Technical Papers
Oct 31, 2022

Finite-Element Modeling of FRP-Confined Noncircular Concrete Columns Using the Evolutionary Potential-Surface Trace Plasticity Constitutive Model for Concrete

Publication: Journal of Composites for Construction
Volume 27, Issue 1

Abstract

The compressive behavior of fiber-reinforced polymer (FRP)-confined concrete columns with a noncircular cross section has been investigated through extensive experimental, analytical, and numerical research, but a unified theoretical/numerical approach that can accurately predict both their section-average behavior and local concrete behavior is not yet available. In noncircular columns under axial compression, the concrete is typically under a nonuniform stress state of three-dimensional (3D) compression, with the lateral compressive stresses being the reactive stresses from the confining device (i.e., passive confinement). The authors of the present paper recently developed a plasticity constitutive model for concrete under general 3D compressive stresses, which possesses a potential surface with an evolutionary deviatoric trace that can accurately capture the results of existing compression tests of concrete cubes under nonuniform, passive confinement. This paper explores the application and capability of this evolutionary potential-surface trace (EPT) plasticity constitutive model in finite-element (FE) analysis of FRP-confined square, rectangular, and elliptical plain-concrete columns under concentric compression. The section-average behavior of all the selected noncircular columns predicted by these FE analyses was close to the existing experimental data. The numerical results obtained with the EPT plasticity constitutive model were then examined in detail to achieve an improved understanding of local concrete behavior in FRP-confined noncircular columns.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some data and the computer code that support the findings of this study are available from the corresponding author upon reasonable request. The available data include the results of the finite element analyses. The mathematical formulation of the adopted plasticity model for concrete is available at https://doi.org/10.1016/j.engstruct.2021.113435., and its FORTRAN code may be released by the authors in the future.
The authors are grateful for the financial support received from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region, China (Project Nos. PolyU152203/18E and T22-502/18-R).

References

Bažant, Z. P. 1978. “Endochronic inelasticity and incremental plasticity.” Int. J. Solids Struct. 14 (9): 691–714. https://doi.org/10.1016/0020-7683(78)90029-X.
Dassault Systemes. 2020. ABAQUS: Theory and user’s manuals. Vélizy-Villacoublay, France: Dassault Systemes.
Doran, B., H. O. Koksal, and T. Turgay. 2009. “Nonlinear finite element modeling of rectangular/square concrete columns confined with FRP.” Mater. Des. 30 (8): 3066–3075. https://doi.org/10.1016/j.matdes.2008.12.007.
Ekop, I., and P. Grassl. 2022. “On finite element modelling of concrete columns with noncircular cross-sections confined with carbon fibre reinforced polymer.” In UK Association for Computational Mechanics (UKACM) Conf. Nottingham: UKACM.
Fanaradelli, T. D., and T. C. Rousakis. 2020. “3D finite element pseudodynamic analysis of deficient RC rectangular columns confined with fiber reinforced polymers under axial compression.” Polymers 12 (11): 2546. https://doi.org/10.3390/polym12112546.
Grassl, P., K. Lundgren, and K. Gylltoft. 2002. “Concrete in compression: A plasticity theory with a novel hardening law.” Int. J. Solids Struct. 39 (20): 5205–5223. https://doi.org/10.1016/S0020-7683(02)00408-0.
Hajsadeghi, M., F. J. Alaee, and A. Shahmohammadi. 2011. “Investigation on behaviour of square/rectangular reinforced concrete columns retrofitted with FRP jacket.” J. Civ. Eng. Manage. 17 (3): 400–408. https://doi.org/10.3846/13923730.2011.594155.
Han, D. J., and W. F. Chen. 1985. “A nonuniform hardening plasticity model for concrete materials.” Mech. Mater. 4 (3–4): 283–302. https://doi.org/10.1016/0167-6636(85)90025-0.
Hany, N. F., E. G. Hantouche, and M. H. Harajli. 2016. “Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity.” Eng. Struct. 125: 1–14. https://doi.org/10.1016/j.engstruct.2016.06.047.
Jiang, J. F., and Y. F. Wu. 2012. “Identification of material parameters for Drucker–Prager plasticity model for FRP confined circular concrete columns.” Int. J. Solids Struct. 49 (3–4): 445–456. https://doi.org/10.1016/j.ijsolstr.2011.10.002.
Jiang, J. F., P. C. Xiao, and B. B. Li. 2017. “True-triaxial compressive behaviour of concrete under passive confinement.” Constr. Build. Mater. 156: 584–598. https://doi.org/10.1016/j.conbuildmat.2017.08.143.
Jiang, T., and J. G. Teng. 2007. “Analysis-oriented stress–strain models for FRP-confined concrete.” Eng. Struct. 29 (11): 2968–2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
Karabinis, A. I., and T. C. Rousakis. 2002. “Concrete confined by FRP material: A plasticity approach.” Eng. Struct. 24 (7): 923–932. https://doi.org/10.1016/S0141-0296(02)00011-1.
Lam, L., and J. G. Teng. 2003a. “Design-oriented stress–strain model for FRP-confined concrete.” Constr. Build. Mater. 17 (6–7): 471–489. https://doi.org/10.1016/S0950-0618(03)00045-X.
Lam, L., and J. G. Teng. 2003b. “Design-oriented stress–strain model for FRP-confined concrete in rectangular columns.” J. Reinf. Plast. Compos. 22 (13): 1149–1186. https://doi.org/10.1177/073168403035429.
Lam, L., and J. G. Teng. 2004. “Ultimate condition of fiber reinforced polymer-confined concrete.” J. Compos. Constr. 8 (6): 539–548. https://doi.org/10.1061/(asce)1090-0268(2004)8:6(539).
Lam, L., J. G. Teng, C. H. Cheung, and Y. Xiao. 2006. “FRP-confined concrete under axial cyclic compression.” Cem. Concr. Compos. 28 (10): 949–958. https://doi.org/10.1016/j.cemconcomp.2006.07.007.
Lee, J., and G. L. Fenves. 1998. “Plastic-damage model for cyclic loading of concrete structures.” J. Eng. Mech. 124 (8): 892–900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
Li, B., J. Jiang, H. Xiong, Y. Zhan, Z. Wu, and L. S. Cunningham. 2021. “Improved concrete plastic-damage model for FRP-confined concrete based on true tri-axial experiment.” Compos. Struct. 269: 114051. https://doi.org/10.1016/j.compstruct.2021.114051.
Lim, J. C., and T. Ozbakkaloglu. 2015a. “Unified stress-strain model for FRP and actively confined normal-strength and high-strength concrete.” J. Compos. Constr. 19 (4): 04014072. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000536.
Lim, J. C., and T. Ozbakkaloglu. 2015b. “Investigation of the influence of the application path of confining pressure: Tests on actively confined and FRP-confined concretes.” J. Struct. Eng. 141 (8): 04014203. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001177.
Lim, J. C., and T. Ozbakkaloglu. 2015c. “Lateral strain-to-axial strain relationship of confined concrete.” J. Struct. Eng. 141 (5): 04014141. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001094.
Lin, G., and J. G. Teng. 2017. “Three-dimensional finite-element analysis of FRP-confined circular concrete columns under eccentric loading.” J. Compos. Constr. 21 (4): 04017003. https://doi.org/10.1061/(asce)cc.1943-5614.0000772.
Lin, G., and J. G. Teng. 2020. “Advanced stress–strain model for FRP-confined concrete in square columns.” Composites, Part B 197: 108149. https://doi.org/10.1016/j.compositesb.2020.108149.
Lubliner, J., J. Oliver, S. Oller, and E. Oñate. 1989. “A plastic-damage model for concrete.” Int. J. Solids Struct. 25 (3): 299–326. https://doi.org/10.1016/0020-7683(89)90050-4.
Mander, J. B., M. J. N. Priestley, and R. Park. 1988. “Theoretical stress–strain model for confined concrete.” J. Struct. Eng. 114 (8): 1804–1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
Mazzucco, G., V. A. Salomoni, C. E. Majorana, C. Pellegrino, and C. Ceccato. 2016. “Numerical investigation of concrete columns with external FRP jackets subjected to axial loads.” Constr. Build. Mater. 111: 590–599. https://doi.org/10.1016/j.conbuildmat.2016.02.050.
Menetrey, P., and K. J. Willam. 1995. “Triaxial failure criterion for concrete and its generalization.” ACI Struct. J. 92 (3): 311–318. https://doi.org/10.14359/1132.
Mirmiran, A., and M. Shahawy. 1997. “Behavior of concrete columns confined by fiber composites.” J. Struct. Eng. 123 (5): 583–590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583).
Mirmiran, A., M. Shahawy, M. Samaan, H. El Echary, J. C. Mastrapa, and O. Pico. 1998. “Effect of column parameters on FRP-confined concrete.” J. Compos. Constr. 2 (4): 175–185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175).
Mirmiran, A., K. Zagers, and W. Yuan. 2000. “Nonlinear finite element modeling of concrete confined by fiber composites.” Finite Elem. Anal. Des. 35 (1): 79–96. https://doi.org/10.1016/S0168-874X(99)00056-6.
Mohammadi, M., J. G. Dai, Y. F. Wu, and Y. L. Bai. 2019. “Development of extended Drucker–Prager model for nonuniform FRP-confined concrete based on triaxial tests.” Constr. Build. Mater. 224: 1–18. https://doi.org/10.1016/j.conbuildmat.2019.07.061.
Mohammadi, M., and Y. F. Wu. 2017. “Triaxial test for concrete under nonuniform passive confinement.” Constr. Build. Mater. 138: 455–468. https://doi.org/10.1016/j.conbuildmat.2017.02.032.
Mohammadi, M., and Y. F. Wu. 2019. “Modified plastic-damage model for passively confined concrete based on triaxial tests.” Composites, Part B 159: 211–223. https://doi.org/10.1016/j.compositesb.2018.09.074.
Mostofinejad, D., N. Moshiri, and N. Mortazavi. 2015. “Effect of corner radius and aspect ratio on compressive behavior of rectangular concrete columns confined with CFRP.” Mater. Struct. 48 (1–2): 107–122. https://doi.org/10.1617/s11527-013-0171-9.
Nisticò, N. 2014. “R.C. square sections confined by FRP: A numerical procedure for predicting stress–strain relationships.” Composites, Part B 59: 238–247. https://doi.org/10.1016/j.compositesb.2013.12.004.
Nisticò, N., and G. Monti. 2013. “RC square sections confined by FRP: Analytical prediction of peak strength.” Composites, Part B 45 (1): 127–137. https://doi.org/10.1016/j.compositesb.2012.09.041.
Ozbakkaloglu, T. 2013. “Axial compressive behavior of square and rectangular high-strength concrete-filled FRP tubes.” J. Compos. Constr. 17 (1): 151–161. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000321.
Ozbakkaloglu, T., and D. J. Oehlers. 2008. “Concrete-filled square and rectangular FRP tubes under axial compression.” J. Compos. Constr. 12 (4): 469–477. https://doi.org/10.1061/(asce)1090-0268(2008)12:4(469).
Papanikolaou, V. K., and A. J. Kappos. 2007. “Confinement-sensitive plasticity constitutive model for concrete in triaxial compression.” Int. J. Solids Struct. 44 (21): 7021–7048. https://doi.org/10.1016/j.ijsolstr.2007.03.022.
Pessiki, S., K. A. Harries, J. T. Kestner, R. Sause, and J. M. Ricles. 2001. “Axial behavior of reinforced concrete columns confined with FRP jackets.” J. Compos. Constr. 5 (4): 237–245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237).
Piscesa, B., M. M. Attard, and A. K. Samani. 2016. “A lateral strain plasticity model for FRP confined concrete.” Compos. Struct. 158: 160–174. https://doi.org/10.1016/j.compstruct.2016.09.028.
Ribeiro, F., J. Sena-Cruz, F. G. Branco, and E. Júlio. 2019. “3D finite element model for hybrid FRP-confined concrete in compression using modified CDPM.” Eng. Struct. 190: 459–479. https://doi.org/10.1016/j.engstruct.2019.04.027.
Rochette, P., and P. Labossière. 2000. “Axial testing of rectangular column models confined with composites.” J. Compos. Constr. 4 (3): 129–136. https://doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129).
Rousakis, T. C., A. I. Karabinis, P. D. Kiousis, and R. Tepfers. 2008. “Analytical modelling of plastic behaviour of uniformly FRP confined concrete members.” Composites, Part B 39 (7–8): 1104–1113. https://doi.org/10.1016/j.compositesb.2008.05.001.
Rudnicki, J. W., and J. R. Rice. 1975. “Conditions for the localization of deformation in pressure-sensitive dilatant materials.” J. Mech. Phys. Solids 23 (6): 371–394. https://doi.org/10.1016/0022-5096(75)90001-0.
Saadatmanesh, H., M. R. Ehsani, and M. W. Li. 1994. “Strength and ductility of concrete columns externally reinforced with fiber composite straps.” ACI Struct. J. 91 (4): 434–447. https://doi.org/10.14359/4151.
Saleem, S., Q. Hussain, and A. Pimanmas. 2017. “Compressive behavior of PET FRP–confined circular, square, and rectangular concrete columns.” J. Compos. Constr. 21 (3): 04016097. https://doi.org/10.1061/(asce)cc.1943-5614.0000754.
Samani, A. K., and M. M. Attard. 2014. “Lateral strain model for concrete under compression.” ACI Struct. J. 111 (2): 441–451. https://doi.org/10.14359/51686532.
Shahawy, M., A. Mirmiran, and T. Beitelman. 2000. “Tests and modeling of carbon-wrapped concrete columns.” Composites, Part B 31 (6–7): 471–480. https://doi.org/10.1016/S1359-8368(00)00021-4.
Shan, B., F. C. Gui, G. Monti, and Y. Xiao. 2019. “Effectiveness of CFRP confinement and compressive strength of square concrete columns.” J. Compos. Constr. 23 (6): 04019043. https://doi.org/10.1061/(asce)cc.1943-5614.0000967.
Sheikh, S. A., and S. M. Uzumeri. 1980. “Strength and ductility of tied concrete columns.” J. Struct. Div. 106 (5): 1079–1102. https://doi.org/10.1061/JSDEAG.0005416.
Simo, J. C., and R. L. Taylor. 1985. “Consistent tangent operators for rate-independent elastoplasticity.” Comput. Methods Appl. Mech. Eng. 48 (1): 101–118. https://doi.org/10.1016/0045-7825(85)90070-2.
Teng, J. G., Y. L. Huang, L. Lam, and L. P. Ye. 2007. “Theoretical model for fiber-reinforced polymer-confined concrete.” J. Compos. Constr. 11 (2): 201–210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201).
Teng, J. G., T. Jiang, L. Lam, and Y. Z. Luo. 2009. “Refinement of a design-oriented stress–strain model for FRP-confined concrete.” J. Compos. Constr. 13 (4): 269–278. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012.
Teng, J. G., and L. Lam. 2002. “Compressive behavior of carbon fiber reinforced polymer-confined concrete in elliptical columns.” J. Struct. Eng. 128 (12): 1535–1543. https://doi.org/10.1061/(asce)0733-9445(2002)128:12(1535).
Teng, J. G., J. Y. Wu, S. Casalboni, Q. G. Xiao, and Y. Zhao. 2016. “Behavior and modeling of fiberreinforced polymer-confined concrete in elliptical columns.” Adv. Struct. Eng. 19 (9): 1359–1378. https://doi.org/10.1177/1369433216642122.
Teng, J. G., J. J. Zeng, and J. F. Chen. 2015a. “Measurement of axial stress distributions in FRP-confined concrete columns using TEKSCAN pressure sensors.” In Proc., 12th Int. Symp. on Fiber Reinforced Polymers for Reinforced Concrete Structures and Proc., 5th Asia-Pacific Conf. on Fiber Reinforced Polymers in Structures. Paris, France: Atlantis Press.
Teng, J. G., Q. G. Xiao, T. Yu, and L. Lam. 2015b. “Three-dimensional finite element analysis of reinforced concrete columns with FRP and/or steel confinement.” Eng. Struct. 97: 15–28. https://doi.org/10.1016/j.engstruct.2015.03.030.
Wang, L. M., and Y. F. Wu. 2008. “Effect of corner radius on the performance of CFRP-confined square concrete columns: Test.” Eng. Struct. 30 (2): 493–505. https://doi.org/10.1016/j.engstruct.2007.04.016.
Wei, Y. Y., and Y. F. Wu. 2012. “Unified stress–strain model of concrete for FRP-confined columns.” Constr. Build. Mater. 26 (1): 381–392. https://doi.org/10.1016/j.conbuildmat.2011.06.037.
Wu, Y. F., and Y. Y. Wei. 2010. “Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns.” Eng. Struct. 32 (1): 32–45. https://doi.org/10.1016/j.engstruct.2009.08.012.
Yeh, F. Y., and K. C. Chang. 2012. “Size and shape effects on strength and ultimate strain in FRP confined rectangular concrete columns.” Journal of Mechanics 28 (4): 677–690. https://doi.org/10.1017/jmech.2012.118.
Yu, T., J. G. Teng, Y. L. Wong, and S. L. Dong. 2010a. “Finite element modeling of confined concrete—I: Drucker–Prager type plasticity model.” Eng. Struct. 32 (3): 665–679. https://doi.org/10.1016/j.engstruct.2009.11.014.
Yu, T., J. G. Teng, Y. L. Wong, and S. L. Dong. 2010b. “Finite element modeling of confined concrete—II: Plastic-damage model.” Eng. Struct. 32 (3): 680–691. https://doi.org/10.1016/j.engstruct.2009.11.013.
Zeng, L. F., G. Horrigmoe, and R. Andersen. 1996. “Numerical implementation of constitutive integration for rate-independent elastoplasticity.” Comput. Mech. 18 (5): 387–396. https://doi.org/10.1007/BF00376135.
Zheng, B. T., and J. G. Teng. 2022a. “A plasticity constitutive model for concrete under multiaxial compression.” Eng. Struct. 251 (PB): 113435. https://doi.org/10.1016/j.engstruct.2021.113435.
Zheng, B. T., and J. G. Teng. 2022b. “A 3D plasticity model for concrete and its application to concrete under non-uniform FRP confinement.” In Proc., 10th Int. Conf. on FRP Composites in Civil Engineering. New York: Springer Cham.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 27Issue 1February 2023

History

Received: Mar 17, 2022
Accepted: Jul 31, 2022
Published online: Oct 31, 2022
Published in print: Feb 1, 2023
Discussion open until: Mar 31, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Research Assistant Professor, Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., Hong Kong, China. ORCID: https://orcid.org/0000-0001-7719-1501. Email: [email protected]
Chair Professor of Structural Engineering, Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., Hong Kong, China (corresponding author). ORCID: https://orcid.org/0000-0001-5161-4502. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share