TECHNICAL PAPERS
Jun 10, 2009

Nondeformability of Ventilated and Mortar-Embedded Marble Facade Panels

Publication: Journal of Performance of Constructed Facilities
Volume 24, Issue 1

Abstract

It is known that in historical buildings as well as new buildings, facade claddings consisting of marble panels, are prone to damage patterns such as softening, crack formation, and bowing. The degree of damage is apparently dependent on the location of the building, the external climatic conditions, and the type of fastening of the facade panels. In this article, it is examined by means of nonstationary thermal simulation, to which extent the temperature fields, which develop in the facade panel, have an effect on the damage of the panel. It is shown that the diurnal and annual amplitude of the panel temperature induced by solar flux, external air temperature fluctuations, and long-wave input radiation and irradiation have a substantial influence on the damage process. On the example of the simulation of the thermal behavior of a facade panel for the building locations in Athens, Greece, Vienna, Austria, and Helsinki, Finland, it is shown that the observed increase of the susceptibility of marble facades to damages can be explained with the increase of the geographical latitude through the differences in the external climatic conditions. It is strongly recommended that architects and restorers install specific marble facade panels (like carrara marble) in close thermal contact with the wall behind, since this reduces the susceptibility of the facade to damage.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The writers thank to Professor Dr. Andreas Rohatsch (Institut für Ingenieursgeologie, TU Wien) und Professor Dr. Andreas Kolbitsch (Institut für Hochbau und Technologie E206-4, TU Wien) for interesting discussions and valuable references

References

Akesson, U., Lindqvist, J. E., Schouenborg, B., and Grelk, B. (2006). “Relationship between microstructure and bowing properties of calcite marble claddings.” Bull. Eng. Geol. Environ., 65, 73–79.
Bouineau, A., and Perrier, R. (1995). “La décohésion granulaire, maladie des revètements de facades en marble.” Mines et carrières—Industrie minerérale aoùt—Septembre 147, 32–35 (in French).
Chau, K. T., and Shao, J. F. (2006). “Sub critical crack growth of edge and centre cracks in facade rock panels subject to periodic surface temperature variations.” Int. J. Solids Struct., 43, 807–827.
Dunakin, R. C., Liondborg, U. R., and Rowcliffe, D. J. (1999). “Mechanical and environmental crack propagation in marble.” Proc., 10th Workshop Euromarble, National Heritage Board, Stockholm, Sweden, 28–35.
EN ISO. (1995). “Thermal performance of buildings—Calculation of internal temperatures of a room in summer without mechanical cooling—General criteria and validation procedures.” EN ISO 13791, Brussels, Belgium (in German).
Fischer-Werke, W. (1996). “Naturstein fest verankert (strongly ancoreched natural stone).” Naturstein, 2, 91–96.
Fleischer, G. (2002). “Beurteilung von Ultraschalluntersuchungen an Natursteinobjekten in der Denkmalpflege (review of ultrasound studies of natural stone objects in conservation of monuments).” Ph.D. thesis, Inst. f. Ingenieursgeologie, Vienna Univ. of Technology, Vienna, Austria.
Fleischer, G., and Rohatsch, A. (2003). Untersuchungen zur Generalsanierung der Kirche St. Leopold am Steinhof in Wien (Studies on a general restoration of the church St. Leopold am Steinhof in Vienna), Referateband, Institut für Bauschadensforschung, Österreich, Austria.
Grimm, W. D. (1999). “Beobachtungen und Überlegungen zur Verformung von Marmorobjekten durch Gefügeauflockerungen (observations and considerations on the deformation of marble objects by structural loosening).” Z.dt. Geol. Ges., 150(2), 195–235.
Haferland, Fr., Heindl, W., and Fuchs, H. (1975). “Ein Verfahren zur Ermittlung des Wärmetechnischen Verhaltens ganzer Gebäude unter periodisch wechselnder Wärmeeinwirkung (A method for the simulation of the thermal behavior of whole buildings under periodic conditions).” Berichte aus der Bauforschung H. 99, Verlag Wilhelm Ernst & Sohn Berlin München, Düsseldorf, Germany.
Hansen, M. (1970). “Korrekturen von extremen klimatischen Bedingungen in Arbeitsbereichen (On the correction of extreme climatic conditions in working areas).” VDI-Ber., 147, 83–90.
Heindl, W. (1967). “Neue Methoden zur Beurteilung des Wärmeschutzes im Hochbau (New methods for the assessment of heat insulation in building construction).” Die Ziegelindustrie, Heft 4, 111–118; Heft 5, 147–157; Heft 6, 191–200, Wiesbaden, Germany.
Heindl, W., Kreč, K., Panzhauser, E., and Sigmund, A. (1987). Wärmebrücken (Heat bridges), Springer, New York.
Herndler, S., and Tschegg, E. K. (2004). “Schallemissionsmessungen zur temperaturabhängigen Schädigung von Marmor (Acoustic emission measurement of temperature depending damage of marble).” Research Rep. No. (Forschungsbericht Nr) 3/2004, Material Science Laboratory E 138, Vienna Univ. of Technology, Vienna, Austria, 1–43.
Kessler, D. W. (1919). Physical and chemical tests on the commercial marbles of the United States—Technologies papers of the bureau of standards no. 123, Government Printing Office, Washington, D.C.
Koch, A. (2005). “Deformation von Fassadenplatten aus Marmor: Schadenskartierungen und gesteinstechnische Untersuchungen zur Verwitterungsdynamik von Marmorfassaden (Deformation of facade plates of marble: Damage registration and stone technological investigations on the dynamics of wheatering of marble plates).” Ph.D. thesis, Georg-August-University, Göttingen, Germany.
Koch, A., and Siegesmund, S. (2004). “The combined effect of moisture and temperature on the anomalous expansion behaviour of marble.” Environ. Geol., 40, 350–363.
Koch, H. A., and Pechinger, U. (1977). “Möglichkeiten zur Berücksichtigung von Sonnen-und Wärmestrahlungseinflüssen auf Gebäudeoberflächen (Ways in considering the influence of solar and longwave radiation falling on the building envelope).” Gesund.-Ing., 98(10), 265–280.
Köhler, W., (1991). “Untersuchungen zu Verwitterungsvorgängen an Carrara-Marmor in Potsdam-Sanssouci (Studies on wheatering processes in Carrara marble in Potsdam-Sanssouce—Stone damage—Stone conservation).” Berichte zu Forschung und Praxis der Denkmalpflege in Deutschland, Hannover, Germany, Steinschäden—Steinkonservierung, Nr. 2, 50–54.
Kolbitsch, A. (2003). “Natursteinfassaden, Charakteristik—Schädigung—Sanierungsansätze (Natural stone facades, characterisation—Damage—Restoration means).” Wiener Sanierungstage, Fassadeninstandsetzung, Vol. 11, Institut für Bauschadensforschung, Österr, Forschungsinstitut für Chemie und Technik, Wien, 1–9.
Kreč, K. (1993a). “Zur Wärmespeicherung in Baukonstruktionen (On the storage of heat in building components).” Gesund.-Ing., 114(1), 11–18.
Kreč, K. (1993b). “Wärmeleitung in Baukonstruktionen unter Berücksichtigung von Wärmequellen (Conduction of heat in building components in consideration of heat sources).” Gesund.-Ing., 114(6), 313–318.
Kreč, K. (2007). Handbuch des Programmpakets zur Simulation des thermischen Verhaltens von Räumen, Raumgruppen und Gebäuden (Manual of the program for the numerical simulation of the thermal behavior of rooms and buildings), GEBA V7.0, Schönberg am Kamp, Austria.
New stone technology, design, and construction for exterior wall systems. (1987). B. Donaldson, ed., ASTM Special Technical (STP), West Conshohocken, Pa., 996.
ÖNORM. (1999). “Wärmeschutz im Hochbau—Wärmespeicherung und Sonneneinflüsse (Thermal protection in building construction—Heat storage and solar impact).” B8110-3, Vienna, Austria.
Poschold, K. (1990). “Das Wasser im Porenraum kristalliner Naturwerksteine und sein Einfluss auf die Verwitterung (Water in pores of crystalline natural stone and its influence on weathering).” Münchner geowissenschaftliche Abhandlungen: Reihe B, Allgemeine angewandte Geologie, Vol. 7, Verlag F. Pfeil, München, Germany, 1–62
Royer-Carfagni, G. (1999) “Some considerations on the warping of marble facades: The example of Alvar Aalto’s Finland Hall in Helsinki.” Constr. Build. Mater., 13, 449–457.
Rüdrich, J. M. (2003). “Gefügekontrollierte Verwitterung natürlicher und konservierter Marmore (Weathering of natural and conserved marble controlled by structure).” Ph.D. thesis, Georg-August-Universität, Göttingen, Germany.
Sage, J. D. (1988). Thermal micro fracturing of marble. eng. geology of ancient works—Monuments and historical sites, P. G. Marinos and G. C. Koukis, eds., Balkema, Rotterdam, The Netherlands, 1013–1018.
Schouenborg, B. (2006). “Testing and assessment of marble and limestone.” Final Technical Rep. Contract No. GRD1-1999-10735, TEAM, Swedish National Testing and Research Institute, Borås, Sweden.
Schouenborg, B., Grelk, B., Brundin, J. A., and Alnaes, L. (2000). “Bowtest for cladding panels of marble.” Nordtest-project 1443–99, Rep. No. 2008:28, Swedish National Testing and Research Institute, Borås, Sweden, 28.
Siegesmund, S., and Koch, A. (2002). “Ursachen für Schäden an Natursteinfassaden (Reasons for damages of natural stone facades).” Naturstein, 8, 52–57.
Stein, A. (1996). “Die Konstruktion von Natursteinfassaden—Eine Einführung (The construction of natural stone facades—An introduction).” Naturstein, 2, 28–29.
Trewitt, T. J., and Tuchmann, J. (1988). “Amoco may replace marble.” Proc., Headquarters, ENR.
Tschegg, E. K. (1996). “Prevention of deformation of marble cladding panels.” Final Technical Rep. No. CR-1815-91, CRAFT, Laboratory of Materials Science, Vienna Univ. of Technology, Vienna, Austria.
Tschegg, E. K., Widhalm, C., and Eppensteiner, W. (1999). “Ursachen mangelnder formbeständigkeit von marmorplatten (reasons for non sufficient shape resistance of marble plates).” Z. Der Deutschen Geolog. Gesellschaft, 150(2), 283–297.
Widhalm, C., Eppensteiner, W., and Tschegg, E. K. (1999). “Meßmethoden zur beschreibung von gefügeanisotropien in marmor (methods for determining structural anisotropies of marble).” Z. Der Deutschen Geolog. Gesellschaft, 150(2), 275–281.
Widhalm, C., Tschegg, E. K., and Eppensteiner, W. (1996). “Anisotropic thermal expansion causes deformation of marble claddings.” J. Perform. Constr. Facil., 10(1), 5–10.
Widhalm, C., Tschegg, E. K., and Eppensteiner, W. (1997). “Acoustic emission and anisotropic expansion when heating marble.” J. Perform. Constr. Facil., 11(1), 35–40.
Winkler, E. M. (1997). Stone in architecture, properties, durability, Springer, New York.
Zentralanstalt für Meteorologie und Geodynamik, Wien Hohe Warte. (1996). Weltklimadaten (World climate data), Central Institute for Meteorology and Geodynamics, Vienna, Austria.

Information & Authors

Information

Published In

Go to Journal of Performance of Constructed Facilities
Journal of Performance of Constructed Facilities
Volume 24Issue 1February 2010
Pages: 19 - 30

History

Received: Dec 24, 2008
Accepted: Jun 9, 2009
Published online: Jun 10, 2009
Published in print: Feb 2010

Permissions

Request permissions for this article.

Authors

Affiliations

Elmar Karl Tschegg [email protected]
Material Science Laboratory, Center of Building Construction and Rehabilitation E2006-4, Vienna Univ. of Technology, Karlsplatz 13, A-1040 Vienna, Austria (corresponding author). E-mail: [email protected]
Klaus Kreč
Institute of Architecture and Designe, Vienna Univ. of Technology, Karlsplatz 13, A-1040 Vienna, Austria.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share