Abstract

The harsh Australian environment makes the use of steel reinforcement in concrete structures problematic on account of corrosion. The probability of corrosion damage will significantly increase in the years to come and will become a major problem not only in coastal regions but also in inland parts of Australia due to increasing carbon dioxide concentration, temperature, and relative humidity as a consequence of climate change. In the last two decades, glass fiber-reinforced polymer (GFRP) composite bars have become an alternative to steel reinforcement for reinforcing concrete structures exposed to harsh environments. The reinforcing material is noncorrodible, nonmagnetic, lightweight, and has high tensile strength, thus making it a viable reinforcing material for concrete structures. This paper provides the state-of-the-practice in the research, development, and application of GFRP bars, with the aim of properly informing the engineering community about this alternative, noncorrodible reinforcing technology. The paper also presents a strategy toward the development of fiber-reinforced polymer bar material specifications with the aim to ensure quality use and application of the GFRP material in a wide range of applications in Australia in the years to come. Moreover, the best practices and data presented in this paper will be very useful in the development of unified international standards and specifications for GFRP bars.

Get full access to this article

View all available purchase options and get full access to this article.

Appendix. Physical and Mechanical Properties of GFRP Bars in Australia

ReferenceGeometryFibersResinSurfaceDiameter (mm)Effective area (mm2)Fiber content (% by weight)Density (g/cm3)Void content (%)Cure ratio (%)Tg (oC)Transverse CTE (×10−6/oC)Water absorptionWater absorptionTensile modulus (GPa)Tensile strength (MPa)Tensile strainCompressive strength (MPa)Transverse shear (MPa)ILSS (MPa)Bond strength (MPa)Test standard
             24 hSaturation        
Manalo et al. (2014)Round, solidECR glassVinylesterSand coated12–19         62.6–65.61,105–1,3121.89–2.0    ASTM
Maranan et al. (2015c)Round, solidECR glassVinylesterSand coated12.7–19         62.6–65.61,105–1,3121.71–2.0    ASTM
Maranan et al. (2017)Round, solidECR glassVinylesterSand coated9.5–19         62.6–65.61,029–1,3121.45–1.89    ASTM
Maranan et al. (2018)Round, solidECR glassVinylesterSand coated9.5–15.9 77.6–84.1       62.6–65.61,029–1,312    18–22ASTM
Maranan et al. (2019)Round, solidECR glassVinylesterSand coated9.5–15.9 77.6–84.1       50–65.61,029–1,312     ASTM
Goldston et al. (2016)Round, solidECR glassVinylesterSand coated6.35–12.7         37.5–55.6732–1,6051.96–3.3    ASTM
Maranan et al. (2016)Round, solidECR glassVinylesterSand coated9.5–15.9         62.6–65.11,184–1,3721.89–2.11    ASTM
Elchalakani et al. (2019)Round, solidECR glassVinylesterRibbed7.4–13.2         55–59650–9301.2–1.7    ASTM
Elchalakani et al. (2018)Round, solidECR glassVinylesterSand coated6.35–12.7168        46.1–50784–1,2001.9–2.4    ASTM
AlAjarmeh et al. (2019a)Round, solidECR glassVinylesterSand coated9.5–15.9         60–62.51,237–1,3152.1–2.3    ASTM
AlAjarmeh et al. (2019b)Round, solidECR glassVinylesterSand coated9.5–19.1         60–62.51,237–1,3152.1–2.3    ASTM
Hadi et al. (2016a)Round, solidECR glassVinylesterSand coated11, 14.695, 168        50–571,200–1,2752.24–2.4    ASTM
 Round, solidECR glassVinylesterSand coated9.5, 12.795, 165        52–571,190–1,3202.28–2.31    ISO
Hadi et al. (2016b)Round, solidCarbonNot reportedPlain15177        89.41,1572.42596   ISO
 Round, solidECR glassVinylesterSand coated15.9292        561,3952.42846   ISO
Karim et al. (2017)Round, solidECR glassVinylesterSand coated9.5, 12.795, 167        66–761,600–1,7002.24–2.42    ASTM
Karim et al. (2016b)Round, solidECR glassVinylesterSand coated9.5, 12.795, 167        66–761,600–1,7002.24–2.42    ASTM
Khan et al. (2017)Round, solidCarbonNot reportedPlain15177        89.41,1572.42596   ISO
 Round, solidECR glassVinylesterSand coated15.9292        561,3952.42846   ISO
Elchalakani and Ma (2017)Round, solidECR glassVinylesterSand coated6.35–12.7168        46.1–50784–1,2001.9–2.4    ASTM
Elchalakani et al. (2017)Round, solidECR glassVinylesterSand coated6.35–12.7168        46.1–50784–1,2001.9–2.4    ASTM
             24 hSaturation        
Hasan et al. (2017)Round, solidECR glassVinylesterSand coated9.5, 12.795, 165        52–571,190–1,3202.28–2.31    ISO
Youssef and Hadi (2017)Round, solidECR glassVinylesterSand coated12.7165        67.91,6412.41    ISO
Hasan et al. (2018)Round, solidCarbonNot reportedPlain15177        89.41,1572.42596   ISO
 Round, solidECR glassVinylesterSand coated15.9292        561,3952.42846   ISO
Gravina and Smith (2008)Round, solidGlassNot reportedSand coated          377701.5     
 Round, solidCarbonNot reportedSand coated          1472,2502.1     
Maranan et al. (2015c)Round, solidECR glassVinylesterSand coated12–19         62.6–65.61,105–1,3121.71–2.0   19–23.9ASTM
Tekle et al. (2016)Round, solidECR glassVinylesterSand coated12.7,15.9184, 280        62,6, 681,505, 1,6472.42, 2.4   13, 15 
Tekle et al. (2017)Round, solidECR glassVinylesterSand coated12.7, 15.9      6.2  62.6–65.61,184–1,3121.89–2.0   12–15ASTM
Maranan et al. (2015b)Round, solidECR glassVinylesterSand coated12.7–19 83.98–84.1       62.6–65.61,105–1,3121.71–2.0   15–22ASTM
Benmokrane et al. (2017c)Round, solidECR glassVinylesterSand coated15–20227–24183       62.6–64.71,105–1,1841.71–1.89   15ASTM
Wu et al. (2016)Round, solidECR glassVinylesterSand coated15.9         64.61,473.7     ISO
Khan et al. (2018)Round, solidCarbonNot reportedPlain15177        89.41,1572.42596   ISO
 Round, solidECR glassVinylesterSand coated15.9292        561,3952.42846   ISO
Benmokrane et al. (2017a)Round, solidECR glassVinylesterSand coated10–2583–55580.9–81.8 0100105.2–125.820.5–220.02–0.150.04–0.1960–62.51,270–1,3152.1–2.3  47–56 ASTM, CSA
Benmokrane et al. (2017b)Round, solidECR glassVinylesterRibbed12 83.9 099.111317.7 0.6366.31,4322.16 25864.8 ASTM, CSA
 Round, solidECR glassPolyesterRibbed12 78.8 098.19320.8 1.1556.91,1502.02 25047.2 ASTM, CSA
 Round, solidECR glassEpoxyRibbed12 79.4 010012619.7 0.2361.81,5732.54 27077.4 ASTM, CSA
Benmokrane et al. (2018)Round, solidECR glassVinylesterSand coated15.9, 19 83.92.05095.1–96.8117  0.0639–42650   64.9 ASTM
Dong et al. (2018a)Round, solidBasaltVinylesterRibbed13120        481,141      
             24 hSaturation        
Dong et al. (2018b)Round, solidBasaltVinylesterRibbed13120        481,141      
Wang et al. (2018)Round, solidBasaltEpoxyRibbed628.580.5   13021.7  461,3983.0     
 Round, solidGlassEpoxyHelically wrapped628.580.5   13021.7  461,3983.0     
Khan et al. (2015)Round, solidGlassNot reportedSand coated15.9         561,394     ASTM
 Round, solidCarbonNot reportedPlain15         89.41,157     ASTM
Nazair et al. (2018)Round, solidECR glassVinylesterSand coated19.1 81.3–82.8  96–100107–124  0.14–0.1555–57866–879   57–61 ASTM
Ali et al. (2018)Round, solidECR glassPolyesterHelical12 78.8  98.193  1.15 1,015     ASTM, CSA
 Round, solidECR glassVinylesterHelical12 83.9  99.1113  0.63 1,220     ASTM, CSA
 Round, solidECR glassEpoxyHelical12 79.4  100126  0.23 1,090     ASTM, CSA
Maranan et al. (2014b)Round, solidECR glassVinylesterSand coated12.7–20.7 84.05   117          ASTM
Wagners (2016)Round, solidECR glassVinylesterRibbed3–40  2.2      40509–1,900  150  ASTM
 Round, solidBasaltVinylesterRibbed3–40  2.0–2.2      40546–2,050  150  ASTM
Bluey (2017)Round, solidGlassVinylesterRibbed25–32         601,197–1,203  420–460  
Innovative Construction Materials (2019)Round, solidECR glassVinylesterSand coated6–3247–1,02883    3.50.17–0.65 45.4–66.4990–1,3721.3–2.17 146–264 14ASTM, CSA
Galen (2019)Round, solidGlassVinylesterSand coated10–25  2.0      46.3–54.7840–1,4151.81–2.6    ASTM, CSA
 Round, solidBasaltVinylesterSand coated10–25  2.0      45.5–56866–1,5651.9–2.8    ASTM, CSA
Mateenbar (2019)Round, solidECR glassVinylesterRibbed6–38  2.1      581,000     ASTM, CSA
Sireg (2019)Round, solidECR glassVinylesterSand coated6–40     100  1.046580–9001.2–1.9 131 7.6ASTM

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors would like to thank the Advance Queensland Industry Research Fellowship Program (AQIRF 119-2019RD2) and the Australian Research Council through the Discovery Scheme (DP180102208) for supporting the project. The assistance of the postgraduate students at the Centre of Future Materials in data gathering is gratefully acknowledged.

References

ACI (American Concrete Institute). 2015. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer (FRP) bars. ACI440.1R-15. Farmington Hills, MI: ACI.
ACI (American Concrete Institute) 2017. Specification for carbon and glass fiber-reinforced polymer bar materials for concrete reinforcement. ACI440.6-08. Farmington Hills, MI: ACI.
Adams, D. 2018. “What is the most important type of mechanical test for composites?” Compos. World 4 (1): 10–11.
AlAjarmeh, O. S., A. C. Manalo, B. Benmokrane, W. Karunasena, W. Ferdous, and P. Mendis. 2020a. “A new design-oriented model of glass fiber-reinforced polymer-reinforced hollow concrete columns.” ACI Struct. J. 117 (2): 141–156.
AlAjarmeh, O. S., A. C. Manalo, B. Benmokrane, W. Karunasena, W. Ferdous, and P. Mendis. 2020c. “Hollow concrete columns: Review of structural behavior and new designs using GFRP reinforcement.” Eng. Struct. 203: 109829. https://doi.org/10.1016/j.engstruct.2019.109829.
AlAjarmeh, O., A. Manalo, B. Benmokrane, W. Karunasena, P. Mendis, and K. T. Q. Nguyen. 2019a. “Compressive behavior of axially loaded circular hollow concrete columns reinforced with GFRP bars and spirals.” Constr. Build. Mater. 194: 12–23. https://doi.org/10.1016/j.conbuildmat.2018.11.016.
AlAjarmeh, O., A. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis. 2019b. “Axial performance of hollow concrete columns reinforced with GFRP composite bars with different reinforcement ratios.” Compos. Struct. 213: 153–164. https://doi.org/10.1016/j.compstruct.2019.01.096.
AlAjarmeh, O., A. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis. 2020b. “Effect of spiral spacing and concrete strength on behavior of GFRP-reinforced hollow concrete columns.” J. Compos. Constr. 24 (1): 04019054. https://doi.org/10.1061/(ASCE )CC.1943-5614.0000987.
AlAjarmeh, O. S., A. C. Manalo, B. Benmokrane, P. V. Vijay, W. Ferdous, and P. Mendis. 2019c. “Novel testing and characterization of GFRP bars in compression.” Constr. Build. Mater. 225: 1112–1126. https://doi.org/10.1016/j.conbuildmat.2019.07.280.
Ali, A. H., B. Benmokrane, H. M. Mohamed, A. Manalo, and A. El-Safty. 2018. “Statistical analysis and theoretical predictions of the tensile-strength retention of glass fiber-reinforced polymer bars based on resin type.” J. Compos. Mater. 52 (21): 2929–2948. https://doi.org/10.1177/0021998318755866.
Al-Rubaye, M., A. Manalo, O. Alajarmeh, W. Ferdous, W. Lokuge, B. Benmokrane, and A. Edoo. 2020. “Flexural behaviour of concrete slabs reinforced with GFRP bars and hollow composite reinforcing systems.” Compos. Struct. 236: 111836. https://doi.org/10.1016/j.compstruct.2019.111836.
AS/NZS (Australian Standards/New Zealand Standard). 2001. Steel reinforcing materials. AS/NZS 4671:2001. Cannington, WA: AS/NZS.
ASTM. 2009. Standard test method for dye penetration of solid fiberglass reinforced pultruded stock. ASTM D5117-09. West Conshohocken, PA: ASTM.
ASTM. 2010. Standard test method for water absorption of plastics. ASTM D570-98. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard test method for tensile properties of fiber reinforced polymer matrix composite bars. ASTM D7205/D7205M-06. West Conshohocken, PA: ASTM.
ASTM. 2012. Standard terminology relating to plastics. ASTM D883-12. West Conshohocken, PA: ASTM.
ASTM. 2013. Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM D792-13. West Conshohocken, PA: ASTM.
ASTM. 2014a. Standard test method for assignment of the glass transition temperatures by differential scanning calorimetry. ASTM E1356-08. West Conshohocken, PA: ASTM.
ASTM. 2014b. Standard test method for compositional analysis by thermogravimetry. ASTM E1131-08. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test methods for constituent content of composite materials. ASTM D3171-15. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for apparent horizontal shear strength of pultruded reinforced plastic rods by the short-beam method. ASTM D4475-02. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test method for transverse shear strength of fiber-reinforced polymer matrix composite bars. ASTM D7617/D7617M-11. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard specification for solid round glass fiber reinforced polymer bars for concrete reinforcement. ASTM D7957/D7957M-17. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test method for heat of reaction of thermally reactive materials by differential scanning calorimetry. ASTM E2160-04. West Conshohocken, PA: ASTM.
Austroads. 2016. Realising 100-years bridge design life in an aggressive environment: Review of the literature. Austroads Technical Report AP-T313-16. Austroads.
Bakis, C. E., L. C. Bank, V. L. Brown, E. Cosenza, J. F. Davalos, J. J. Lesko, A. Machida, S. H. Rizkalla, and T. C. Triantafillou. 2002. “Fiber-reinforced polymer composites for construction – State-of-the-art review.” J. Compos. Constr. 6 (2): 73–87. https://doi.org/10.1061/(ASCE )1090-0268(2002 )6:2(73 )
Basaran, B., and I. Kalkan. 2020. “Investigation on variables affecting bond strength between FRP reinforcing bar and concrete by modified hinged beam tests.” Compos. Struct. 242: 112185. https://doi.org/10.1016/j.compstruct.2020.112185.
Bastidas-Arteaga, E. 2018. “Reliability of reinforced concrete structures subjected to corrosion-fatigue and climate change.” Int. J. Concr. Struct. Mater. 12: 10. https://doi.org/10.1186/s40069-018-0235-x.
Bataille, C. G. 2020. “Physical and policy pathways to net-zero emissions industry.” WIREs Clim. Change 11 (2): e633. https://doi.org/10.1002/wcc.633.
Benmokrane, B., A. H. Ali, H. M. Mohamed, A. ElSafty, and A. Manalo. 2017b. “Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures.” Compos. Part B: Eng. 114: 163–174. https://doi.org/10.1016/j.compositesb.2017.02.002.
Benmokrane, B., M. Hassan, M. Robert, P. V. Vijay, and A. Manalo. 2020. “Effect of different constituent fiber, resin, and sizing combinations on alkaline resistance of basalt, carbon, and glass FRP bars.” J. Compos. Constr. 24 (3): 04020010. https://doi.org/10.1061/(ASCE )CC.1943-5614.0001009.
Benmokrane, B., A. Manalo, J.-C. Bouhet, K. Mohamed, and M. Robert. 2017a. “Effects of diameter on the durability of glass fiber–reinforced polymer bars conditioned in alkaline solution.” J. Compos. Constr. 21 (5): 04017040. https://doi.org/10.1061/(ASCE )CC.1943-5614.0000814.
Benmokrane, B., H. M. Mohamed, A. Manalo, and P. Cousin. 2017c. “Evaluation of physical and durability characteristics of new headed glass fiber–reinforced polymer bars for concrete structures.” J. Compos. Constr. 21 (2): 04016081. https://doi.org/10.1061/(ASCE )CC.1943-5614.0000738.
Benmokrane, B., C. Nazair, M.-A. Loranger, and A. Manalo. 2018. “Field durability study of vinyl-ester–based GFRP rebars in concrete bridge barriers.” J. Bridge Eng. 23 (12): 04018094. https://doi.org/10.1061/(ASCE )BE.1943-5592.0001315.
BCA (Building Code of Australia). 2015. National Construction Code Series, Australian Building Codes Board (ABCB), Sydney, Australia.
BLUEY. 2017. BluGeo FiReP GRP Ground Systems “Anchors and Soil Nails”. http://www.bluey.com.au/wp-content/uploads/2012/03/BluGeo-GRP-Ground-Systems-LR-R4.pdf.
Carvelli, V., G. Fava, and M. A. Pisani. 2009. “Anchor system for tension testing of large diameter GFRP bars.” J. Compos. Constr. 13 (5): 344–349. https://doi.org/10.1061/(ASCE )CC.1943-5614.0000027.
Cassidy, M., J. Waldie, and S. Palanisamy. 2015. “A method to estimate the cost of corrosion for Australian Defence Force Aircraft.” In Proc., AIAC16 16th Australian Int. Aerospace Congress. Barton, Australia: Engineers Australia.
CEN (European Committee for Standardization). 2004. Design of concrete structures - part 1-1: General rules and rules for buildings. Eurocode 2. EN 1992-1-1. Brussels, Belgium: CEN.
CNR (National Research Council). 2007. Guidance on the design and construction of concrete structures reinforced with FRP bars. CNR-DT 203/2006. Rome: CNR.
CSA (Canadian Standards Association). 2010. Specification for fibre-reinforced polymers. CAN/CSA-S807. Rexdale, ON, Canada: CSA.
CSA (Canadian Standards Association). 2012. Design and construction of building structures with fibre-reinforced polymers. CAN/CSA-S806-12. Rexdale, ON, Canada: CSA.
Dalton, N. 2014. “Warning to check for ‘concrete cancer’ in older unit high rise complexes.” Cairns Post, Australia. Accessed August 16, 2019. https://www.cairnspost.com.au/.
Dong, Z., G. Wu, X.-L. Zhao, H. Zhu, and J.-L. Lian. 2018a. “Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars.” Constr. Build. Mater. 192: 671–682. https://doi.org/10.1016/j.conbuildmat.2018.10.166.
Dong, Z.-Q., G. Wu, X.-L. Zhao, and J.-L. Lian. 2018b. “Long-term bond durability of fiber-reinforced polymer bars embedded in seawater sea-sand concrete under ocean environments.” J. Compos. Constr. 22 (5): 04018042. https://doi.org/10.1061/(ASCE )CC.1943-5614.0000876.
DTMR (Department of Transport and Main Roads). 2018. SD4003 - Precast planks for boat ramp - Type RG4000 FRP. Brisbane, Queensland: Queensland Dept. of Transport and Main Roads.
Elchalakani, M., M. Dong, A. Karrech, G. Li, M. S. Mohamed Ali, and A. Manalo. 2019. “Behaviour and design of air-cured GFRP-reinforced geopolymer concrete square columns.” Mag. Concr. Res. 71 (19): 1006–1024. https://doi.org/10.1680/jmacr.17.00534.
Elchalakani, M., A. Karrech, M. Dong, M. M. Ali, and B. Yang. 2018. “Experiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loading.” Structures 14: 273–289. https://doi.org/10.1016/j.istruc.2018.04.001.
Elchalakani, M., and G. Ma. 2017. “Tests of glass fibre reinforced polymer rectangular concrete columns subjected to concentric and eccentric axial loading.” Eng. Struct. 151: 93–104. https://doi.org/10.1016/j.engstruct.2017.08.023.
Elchalakani, M., G. Ma, F. Aslani, and W. Duan. 2017. “Design of GFRP-reinforced rectangular concrete columns under eccentric axial loading.” Mag. Concr. Res. 69 (17): 865–877. https://doi.org/10.1680/jmacr.16.00437.
Fang, H., Y. Bai, W. Q. Liu, Y. Qi, and J. Wang. 2019. “Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments.” Compos. Part B 164: 129–143. https://doi.org/10.1016/j.compositesb.2018.11.047.
fib (International Federation for Reinforced Concrete) 2007. FRP reinforcement in RC structures. fib Bulletin 40. Stuttgart, Germany: Sprint-Digital-Druck.
Galen Composites-C.f.t. 2019. “Company Galen - composite materials and basalt fiber technologies.” http://galencomposite.com/.
Goldston, M., A. Remennikov, and M. N. Sheikh. 2016. “Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading.” Eng. Struct. 113: 220–232. https://doi.org/10.1016/j.engstruct.2016.01.044.
Gravina, R. J., and S. T. Smith. 2008. “Flexural behaviour of indeterminate concrete beams reinforced with FRP bars.” Eng. Struct. 30 (9): 2370–2380. https://doi.org/10.1016/j.engstruct.2007.12.019.
Hadi, M. N., H. Karim, and M. N. Sheikh. 2016a. “Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions.” J. Compos. Constr. 20 (4): 04016009. https://doi.org/10.1061/(ASCE )CC.1943-5614.0000670.
Hadi, M. N., Q. S. Khan, and M. N. Sheikh. 2016b. “Axial and flexural behavior of unreinforced and FRP bar reinforced circular concrete filled FRP tube columns.” Constr. Build. Mater. 122: 43–53. https://doi.org/10.1016/j.conbuildmat.2016.06.044.
Hasan, H. A., M. N. Sheikh, and M. N. Hadi. 2017. “Performance evaluation of high-strength concrete and steel fibre high-strength concrete columns reinforced with GFRP bars and helices.” Constr. Build. Mater. 134: 297–310. https://doi.org/10.1016/j.conbuildmat.2016.12.124.
Hasan, H. A., M. N. Sheikh, and M. N. Hadi. 2018. “Analytical investigation on the load-moment characteristics of GFRP bar reinforced circular NSC and HSC columns.” Constr. Build. Mater. 183: 605–617. https://doi.org/10.1016/j.conbuildmat.2018.06.042.
Innovative Construction Materials. 2019. https://www.inconmat.com.au/products/vrod/.
IS (International Standard). 2015. Fibre-reinforced polymer (FRP) reinforcement of concrete – Test methods, Part 1: FRP bars and grids. ISO 10406-1:2015(E). Geneva: ISO.
JSCE (Japan Society of Civil Engineers). 1997. FRP rebar code (1997). Recommendation for design and construction of concrete structures using continous fiber reinforcing materials. Tokyo: JSCE.
Karim, H., M. N. Sheikh, and M. N. Hadi. 2016. “Axial load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and helices.” Constr. Build. Mater. 112: 1147–1157. https://doi.org/10.1016/j.conbuildmat.2016.02.219.
Karim, H., M. N. Sheikh, and M. N. Hadi. 2017. “Load and moment interaction diagram for circular concrete columns reinforced with GFRP bars and GFRP helices.” J. Compos. Constr. 21 (1): 04016076. https://doi.org/10.1061/(ASCE )CC.1943-5614.0000737.
Khan, Q. S., M. N. Sheikh, and M. N. Hadi. 2015. “Tension and compression testing of fibre reinforced polymer (FRP) bars.” In Proc., 5th Asia-Pacific Conf. on Fiber Reinforced Polymers in Structures, 1–6. Nanjing, China: Southeast University.
Khan, Q. S., M. N. Sheikh, and M. N. Hadi. 2017. “Axial-flexural interactions of GFRP-CFFT columns with and without reinforcing GFRP bars.” J. Compos. Constr. 21 (3): 04016109. https://doi.org/10.1061/(ASCE )CC.1943-5614.0000771.
Khan, Q. S., M. N. Sheikh, and M. N. Hadi. 2018. “Concrete filled carbon FRP tube (CFRP-CFFT) columns with and without CFRP reinforcing bars: Axial-flexural interactions.” Compos. Part B: Eng. 133: 42–52. https://doi.org/10.1016/j.compositesb.2017.09.025.
Kumar, D. S., M. J. Shukla, K. K. Mahato, D. K. Rathore, R. K. Prusty, and B. C. Ray. 2015. “Effect of post-curing on thermal and mechanical behavior of GFRP composites.” Mater. Sci. Eng. 75: 1–6.
Manalo, A. C., B. Benmokrane, K. Park, and D. Lutze. 2014. “Recent developments on FRP bars as internal reinforcement in concrete structures.” Concr. Aust. 40 (2): 46–56.
Manalo, A. C., G. Maranan, B. Benmokrane, P. Cousin, O. Alajarmeh, W. Ferdous, R. Liang, and G. Hota. 2020a. “Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments.” Cem. Concr. Compos. 109: 103564. https://doi.org/10.1016/j.cemconcomp.2020.103564.
Manalo, A. C., G. Maranan, S. Sharma, W. Karunasena, and Y. Bai. 2017. “Temperature-sensitive mechanical properties of GFRP composites in longitudinal and transverse directions: A comparative study.” Compos. Struct. 173: 255–267. https://doi.org/10.1016/j.compstruct.2017.04.040.
Manalo, A. C., O. Alajarmeh, D. Cooper, C. D. Sorbello, S. Z. Weerakoon, and B. Benmokrane. 2020b. “Manufacturing and structural performance of glass-fiber-reinforced precast-concrete boat ramp planks.” Structures 28: 37–56.
Maranan, G., A. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis. 2015b. “Evaluation of the flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-reinforced polymer (GFRP) bars.” Eng. Struct. 101: 529–541. https://doi.org/10.1016/j.engstruct.2015.08.003.
Maranan, G., A. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis. 2016. “Behavior of concentrically loaded geopolymer-concrete circular columns reinforced longitudinally and transversely with GFRP bars.” Eng. Struct. 117: 422–436. https://doi.org/10.1016/j.engstruct.2016.03.036.
Maranan, G., A. Manalo, B. Benmokrane, W. Karunasena, and P. Mendis. 2017. “Shear behavior of geopolymer concrete beams reinforced with GFRP bars.” ACI Struct. J. 114 (2): 337–348. https://doi.org/10.14359/51689150.
Maranan, G., A. Manalo, B. Benmokrane, W. Karunasena, P. Mendis, and T. Nguyen. 2018. “Shear behaviour of geopolymer-concrete beams transversely reinforced with continuous rectangular GFRP composite spirals.” Compos. Struct. 187: 454–465. https://doi.org/10.1016/j.compstruct.2017.12.080.
Maranan, G., A. Manalo, B. Benmokrane, W. Karunasena, P. Mendis, and T. Nguyen. 2019. “Flexural behavior of geopolymer-concrete beams longitudinally reinforced with GFRP and steel hybrid reinforcements.” Eng. Struct. 182: 141–152. https://doi.org/10.1016/j.engstruct.2018.12.073.
Maranan, G., A. Manalo, W. Karunasena, and B. Benmokrane. 2015a. “Pullout behaviour of GFRP bars with anchor head in geopolymer concrete.” Compos. Struct. 132: 1113–1121. https://doi.org/10.1016/j.compstruct.2015.07.021.
Maranan, G., A. Manalo, K. Karunasena, and B. Benmokrane. 2015c. “Bond stress-slip behavior: Case of GFRP bars in geopolymer concrete.” J. Mater. Civ. Eng. 27 (1): 04014116. https://doi.org/10.1061/(ASCE )MT.1943-5533.0001046.
Maranan, G., A. Manalo, W. Karunasena, B. Benmokrane, and D. Lutze. 2014. “Flexural behaviour of glass fibre reinforced polymer (GFRP) bars subjected to elevated temperature.” In Proc., 23rd Australasian Conf. on the Mechanics of Structures and Materials, 87–192. East Lismore, Australia: Southern Cross University.
Masmoudi, R., A. Zaidi, and P. Gérard. 2005. “Transverse thermal expansion of FRP bars embedded in concrete.” J. Compos. Constr. 9 (5): 377–387. https://doi.org/10.1061/(ASCE )1090-0268(2005 )9:5(377 ).
Nazair, C., B. Benmokrane, M.-A. Loranger, M. Robert, and A. Manalo. 2018. “A comparative study of the thermophysical and mechanical properties of the glass fiber reinforced polymer bars with different cure ratios.” J. Compos. Mater. 52 (29): 4105–4116. https://doi.org/10.1177/0021998318774833.
Nishizaki, I., and S. Meiarashi. 2002. “Long-term deterioration of GFRP in water and moist environment.” J. Compos. Constr. 6 (1): 21–27. https://doi.org/10.1061/(ASCE )1090-0268(2002 )6:1(21 ).
Nkurunziza, G., A. Debaiky, P. Cousin, and B. Benmokrane. 2005. “Durability of GFRP bars: A critical review of the literature.” Prog. Struct. Mater. Eng. 7 (4): 194–209. https://doi.org/10.1002/pse.205.
Robert, M., and B. Benmokrane. 2013. “Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars.” Constr. Build. Mater. 38: 274–284. https://doi.org/10.1016/j.conbuildmat.2012.08.021.
SA (Standards Australia). 2018. Concrete structures. AS 3600. Sydney, Australia: SAI Global.
SAC (Standardization Administration of China) 2011. Fiber reinforced composite bars for civil engineering. GB/T 26743-2011. Beijing: SAC.
Schmitt, G. 2009. Global needs for knowledge dissemination, research, development in materials deterioration and corrosion control. New York: World Corrosion Organisation.
Tekle, B. H., A. Khennane, and O. Kayali. 2016. “Bond properties of sand-coated GFRP bars with fly ash–based geopolymer concrete.” J. Compos. Constr. 20 (5): 04016025. https://doi.org/10.1061/(ASCE )CC.1943-5614.0000685.
Tekle, B. H., A. Khennane, and O. Kayali. 2017. “Bond behaviour of GFRP reinforcement in alkali activated cement concrete.” Constr. Build. Mater. 154: 972–982. https://doi.org/10.1016/j.conbuildmat.2017.08.029.
Wang, X., M. Stewart, and M. Nguyen. 2012. “Impact of climate change on corrosion and damage to concrete infrastructure in Australia.” Clim. Change 110: 941–957. https://doi.org/10.1007/s10584-011-0124-7.
Wang, Z., X.-L. Zhao, G. Xian, G. Wu, R. S. Raman, and S. Al-Saadi. 2018. “Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars.” Corros. Sci. 138: 200–218. https://doi.org/10.1016/j.corsci.2018.04.002.
Wu, C., Y. Bai, and S. Kwon. 2016. “Improved bond behavior between GFRP rebar and concrete using calcium sulfoaluminate.” Constr. Build. Mater. 113: 897–904. https://doi.org/10.1016/j.conbuildmat.2016.03.132.
Yan, F., Z. Lin, and M. Yang. 2016. “Bond mechanism and bond strength of GFRP bars to concrete: A review.” Compos. Part B: Eng. 98: 56–69. https://doi.org/10.1016/j.compositesb.2016.04.068.
Youssef, J., and M. N. Hadi. 2017. “Axial load-bending moment diagrams of GFRP reinforced columns and GFRP encased square columns.” Constr. Build. Mater. 135: 550–564. https://doi.org/10.1016/j.conbuildmat.2016.12.125.
Zhang, J., Y. C. Xu, and P. Huang. 2009. “Effect of cure cycle on curing process and hardness for epoxy resin.” eXPRESS Polym. Lett. 3 (9): 534–541. https://doi.org/10.3144/expresspolymlett.2009.67.
Zhiguo, R., Y. Ying, L. Jianfeng, Q. Zhongxing, and Y. Lei. 2014. “Determination of thermal expansion coefficients for unidirectional fiber-reinforced composites.” Chin. J. Aeronaut. 27 (5): 1180–1187. https://doi.org/10.1016/j.cja.2014.03.010.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 25Issue 1February 2021

History

Received: Nov 1, 2019
Accepted: Sep 28, 2020
Published online: Dec 2, 2020
Published in print: Feb 1, 2021
Discussion open until: May 2, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Professor of Civil Engineering, School of Civil Engineering and Surveying, Centre for Future Materials (CFM), Univ. of Southern Queensland, Toowoomba, QLD 4350, Australia (corresponding author). ORCID: https://orcid.org/0000-0003-0493-433X. Email: [email protected]
Professor of Structural Engineering, Dept. of Infrastructure Engineering, Univ. of Melbourne, Parkville VIC 3010, Australia. Email: [email protected]
Professor in Structural Engineering, Dept. of Civil Engineering, Monash Univ., Clayton, VIC 3800, Australia. Email: [email protected]
B. Jachmann [email protected]
Director, Kehoe Myers Professional Engineering Consultants, Toowoomba, QLD 4350, Australia. Email: [email protected]
Senior Engineer (Coastal), Boating Infrastructure Unit, Queensland Dept. of Transport and Main Roads, Brisbane City, QLD 4000, Australia. ORCID: https://orcid.org/0000-0001-8066-5974. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share