Open access
Technical Papers
Jan 21, 2021

Durability of Reinforced Concrete Beams Externally Strengthened with CFRP Laminates under Harsh Climatic Conditions

Publication: Journal of Composites for Construction
Volume 25, Issue 2

Abstract

This paper addresses the durability of reinforced concrete beams strengthened with carbon fiber-reinforced polymer (CFRP) laminates under natural and saline environments in the Arabian Gulf. Beam specimens were conditioned under sunlight and saline water for 180, 360, and 730 days and tested under four-point bending until failure. The load–deflection curves, strains, failure modes, ductility, and stiffness of the exposed beams were evaluated. The CFRP-strengthened specimens exhibited a 67% higher ultimate load capacity than control specimens after 28 days and up to 51% and 71% higher load capacity than control specimens after two years of direct sunlight and saline water exposure, respectively. No pronounced loss in strength and stiffness or damage to the epoxy was observed. Failure modes were transformed from cohesive to adhesive due to saline water exposure, whereas sunlight-exposed samples exhibited no failure-pattern change, and failures remained cohesive or interfacial. For design and analysis, environmental strength reduction factors are proposed and compared to current industry guidelines. Thus, CFRP-strengthened laminates can endure and perform effectively when subjected to severe environments of high salinity, temperature, and humidity.

Formats available

You can view the full content in the following formats:

Acknowledgments

The funding for this research was provided by the National Priorities Research Program of the Qatar National Research Fund (a member of the Qatar Foundation) under award no. NPRP 8-418-2-175. The statements made herein are solely the responsibility of the authors and do not necessarily reflect the opinions of the Sponsor.

References

Abbas, B. M. M. 2010. “Durability of CFRP-concrete bond under sustained load in harsh environment.” Ph.D. thesis, Dept. of Civil Engineering, Monash Univ.
ACI (American Concrete Institute). 2014. Building code requirement for structural concrete. ACI 318-14. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 2017. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440.2R-17. Farmington Hills, MI: ACI.
Al Azzawi, M., P. Hopkins, J. Ross, G. Mullins, and R. Sen. 2018. “Carbon fiber-reinforced polymer concrete masonry unit bond after 20 years of outdoor exposure.” ACI Struct. J. 115 (4): 971–982. https://doi.org/10.14359/51702226.
Al Nuaimi, N., M. G. Sohail, R. A. Hawileh, J. A. Abdalla, and K. Douier. 2020. “Durability of reinforced concrete beams strengthened by galvanized steel mesh-epoxy systems under harsh environmental conditions.” Compos. Struct. 249: 112547. https://doi.org/10.1016/j.compstruct.2020.112547.
Al-Tamimi, A. K., R. Hawileh, J. Abdalla, and H. A. Rasheed. 2011. “Effects of ratio of CFRP plate length to shear span and end anchorage on flexural behavior of SCC RC beams.” J. Compos. Constr. 15 (6): 908–919. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000221.
Al-Tamimi, A. K., R. A. Hawileh, J. A. Abdalla, H. A. Rasheed, and R. Al-Mahaidi. 2015. “Durability of the bond between CFRP plates and concrete exposed to harsh environments.” J. Mater. Civ. Eng. 27 (9): 04014252. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001226.
ASTM. 2012. Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading). ASTM C1609/C1609M-12. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for slump of hydraulic-cement concrete. ASTM C143/C143M-15a. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard specification for deformed and plain carbon-steel bars for concrete reinforcement. ASTM A615/A615M-16. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39/C39M-17. West Conshohocken, PA: ASTM.
Bahn, B. Y., and R. S. Harichandran. 2008. “Flexural behavior of reinforced concrete beams strengthened with CFRP sheets and epoxy mortar.” J. Compos. Constr. 12 (4): 387–395. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(387).
Bakis, C. E., L. C. Bank, V. L. Brown, E. Cosenza, J. F. Davalos, J. J. Lesko, A. Machida, S. H. Rizkalla, and T. C. Triantafillou. 2002. “Fiber-reinforced polymer composites for construction—State-of-the-art review.” J. Compos. Constr. 6 (2): 73–87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73).
Cabral-Fonseca, S., J. P. Nunes, M. P. Rodrigues, and M. I. Eusébio. 2011. “Durability of carbon fibre reinforced polymer laminates used to reinforced concrete structures.” Sci. Eng. Compos. Mater. 18 (4): 201–207. https://doi.org/10.1515/SECM.2011.041.
Choi, S., and E. P. Douglas. 2010. “Complex hygrothermal effects on the glass transition of an epoxy-amine thermoset.” ACS Appl. Mater. Interfaces 2 (3): 934–941. https://doi.org/10.1021/am9009346.
Choi, S., A. L. Gartner, N. Van Etten, H. R. Hamilton, and E. P. Douglas. 2012. “Durability of concrete beams externally reinforced with CFRP composites exposed to various environments.” J. Compos. Constr. 16 (1): 10–20. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000233.
Choobbor, S. S., R. A. Hawileh, A. Abu-Obeidah, and J. A. Abdalla. 2019. “Performance of hybrid carbon and basalt FRP sheets in strengthening concrete beams in flexure.” Compos. Struct. 227: 111337. https://doi.org/10.1016/j.compstruct.2019.111337.
Chotickai, P., and S. Somana. 2018. “Performance of CFRP-strengthened concrete beams after exposure to wet/dry cycles.” J. Compos. Constr. 22 (6): 04018053. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000895.
Cromwell, J. R., K. A. Harries, and B. M. Shahrooz. 2011. “Environmental durability of externally bonded FRP materials intended for repair of concrete structures.” Constr. Build. Mater. 25 (5): 2528–2539. https://doi.org/10.1016/j.conbuildmat.2010.11.096.
Dolan, C. W., J. Tanner, D. Mukai, H. R. Hamilton, and E. Douglas. 2009. Design guidelines for durability of bonded CFRP repair/strengthening of concrete beams. National Cooperative Highway Research Program (NCHRP) Web-Only Document 155. Washington, DC: National Academies of Sciences, Engineering, and Medicine.
El-Hawary, M., H. Al-Khaiat, and S. Fereig. 1998. “Effect of sea water on epoxy-repaired concrete.” Cem. Concr. Compos. 20 (1): 41–52. https://doi.org/10.1016/S0958-9465(97)00074-7.
El-Hawary, M., H. Al-Khaiat, and S. Fereig. 2000. “Performance of epoxy-repaired concrete in a marine environment.” Cem. Concr. Res. 30 (2): 259–266. https://doi.org/10.1016/S0008-8846(99)00242-2.
Gamage, J. C., M. B. Wong, and R. Al-Mahaidi. 2005. “Performance of CFRP strengthened concrete members under elevated temperature.” In Int. Symp. Bond Behaviour of FRP in Structures, 113–118. Hong Kong: International Institute for FRP in Construction.
Grace, N. F., and S. B. Singh. 2005. “Durability evaluation of carbon fiber-reinforced polymer strengthened concrete beams: Experimental study and design.” ACI Struct. J. 102 (1): 40–53.
Hanna, S., and R. Jones. 1997. “Composite wraps for ageing infrastructure: Concrete columns.” Compos. Struct. 38 (1–4): 57–64. https://doi.org/10.1016/S0263-8223(97)00041-X.
Hawileh, R. A., J. A. Abdalla, W. Nawaz, R. Muwafi, A. Alzeer, and A. Faridi. 2014. “Strengthening reinforced concrete beams in flexure using hardwire steel fiber sheets.” In Proc., 7th Int. Conf. on FRP Composites in Civil Engineering. Kingston, Ontario: International Institute for FRP in Construction.
Hawileh, R., A. K. Al-Tamimi, J. A. Abdalla, and M. H. Wehbi. 2011. “Retrofitting pre-cracked RC beams using CFRP and epoxy injections.” In: Composite science and technology, edited by S. M. Sapuan, F. Mustapha, D. L. Majid, Z. Leman, A. H. M. Ariff, M. K. A. Ariffin, M. Y. M. Zuhri, M. R. Ishak, and J. Sahari, 692–696. Zurich, Switzerland: Trans Tech Publications.
Helbling, C., M. Abanilla, L. Lee, and V. M. Karbhari. 2006. “Issues of variability and durability under synergistic exposure conditions related to advanced polymer composites in the civil infrastructure.” Composites, Part A 37 (8): 1102–1110. https://doi.org/10.1016/j.compositesa.2005.05.039.
Karbhari, V. M. 2003. “Durability of FRP composites for civil infrastructure—Myth, mystery or reality.” Adv. Struct. Eng. 6 (3): 243–255. https://doi.org/10.1260/136943303322419250.
Karbhari, V. M., J. W. Chin, D. Hunston, B. Benmokrane, T. Juska, R. Morgan, J. J. Lesko, U. Sorathia, and D. Reynaud. 2003. “Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure.” J. Compos. Constr. 7 (3): 238–247. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(238).
Karbhari, V. M., and L. Zhao. 1997. “Issues related to composite plating and environmental exposure effects on composite-concrete interface in external strengthening.” Compos. Struct. 40 (3–4): 293–304. https://doi.org/10.1016/S0263-8223(98)00031-2.
Li, J., R. J. Gravina, S. T. Smith, and P. Visintin. 2020. “Bond strength and bond stress-slip analysis of FRP bar to concrete incorporating environmental durability.” Constr. Build. Mater. 261: 119860. https://doi.org/10.1016/j.conbuildmat.2020.119860.
Li, J., J. Xie, F. Liu, and Z. Lu. 2019. “A critical review and assessment for FRP-concrete bond systems with epoxy resin exposed to chloride environments.” Compos. Struct. 229: 111372. https://doi.org/10.1016/j.compstruct.2019.111372.
Liu, S., Y. Pan, H. Li, and G. Xian. 2019. “Durability of the bond between CFRP and concrete exposed to thermal cycles.” Materials 12 (3): 515. https://doi.org/10.3390/ma12030515.
Micelli, F., R. Mazzotta, M. Leone, and M. A. Aiello. 2015. “Review study on the durability of FRP-confined concrete.” J. Compos. Constr. 19 (3): 04014056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000520.
Myers, J. J., S. S. Murthy, and F. Micelli. 2001. “Effect of combined environmental cycles on the bond of FRP sheets to concrete.” In: Proc., Composite in Construction, Int. Conf., edited by J. Figueiras, L. Juvandes, R. Faria, A. Torres Marques, A. Ferreira, J. Barros, and J. Appleton, 339–344. Lisse, UK: Balkema.
Naser, M. Z., R. A. Hawileh, and J. A. Abdalla. 2019. “Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review.” Eng. Struct. 198: 109542. https://doi.org/10.1016/j.engstruct.2019.109542.
Naser, M. Z., R. A. Hawileh, J. A. Abdalla, and A. Al-Tamimi. 2012. “Bond behavior of CFRP cured laminates: Experimental and numerical investigation.” J. Eng. Mater. Technol. 134 (2): 021002. https://doi.org/10.1115/1.4003565.
Nishizaki, I., P. Labossière, and B. Sarsaniuc. 2005. “Durability of CFRP sheet reinforcement through exposure tests.” In 7th Int. Symp. on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures, 1419–1428. Farmington Hills, MI: American Concrete Institute.
Nogueira, P., C. Ramírez, A. Torres, M. J. Abad, J. Cano, J. López, I. López-Bueno, and L. Barral. 2001. “Effect of water sorption on the structure and mechanical properties of an epoxy resin system.” J. Appl. Polym. Sci. 80 (1): 71–80. https://doi.org/10.1002/1097-4628(20010404)80:1%3C71::AID-APP1077%3E3.0.CO;2-H.
Pan, Y., G. Xian, and M. A. G. Silva. 2015. “Effects of water immersion on the bond behavior between CFRP plates and concrete substrate.” Constr. Build. Mater. 101: 326–337. https://doi.org/10.1016/j.conbuildmat.2015.10.129.
Salama, A. S. D., R. A. Hawileh, and J. A. Abdalla. 2019. “Performance of externally strengthened RC beams with side-bonded CFRP sheets.” Compos. Struct. 212: 281–290. https://doi.org/10.1016/j.compstruct.2019.01.045.
Sen, R. 2015. “Developments in the durability of FRP-concrete bond.” Constr. Build. Mater. 78: 112–125. https://doi.org/10.1016/j.conbuildmat.2014.12.106.
Shehata, E., R. Morphy, and S. Rizkalla. 2011. “Fibre reinforced polymer shear reinforcement for concrete members: Behaviour and design guidelines.” Can. J. Civ. Eng. 27 (5): 859–872. https://doi.org/10.1139/cjce-27-5-859.
Smith, S., R. Kaul, R. Ravindrarajah, and O. Otoom. 2005. “Durability considerations for FRP- strengthened RC structures in the Australian environment.” In Proc., Australian Structural Engineering Conf. 2005: Structural Engineering - Preserving and Building Into the Future. Sydney, New South Wales: Engineers Australia.
Tatar, J., and H. R. Hamilton. 2016a. “Implementation of bond durability in the design of flexural members with externally bonded FRP.” J. Compos. Constr. 20 (3): 04015072. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000636.
Tatar, J., and H. R. Hamilton. 2016b. “Comparison of laboratory and field environmental conditioning on FRP-concrete bond durability.” Constr. Build. Mater. 122: 525–536. https://doi.org/10.1016/j.conbuildmat.2016.06.074.
Tatar, J., and H. R. Hamilton. 2016c. “Bond durability factor for externally bonded CFRP systems in concrete structures.” J. Compos. Constr. 20 (1): 04015027. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000587.
Tatar, J., D. Wagner, and H. R. Hamilton. 2016. “Structural testing and dissection of carbon fiber-reinforced polymer-repaired bridge girders taken out of service.” ACI Struct. J. 113 (6): 1357–1368. https://doi.org/10.14359/51689160.
Toutanji, H. A., and W. Gómez. 1997. “Durability characteristics of concrete beams externally bonded with FRP composite sheets.” Cem. Concr. Compos. 19 (4): 351–358. https://doi.org/10.1016/S0958-9465(97)00028-0.
V-Wrap™ 700S. 2014. Strengthening solutions V-WrapTM 700S epoxy adhesive. Structural technologies.
V-Wrap™ C200H. 2014. Strengthening solutions V-WrapTM C200H high strength carbon fiber fabric. Structural technologies.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 25Issue 2April 2021

History

Received: Jun 5, 2020
Accepted: Nov 18, 2020
Published online: Jan 21, 2021
Published in print: Apr 1, 2021
Discussion open until: Jun 21, 2021

Authors

Affiliations

Nasser Al Nuaimi, Ph.D. [email protected]
Director, Center for Advanced Materials, Qatar Univ., P.O. Box 2713, Doha, Qatar. Email: [email protected]
Muazzam Ghous Sohail, Ph.D., M.ASCE https://orcid.org/0000-0002-1826-2741 [email protected]
Postdoctoral Research Fellow, Center for Advanced Materials, Qatar Univ., P.O. Box 2713, Doha, Qatar (corresponding author). ORCID: https://orcid.org/0000-0002-1826-2741. Email: [email protected]
Rami Hawileh, Ph.D., M.ASCE [email protected]
Professor, Dept. of Civil Engineering, American Univ. of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. Email: [email protected]
Jamal A. Abdalla, Ph.D., F.ASCE [email protected]
Professor, Dept. of Civil Engineering, American Univ. of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. Email: [email protected]
Kais Douier [email protected]
Research Associate, Dept. of Civil Engineering, American Univ. of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share