.
Poluha, B., J. L. Porsani, E. R. Almeida, V. R. N. dos Santos, and S. J. Allen. 2017. “Depth estimates of buried utility systems using the GPR method: Studies at the IAG/USP geophysics test site.” Int. J. of Geosci. 8 (5): 726. https://doi.org/10.4236/ijg.2017.85040.
Porsani, J. L., E. Slob, R. S. Lima, and D. N. Leite. 2010. “Comparing detection and location performance of perpendicular and parallel broadside GPR antenna orientations.” J. Appl. Geophys. 70 (1): 1–8. https://doi.org/10.1016/j.jappgeo.2009.12.002.
Puente, I., M. Solla, S. Lagüela, and J. Sanjurjo-Pinto. 2018. “Reconstructing the Roman Site “Aquis Querquennis”(Bande, Spain) from GPR, T-LiDAR and IRT data fusion.” Remote Sens. 10 (3): 379. https://doi.org/10.3390/rs10030379.
Qiao, L., Y. Qin, X. Ren, and Q. Wang. 2015. “Identification of buried objects in GPR using amplitude modulated signals extracted from multiresolution monogenic signal analysis.” Sens. 15 (12): 30340–30350. https://doi.org/10.3390/s151229801.
Rajala, L. 2015. “GSSI seeks to perfect ground penetrating radar technology at new Nashua facility.” Accessed April 22, 2019. https://www.nhbr.com/gssi-seeks-to-perfect-ground-penetrating-radar-technology-at-new-nashua-facility/.
Rajiv, K., G. R. Chandra, and B. B. Rao. 2017. “GPR objects hyperbola region feature extraction.” Adv. Comput. Sci. and Technol. 10 (5): 789–804.
Ranalli, D., M. Scozzafava, and M. Tallini. 2004. “Ground penetrating radar investigations for the restoration of historic buildings: The case study of the Collemaggio Basilica (L’Aquila, Italy).” J. Cult. Heritage 5 (1): 91–99. https://doi.org/10.1016/j.culher.2003.05.001.
Rial, F. I., M. Pereira, H. Lorenzo, P. Arias, and A. Novo. 2009. “Resolution of GPR bowtie antennas: An experimental approach.” J. Appl. Geophys. 67 (4): 367–373. https://doi.org/10.1016/j.jappgeo.2008.05.003.
Saarenketo, T., and T. Scullion. 2000. “Road evaluation with ground penetrating radar.” J. Appl. Geophys. 43 (2–4): 119–138. https://doi.org/10.1016/S0926-9851(99)00052-X.
Sagnard, F., and J. P. Tarel. 2016. “Template-matching based detection of hyperbolas in ground-penetrating radargrams for buried utilities.” J. Geophys. Eng. 13 (4): 491. https://doi.org/10.1088/1742-2132/13/4/491.
Salucci, M., L. Poli, and A. Massa. 2017. “Advanced multi-frequency GPR data processing for non-linear deterministic imaging.” Signal Process. 132 (Mar): 306–318. https://doi.org/10.1016/j.sigpro.2016.06.019.
Schneider, B. B., R. D. Mandel, G. P. Tsoflias, S. L. De Vore, and M. Lynott. 2016. “Combining ER and GPR surveys for evidence of prehistoric landscape construction: Case study at Mound City, Ohio, USA.” J. Appl. Geophys. 129 (Jun): 178–186. https://doi.org/10.1016/j.jappgeo.2016.04.002.
Sensors & Software. 2018. “Products.” Accessed July 2, 2018. https://www.sensoft.ca/products/.
Sensors & Software. 2019. “Conquest-100-Brochure.” Accessed April 22, 2019. https://www.sensoft.ca/wp-content/uploads/2015/12/Conquest-100-brochure.pdf.
Sharma, G. K., and T. Kind. 2018. “Distinction of tendon ducts and rebars by GPR reflection signal patterns.” In Proc., 17th Int. Conf. on Ground Penetrating Radar (GPR), 1–4. Piscataway, NJ: IEEE.
Sjoberg, Y., P. Marklund, R. Pettersson, and S. W. Lyon. 2015. “Geophysical mapping of palsa peatland permafrost.” Cryosphere 9 (2): 465–478.
Slabej, M., M. Grinč, M. Kováč, M. Decký, and Š. Šedivý. 2015. “Non-invasive diagnostic methods for investigating the quality of Žilina airport’s runway.” Contrib. Geophys. Geod. 45 (3): 237–254. https://doi.org/10.1515/congeo-2015-0022.
Slob, E., M. Sato, and G. Olhoeft. 2010. “Surface and borehole ground-penetrating-radar developments.” Geophys. 75 (5): 75A103–75A120. https://doi.org/10.1190/1.3480619.
Smith, D. G., and H. M. Jol. 1995. “Ground penetrating radar: Antenna frequencies and maximum probable depths of penetration in Quaternary sediments.” J. Appl. Geophys. 33 (1–3): 93–100. https://doi.org/10.1016/0926-9851(95)90032-2.
Smith, D. R., and D. Schurig. 2003. “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors.” Phys. Rev. Lett. 90 (7): 077405. https://doi.org/10.1103/PhysRevLett.90.077405.
Sonkamble, S., V. Satishkumar, B. Amarender, and S. Sethurama. 2014. “Combined ground-penetrating radar (GPR) and electrical resistivity applications exploring groundwater potential zones in granitic terrain.” Arabian J. Geosci. 7 (8): 3109–3117. https://doi.org/10.1007/s12517-013-0998-y.
Stampolidis, A., P. Soupios, F. Vallianatos, and G. N. Tsokas. 2003. “Detection of leaks in buried plastic water distribution pipes in urban places—A case study.” In Proc., 2nd Int. Workshop on Advanced Ground Penetrating Radar, 2003, 120–124. Piscataway, NJ: IEEE.
Steelman, C. M., and A. L. Endres. 2011. “Comparison of petrophysical relationships for soil moisture estimation using GPR ground waves.” Vadose Zone J. 10 (1): 270–285. https://doi.org/10.2136/vzj2010.0040.
Streich, R., and J. Van der Kruk. 2007. “Accurate imaging of multicomponent GPR data based on exact radiation patterns.” IEEE Trans. Geosci. Remote Sens. 45 (1): 93–103. https://doi.org/10.1109/TGRS.2006.883459.
Sule, S. D., and K. S. Paulson. 2017. “A comparison of bistatic and multistatic handheld ground penetrating radar (GPR) antenna performance for landmine detection.” In Proc., Radar Conf. (RadarConf), 2017 IEEE, 1211–1215. Piscataway, NJ: IEEE.
Sundström, N., A. Kruglyak, and J. Friborg. 2012. “Modeling and simulation of GPR wave propagation through wet snowpacks: Testing the sensitivity of a method for snow water equivalent estimation.” Cold Reg. Sci. Technol. 74 (May): 11–20. https://doi.org/10.1016/j.coldregions.2012.01.006.
Tabarro, P. G., J. Pouliot, R. Fortier, and L. M. Losier. 2017. “A WebGIS to support GPR 3D data acquisition: A first step for the integration of underground utility networks in 3D city models.” Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci. XLII-4/W7 (Oct): 43. https://doi.org/10.5194/isprs-archives-XLII-4-W7-43-2017.
Teoh, Y. J., M. A. Bruka, N. M. Idris, N. A. Ismail, and N. M. Muztaza. 2018. “Introduction of a ground penetrating radar system for subsurface investigation in Balik Pulau, Penang Island.” J. Phys. Conf. Ser. 995 (1): 1–8. https://doi.org/10.1088/1742-6596/995/1/012098.
Terrasse, G., J. M. Nicolas, E. Trouvé, and É. Drouet. 2016. “Sparse decomposition of the GPR useful signal from hyperbola dictionary.” In Proc., 24th European Signal Processing Conf. (EUSIPCO), 2400–2404. Piscataway, NJ: IEEE.
Tillard, S., and J. C. Dubois. 1995. “Analysis of GPR data: Wave propagation velocity determination.” J. Appl. Geophys. 33 (1–3): 77–91. https://doi.org/10.1016/0926-9851(95)90031-4.
Topczewski, L., F. M. Fernandes, P. J. Cruz, and P. B. Lourenço. 2007. “Practical implications of GPR investigation using 3D data reconstruction and transmission tomography.” J. Build. Appraisal 3 (1): 59–76. https://doi.org/10.1057/palgrave.jba.2950060.
Tosti, F., L. B. Ciampoli, A. Calvi, A. M. Alani, and A. Benedetto. 2018. “An investigation into the railway ballast dielectric properties using different GPR antennas and frequency systems.” NDT & E Int. 93 (Jan): 131–140. https://doi.org/10.1016/j.ndteint.2017.10.003.
Tosti, F., C. Patriarca, E. Slob, A. Benedetto, and S. Lambot. 2013. “Clay content evaluation in soils through GPR signal processing.” J. Appl. Geophys. 97 (Oct): 69–80. https://doi.org/10.1016/j.jappgeo.2013.04.006.
Turk, A. S. 2004. “Ultra-wideband TEM horn design for ground penetrating impulse radar systems.” Microwave Opt. Technol. Lett. 41 (5): 333–336. https://doi.org/10.1002/mop.20133.
Tzanis, A. 2006. “MATGPR-3.5.” Accessed May 16, 2019. http://users.uoa.gr/~atzanis/matgpr/matgpr.html.
Urban, T. M., J. F. Leon, S. W. Manning, and K. D. Fisher. 2014. “High resolution GPR mapping of late bronze age architecture at Kalavasos-Ayios Dhimitrios, Cyprus.” J. Appl. Geophys. 107 (Aug): 129–136. https://doi.org/10.1016/j.jappgeo.2014.05.020.
USRADAR. 2018. “Ground penetrating radar (GPR) products.” Accessed July 2, 2018. http://www.usradar.com/ground-penetrating-radar-products/.
USRADAR. 2019d. “Ground penetrating radar FAQ.” Accessed April 22, 2019. http://www.usradar.com/about-ground-penetrating-radar-gpr/faq/.
Utsi Electronics. 2019e. “GROUNDVEUL 5.” Accessed April 22, 2019. http://www.utsielectronics.co.uk/products/item/94-gv5.
Utsi Electronics. 2019f. “GROUNDVEUL 5C.” Accessed April 22, 2019. http://www.utsielectronics.co.uk/products/item/99-gv5c.
Utsi Electronics. 2019g. “GROUNDVEUL 6.” April 22, 2019. http://www.utsielectronics.co.uk/groundvue-6.
Utsi Electronics. 2019h. “GROUNDVEUL 6C.” Accessed April 22, 2019. http://www.utsielectronics.co.uk/groundvue-6c.
Wahab, W. A., J. Jaafar, I. M. Yassin, and M. R. Ibrahim. 2013. “Interpretation of Ground Penetrating Radar (GPR) image for detecting and estimating buried pipes and cables.” In Proc., IEEE Int. Conf. on Control System, Computing and Engineering, 361–364. Piscataway, NJ: IEEE.
Wang, P., Z. Hu, Y. Zhao, and X. Li. 2016. “Experimental study of soil compaction effects on GPR signals.” J. Appl. Geophys. 126 (Mar): 128–137. https://doi.org/10.1016/j.jappgeo.2016.01.019.
Wang, X., and S. Liu. 2017. “Noise suppressing and direct wave arrivals removal in GPR data based on Shearlet transform.” Signal Process. 132 (Mar): 227–242. https://doi.org/10.1016/j.sigpro.2016.05.007.
Williams, N. D. 2014. “Nondestructive testing of rail tunnel linings.” Ph.D. thesis, Dept. of Civil Engineering, Texas A&M Univ.
Wiwatrojanagul, P., R. Sahamitmongkol, S. Tangtermsirikul, and N. Khamsemanan. 2017. “A new method to determine locations of rebars and estimate cover thickness of RC structures using GPR data.” Constr. Build. Mater. 140 (Jun): 257–273. https://doi.org/10.1016/j.conbuildmat.2017.02.126.
Wu, B., Y. Ji, and G. Fang. 2010. “Analysis of GPR UWB half-ellipse antennas with different heights of backed cavity above ground.” IEEE Antennas Wirel. Propag. Lett. 9 (Mar): 130–133. https://doi.org/10.1109/LAWP.2010.2044475.
Xu, X., J. Wu, J. Shen, and Z. He. 2006. “Case study: Application of GPR to detection of hidden dangers to underwater hydraulic structures.” J. Hydraul. Eng. 132 (1): 12–20. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:1(12).
Yalçıner, C. Ç., Y. C. Kurban, and E. Altunel. 2017. “Research using GPR into the cause of cracks and depressions in the floor of the gallery of Hagia Sophia Museum.” Constr. Build. Mater. 139 (May): 458–466. https://doi.org/10.1016/j.conbuildmat.2017.02.036.
Yelf, R. J. 2007. “Application of ground penetrating radar to civil and geotechnical engineering.” Electromagn. Phenom. 7 (1): 18.
Yuan, C., S. Li, H. Cai, and V. R. Kamat. 2018. “GPR signature detection and decomposition for mapping buried utilities with complex spatial configuration.” J. Comput. Civ. Eng. 32 (4): 04018026. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000764.
Zhang, X., L. Dao, C. Zhang, L. Morrison, B. Hong, H. Zhang, and Y. Gan. 2018. “Mapping the spatial distribution of soil depth in a grassland ecosystem with the aid of ground penetrating radar and GIS (Northwestern Sichuan, China)” Grassland Sci. 64 (4): 217–225. https://doi.org/10.1111/grs.12201.
Zhao, W., E. Forte, M. Pipan, and G. Tian. 2013. “Ground penetrating radar (GPR) attribute analysis for archaeological prospection.” J. Appl. Geophys. 97 (Oct): 107–117. https://doi.org/10.1016/j.jappgeo.2013.04.010.
Zhou, F., Z. Chen, H. Liu, J. Cui, B. Spencer, and G. Fang. 2018a. “Simultaneous estimation of rebar diameter and cover thickness by a GPR-EMI dual sensor.” Sens. 18 (9): 2969. https://doi.org/10.3390/s18092969.
Zhou, X., H. Chen, and J. Li. 2018b. “An automatic GPR B-scan image interpreting model.” IEEE Trans. Geosci. Remote Sens. 56 (6): 3398–3412. https://doi.org/10.1109/TGRS.2018.2799586.

Information & Authors

Information

Published In

Go to Journal of Performance of Constructed Facilities
Journal of Performance of Constructed Facilities
Volume 33Issue 5October 2019

History

Published online: Jun 27, 2019
Published in print: Oct 1, 2019
Discussion open until: Nov 27, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Zhongming Xiang, S.M.ASCE [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Univ. of Utah, Salt Lake City, UT 84112 (corresponding author). Email: [email protected]
Abbas Rashidi, M.ASCE [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Utah, Salt Lake City, UT 84112. Email: [email protected]
Ge “Gaby” Ou, Aff.M.ASCE [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Utah, Salt Lake City, UT 84112. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share