Abstract

Although fiber-reinforced polymer (FRP) materials are considered noncorrosive, the FRP bar surface resin has been shown to deteriorate when exposed to aggressive environments and this can result in a significant loss of bond strength with the surrounding concrete. To study the durability of the FRP bar-to-concrete bond, numerous investigations utilizing the FRP bar pull-out test arrangement have been conducted. These studies have, however, largely been considered in isolation without any systematic attempt to critically analyze the ever increasing pool of results based on variable exposure regimes and differing geometric and mechanical properties. To address this limitation, and to quantify the durability of the FRP bar-to-concrete bond, this paper presents an experimental database comprising 1,244 individual test results from 35 unique studies which were critically analyzed in terms of bond performance. The analysis highlighted the large scatter that exists for experimental results between studies and attempted to explain this scatter through discussion of the impact of exposure to material properties and the importance of sound experimental design.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the funding provided by ARC Linkage LP130100482 to carry out this research.

Notation

The following symbols are used in this paper:
cy
vertical distance of the outer surface of the concrete to FRP bar’s out-surface, mm;
dfrp
diameter of the FRP bar, mm;
Efrp
FRP bar modulus of elasticity along the longitudinal axis, GPa;
fcb
concrete cube compressive strength, MPa;
fcyl
concrete cylinder compressive strength, MPa;
Kd
rate of degradation of specimens subjected to the hygrothermal condition;
Ks
rate of degradation of the specimens subjected to the thermal condition;
Lb
embedment length of FRP bar in the concrete specimen, mm;
t
exposure duration, hours;
tref
exposure duration of a reference specimen, hours;
T
exposure temperature, °C;
Tref
control sample exposure temperature, °C;
τ*
normalized bond strength; and
τ*ref
normalized bond strength of the reference specimen.

References

Abbasi, A., and P. J. Hogg. 2005. “Temperature and environmental effects on glass fibre rebar: Modulus, strength and interfacial bond strength with concrete.” Composites Part B 36 (5): 394–404. https://doi.org/10.1016/j.compositesb.2005.01.006.
Abedi, S. 2014. “Evaluation of the bond and tensile strength of GFRP bars exposed to harsh environment.” M.S. thesis, College of Engineering, American Univ. of Sharjah, Sharjah, United Arab Emirates.
Abeysinghe, H. P., W. Edwards, G. Pritchard6, and G. J. Swampillai. 1982. “Degradation of crosslinked resins in water and electrolyte solutions.” Polymer 23 (12): 1785–1790. https://doi.org/10.1016/0032-3861(82)90123-9.
Achillides, Z., and K. Pilakoutas. 2004. “Bond behavior of fiber reinforced polymer bars under direct pullout conditions.” J. Compos. Constr. 8 (2): 173–181. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(173).
ACI (American Concrete Institute). 2015. Guide to accelerated conditioning protocols for durability assessment of internal and external fiber-reinforced polymer (FRP) reinforcement. 440.9R-15. Farmington Hills, MI: ACI.
Al-Dulaijan, S. U., M. M. Al-Zahrani, A. Nanni, C. E. Bakis and T. E. Boothby. 2001. “Effect of environmental pre-conditioning on bond of FRP reinforcement to concrete.” J. Reinf. Plast. Compos. 20 (10): 881–900. https://doi.org/10.1177/073168401772678986.
Almusallam, T. H., Y. A. Al-Salloum, S. H. Alsayed, S. El-Gamal, and M. Aqel. 2012. “Tensile properties of glass fiber-reinforced polymer bars embedded in concrete under severe laboratory and field environmental conditions.” J. Compos. Mater. 47 (4): 383–407.
Al-Sahawneh, E. I. 2013. “Size effect and strength correction factors for normal weight concrete specimens under uniaxial compression stress.” Contemp. Eng. Sci. 6 (2): 57–68. https://doi.org/10.12988/ces.2013.13006.
Alsayed, S., Y. Al-Salloum, T. Almusallam, S. El-Gamal, and M. Aqel. 2012. “Performance of glass fiber reinforced polymer bars under elevated temperatures.” Composites Part B 43 (5): 2265–2271. https://doi.org/10.1016/j.compositesb.2012.01.034.
Altalmas, A., A. El Refai, and F. Abed. 2015. “Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions.” Constr. Build. Mater. 81: 162–171. https://doi.org/10.1016/j.conbuildmat.2015.02.036.
Altalmas, A. T. 2014. “Durability study on the bond strength of basalt fiber-reinforced polymer (BFRP) bars.” Doctoral dissertation. College of Engineering, American Univ. of Sharjah.
Al-Tamimia, A., F. H. Abed, and A. Al-Rahmani. 2014. “Effects of harsh environmental exposures on the bond capacity between concrete and GFRP reinforcing bars.” Adv. Concr. Constr. 2 (1): 1–11. https://doi.org/10.12989/acc2014.2.1.001.
Alvarez, A., A. Zaidi, and R. Mamsoudi. 2007. “Bond slip behaviour of FRP bars under low and high temperature—experimental and theoretical studies.” In 3rd Int. Conf. on Durability & Field Applications of Fiber Reinforced Polymer Composites for Construction, Quebec, Canada: International Union of Laboratories and Experts in Construction Materials, Systems and Structures, 523–530.
Al-Zahrani, M. M., S. U. Al-Dulaijan, A. Nanni, C. E. Bakis, and T. E. Boothby. 1999. “Evaluation of bond using FRP rods with axisymmetric deformations.” Constr. Build. Mater. 13 (6): 299–309. https://doi.org/10.1016/S0950-0618(99)00038-0.
Al-Zahrani, M. M., S. U. Al-Dulaijan, A. Sharif, and M. Maslehuddin. 2002. “Durability performance of glass fiber reinforced plastic reinforcement in harsh environments.” In Vol. 2 of Proc., 6th Saudi Engineering Conf., 379–393. Dhahran: KFUPM.
Ammar, M. A. 2014. “Bond durability of basalt fibre-reinforced polymers (BFRP) bars under freeze-and-thaw conditions.” M.S. thesis, Université Laval.
ASTM. 2008. Standard test method for resistance of concrete to rapid freezing and thawing. ASTM C666/C666M. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard test method for tensile properties of fiber reinforced polymer matrix composite bars. ASTM D7205/D7205M-06. West Conshohocken, PA: ASTM.
Aydin, H., R. J. Gravina, and P. Visintin. 2016. “Durability of adhesively bonded FRP-to-concrete joints.” J. Compos. Constr. 20 (5): 04016016. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000657.
Bakis, C. E., V. S. Uppuluri, A. Nanni, and T. E. Boothby. 1998. “Analysis of bonding mechanisms of smooth and lugged FRP rods embedded in concrete.” Compos. Sci. Technol. 58 (8): 1307–1319. https://doi.org/10.1016/S0266-3538(98)00016-5.
Balázs–Adorján, ÉLGL, and B. S. G. Nehme. 2005. “Bond of CFRP wires under elevated temperature.” In Proc. of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005), 7–9 December 2005, 163–168. International Institute for FRP in Construction.
Bank, L. C., M. Puterman, and A. Katz. 1998. “The effect of material degradation on bond properties of fiber reinforced plastic reinforcing bars in concrete.” Mater. J. 95 (3): 232–243.
Belarbi, A., and H. Wang. 2011. “Bond durability of FRP bars embedded in fiber-reinforced concrete.” J. Compos. Constr. 16 (4): 371–380. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000270.
Benmokrane, B., A. H. Ali, H. M. Mohamed, A. ElSafty, and A. Manalo. 2017. “Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures.” Composites Part B 114: 163–174. https://doi.org/10.1016/j.compositesb.2017.02.002.
Benmokrane, B., O. Chaallal, and R. Masmoudi. 1995. “Glass fibre reinforced plastic (GFRP) rebars for concrete structures.” Constr. Build. Mater. 9 (6): 353–364. https://doi.org/10.1016/0950-0618(95)00048-8.
Benmokrane, B., P. Wang, T. M. Ton-That, H. Rahman, and J.-F. Robert. 2002. “Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment.” J. Compos. Constr. 6 (3): 143–153. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:3(143).
Boyle, H. C., and V. M. Karbhari. 1994. “Investigation of bond behavior between glass fiber composite reinforcements and concrete.” Polym. Plast. Technol. Eng. 33 (6): 733–753. https://doi.org/10.1080/03602559408013105.
Byars, E. A., P. Waldron, V. Dejke, S. Demis, and S. Heddadin. 2003. “Durability of FRP in concrete–deterioration mechanisms.” Int. J. Mater. Prod. Technol. 19 (1–2): 28–39. https://doi.org/10.1504/IJMPT.2003.003554.
Calvet, V., M. Valcuende, J. Benlloch, and J. Cánoves. 2015. “Influence of moderate temperatures on the bond between carbon fibre reinforced polymer bars (CFRP) and concrete.” Constr. Build. Mater. 94: 589–604. https://doi.org/10.1016/j.conbuildmat.2015.07.053.
Ceroni, F., E. Cosenza, M. Gaetano, and M. Pecce. 2006. “Durability issues of FRP rebars in reinforced concrete members.” Cem. Concr. Compos. 28 (10): 857–868. https://doi.org/10.1016/j.cemconcomp.2006.07.004.
Chaallal, O., and B. Benmokrane. 1993. “Pullout and bond of glass-fibre rods embedded in concrete and cement grout.” Mater. Struct. 26 (3): 167–175. https://doi.org/10.1007/BF02472934.
Davalos, J. F., Y. Chen, and I. Ray. 2008. “Effect of FRP bar degradation on interface bond with high strength concrete.” Cem. Concr. Compos. 30 (8): 722–730. https://doi.org/10.1016/j.cemconcomp.2008.05.006.
De Larrard, F., I. Shaller, and J. Fuchs. 1993. “Effect of the bar diameter on the bond strength of passive reinforcement in high-performance concrete.” Mater. J. 90 (4): 333–339.
Dong, Z., G. Wu, B. Xu, X. Wang, and L. Taerwe. 2016a. “Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction.” Mater. Des. 92: 552–562. https://doi.org/10.1016/j.matdes.2015.12.066.
Dong, Z., G. Wu, B. Xu, X. Wang, and L. Taerwe. 2018. “Bond performance of alkaline solution pre-exposed FRP bars with concrete.” Mag. Concr. Res. 70 (17): 894–904.
Dong, Z., G. Wu, and Y. Xu. 2016c. “Experimental study on the bond durability between steel-FRP composite bars (SFCBs) and sea sand concrete in ocean environment.” Constr. Build. Mater. 115: 277–284. https://doi.org/10.1016/j.conbuildmat.2016.04.052.
Dong, Z.-Q., G. Wu, and Y.-Q. Xu. 2016b. “Bond and flexural behavior of Sea sand concrete members reinforced with hybrid steel-composite bars presubjected to wet–dry cycles.” J. Compos. Constr. 21 (2): 04016095. https://doi:org/10.1061/(ASCE)CC.1943-5614.0000749.
Ehsani, M., H. Saadatmanesh, and S. Tao. 1997. “Bond behavior of deformed GFRP rebars.” J. Compos. Mater. 31 (14): 1413–1430. https://doi.org/10.1177/002199839703101404.
Ehsani, M. R., H. Saadatmanesh, and S. Tao. 1996. “Design recommendations for bond of GFRP rebars to concrete.” J. Struct. Eng. 122 (3): 247–254. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(247).
Elgabbas, F., E. A. Ahmed, and B. Benmokrane. 2015. “Physical and mechanical characteristics of new basalt-FRP bars for reinforcing concrete structures.” Constr. Build. Mater. 95: 623–635. https://doi.org/10.1016/j.conbuildmat.2015.07.036.
El-Gamal, S. 2014. “Bond strength of glass fiber-reinforced polymer bars in concrete after exposure to elevated temperatures.” J. Reinf. Plast. Compos. 32 (23): 2151–2163.
El Refai, A., F. Abed, and A. Altalmas. 2015. “Bond durability of basalt fiber–reinforced polymer bars embedded in concrete under direct pullout conditions.” J. Compos. Constr. 19 (5): 04014078. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000544.
El-Salakawy, E. F., and B. Benmokrane. 2004. “Serviceability of concrete bridge deck slabs reinforced with FRP composite bars.” ACI Struct. J. 101 (5): 727–736.
Esfandeh, M., A. R. Sabet, A. M. Rezadoust, and M. B. Alavi. 2009. “Bond performance of FRP rebars with various surface deformations in reinforced concrete.” Polym. Compos. 30 (5): 576–582. https://doi.org/10.1002/pc.20589.
Faza, S., and H. GangaRao. 1993. “Glass FRP reinforcing bars for concrete.” In: Fiber-reinforced-Plastic (FRP) reinforcement for concrete structures: Properties and applications. Developments in civil engineering, edited by L. Anselin and D. Hensher, Vol. 42, 167–188. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-89689-6.50012-4.
Feng, Q., P. Visintin, and D. J. Oehlers. 2016. “Deterioration of bond–slip due to corrosion of steel reinforcement in reinforced concrete.” Mag. Concr. Res. 68 (15): 768–781. https://doi.org/10.1680/jmacr.15.00217.
Firmo, J. P., J. R. Correia, and L. A. Bisby. 2015. “Fire behaviour of FRP-strengthened reinforced concrete structural elements: A state-of-the-art review.” Composites Part B 80: 198–216. https://doi.org/10.1016/j.compositesb.2015.05.045.
Galati, N., A. Nanni, L. R. Dharani, F. Focacci, and M. A. Aiello. 2006. “Thermal effects on bond between FRP rebars and concrete.” Composites Part A 37 (8): 1223–1230. https://doi.org/10.1016/j.compositesa.2005.05.043.
Hadigheh, S. A., R. J. Gravina, and S. T. Smith. 2017. “Effect of acid attack on FRP-to-concrete bonded interfaces.” Constr. Build. Mater. 152: 285–303. https://doi.org/10.1016/j.conbuildmat.2017.06.140.
Hamad, R. J. A., M. A. Megat Johari, and R. H. Haddad. 2017. “Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures.” Constr. Build. Mater. 142: 521–535. https://doi.org/10.1016/j.conbuildmat.2017.03.113.
Hao, Q., Y. Wang, Z. He, and J. Ou. 2009. “Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete.” Constr. Build. Mater. 23 (2): 865–871. https://doi.org/10.1016/j.conbuildmat.2008.04.011.
Hao, Q.-d., Y.-l. Wang, Z.-c. Zhang, and J.-p. Ou. 2007. “Bond strength improvement of GFRP rebars with different rib geometries.” J. Zhejiang Univ. Sci. A 8 (9): 1356–1365. https://doi.org/10.1631/jzus.2007.A1356.
Haskett, M., D. J. Oehlers, and M. M. Ali. 2008. “Local and global bond characteristics of steel reinforcing bars.” Eng. Struct. 30 (2): 376–383. https://doi.org/10.1016/j.engstruct.2007.04.007.
Hassan, M., B. Benmokrane, A. ElSafty, and A. Fam. 2016. “Bond durability of basalt-fiber-reinforced-polymer (BFRP) bars embedded in concrete in aggressive environments.” Composites Part B 106: 262–272. https://doi.org/10.1016/j.compositesb.2016.09.039.
Katz, A., and N. Berman. 2000. “Modeling the effect of high temperature on the bond of FRP reinforcing bars to concrete.” Cem. Concr. Compos. 22 (6): 433–443. https://doi.org/10.1016/S0958-9465(00)00043-3.
Katz, A., N. Berman, and L. C. Bank. 1999. “Effect of high temperature on bond strength of FRP rebars.” J. Compos. Constr. 3 (2): 73–81. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:2(73).
Kim, H.-Y., Y.-H. Park, Y.-J. You, and C.-K. Moon. 2008. “Short-term durability test for GFRP rods under various environmental conditions.” Compos. Struct. 83 (1): 37–47. https://doi.org/10.1016/j.compstruct.2007.03.005.
Larralde, J., and R. Silva-Rodriguez. 1993. “Bond and slip of FRP rebars in concrete.” J. Mater. Civ. Eng. 5 (1): 30–40. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:1(30).
Larralde, J., R. Silva-Rodriguez, J. Burdette, and B. Harris. 1994. “Bond tests of fiberglass-reinforced plastic bars in concrete.” J. Test. Eval. 22 (4): 351–359. https://doi.org/10.1520/JTE11844J.
Lee, J.-Y., T.-Y. Kim, T.-J. Kim, C.-K. Yi, J.-S. Park, Y.-C. You, and Y.-H. Park. 2008. “Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete.” Composites Part B 39 (2): 258–270. https://doi.org/10.1016/j.compositesb.2007.03.008.
Lee, Y. H., M. S. Kim, H. Kim, J. Lee, and D.-J. Kim. 2013. “Experimental study on bond strength of fiber reinforced polymer rebars in normal strength concrete.” J. Adhes. Sci. Technol. 27 (5–6): 508–522. https://doi.org/10.1080/01694243.2012.687554.
Li, C., D. Gao, Y. Wang, and J. Tang. 2017. “Effect of high temperature on the bond performance between basalt fibre reinforced polymer (BFRP) bars and concrete.” Constr. Build. Mater. 141: 44–51. https://doi.org/10.1016/j.conbuildmat.2017.02.125.
Maluk, C., L. Bisby, G. Terrasi, and M. Green. 2011. “Bond strength of CFRP and steel bars in concrete at elevated temperature.” ACI Spec. Publ. 279: 1–36.
Malvar, L. J. 1995. “Tensile and bond properties of GFRP reinforcing bars.” Mater. J. 92 (3): 276–285.
Malvar, L. J., J. V. Cox, and K. B. Cochran. 2003. “Bond between carbon fiber reinforced polymer bars and concrete. I: Experimental study.” J. Compos. Constr. 7 (2): 154–163. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:2(154).
Mashima, M., and K. Iwamoto. 1993. “Bond characteristics of FRP rod and concrete after freezing and thawing deterioration.” Spec. Publ. 138: 51–70.
Masmoudi, A., R. Masmoudi, and M. Ben Ouezdou. 2010. “Thermal effects on GFRP rebars: Experimental study and analytical analysis.” Mater. Struct. 43 (6): 775–788. https://doi.org/10.1617/s11527-009-9547-2.
Masmoudi, R., A. Masmoudi, M. B. Ouezdou, and A. Daoud. 2011. “Long-term bond performance of GFRP bars in concrete under temperature ranging from 20°C to 80°C.” Constr. Build. Mater. 25 (2): 486–493. https://doi.org/10.1016/j.conbuildmat.2009.12.040.
Masmoudi, R., A. Zaidi, and P. Gérard. 2005. “Transverse thermal expansion of FRP bars embedded in concrete.” J. Compos. Constr. 9 (5): 377–387. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(377).
Mazaheripour, H., J. A. O. Barros, J. M. Sena-Cruz, M. Pepe, and E. Martinelli. 2013. “Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete.” Compos. Struct. 95: 202–212. https://doi.org/10.1016/j.compstruct.2012.07.009.
Micelli, F., and A. Nanni. 2004. “Durability of FRP rods for concrete structures.” Constr. Build. Mater. 18 (7): 491–503. https://doi.org/10.1016/j.conbuildmat.2004.04.012.
Miyano, Y., M. Nakada, and N. Sekine. 2005. “Accelerated testing for long-term durability of FRP laminates for marine use.” J. Compos. Mater. 39 (1): 5–20. https://doi.org/10.1177/0021998305046430.
Mohamed, O. A., Z. I. Syed, and O. F. Najm. 2016. “Splitting tensile strength of sustainable self-consolidating concrete.” Proc. Eng. 145: 1218–1225. https://doi.org/10.1016/j.proeng.2016.04.157.
Oehlers, D. J., P. Visintin, and W. Lucas. 2015. “Flexural strength and ductility of FRP-plated RC beams: Fundamental mechanics incorporating local and global IC debonding.” J. Compos. Constr. 20 (2): 04015046. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000610.
Okelo, R., and R. L. Yuan. 2005. “Bond strength of fiber reinforced polymer rebars in normal strength concrete.” J. Compos. Constr. 9 (3): 203–213. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:3(203).
Özkal, F. M., M. Polat, M. Yağan, and M. O. Öztürk. 2018. “Mechanical properties and bond strength degradation of GFRP and steel rebars at elevated temperatures.” Constr. Build. Mater. 184: 45–57. https://doi.org/10.1016/j.conbuildmat.2018.06.203.
Pacheco, J. N., J. de Brito, C. Chastre, and L. Evangelista. 2019. “Probabilistic conversion of the compressive strength of cubes to cylinders of natural and recycled aggregate concrete specimens.” Materials 12 (2): 280. https://doi.org/10.3390/ma12020280.
Rao, G. A., K. Pandurangan, F. Sultana, and R. Eligehausen. 2004. “Studies on the pull-out strength of ribbed bars in high-strength concrete.” In Proc., Int. Association of Fracture Mechanics for Concrete and Concrete Structures (FraMCos-6), Conf., 295–301. Part, 05-17. Catania, Italy: International Association of Fracture Mechanics for Concrete and Concrete Structures.
RILEM-FIP-CEB. 1973. “Reinforcement for reinforced and presented concrete, tentative recommendations.” Mat. Struct. 6 (2): 79–118.
Robert, M., and B. Benmokrane. 2010. “Effect of aging on bond of GFRP bars embedded in concrete.” Cem. Concr. Compos. 32 (6): 461–467. https://doi.org/10.1016/j.cemconcomp.2010.02.010.
Robert, M., and B. Benmokrane. 2013. “Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars.” Constr. Build. Mater. 38: 274–284. https://doi.org/10.1016/j.conbuildmat.2012.08.021.
Robert, M., P. Cousin, and B. Benmokrane. 2009. “Durability of GFRP reinforcing bars embedded in moist concrete.” J. Compos. Constr. 13 (2): 66–73. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(66).
Robert, M., P. Wang, P. Cousin, and B. Benmokrane. 2010. “Temperature as an accelerating factor for long-term durability testing of FRPs: Should there be any limitations?” J. Compos. Constr. 14 (4): 361–367. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000102.
Rolland, A., M. Quiertant, A. Khadour, S. Chataigner, K. Benzarti, and P. Argoul. 2018. “Experimental investigations on the bond behavior between concrete and FRP reinforcing bars.” Constr. Build. Mater. 173: 136–148. https://doi.org/10.1016/j.conbuildmat.2018.03.169.
Rossetti, V. A., D. Galeota, and M. Giammatteo. 1995. “Local bond stress-slip relationships of glass fibre reinforced plastic bars embedded in concrete.” Mater. Struct. 28 (6): 340–344. https://doi.org/10.1007/BF02473149.
Sancak, E., Y. D. Sari, and O. Simsek. 2008. “Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer.” Cem. Concr. Compos. 30 (8): 715–721. https://doi.org/10.1016/j.cemconcomp.2008.01.004.
Seis, M., and A. Beycioğlu. 2017. “Bond performance of basalt fiber-reinforced polymer bars in conventional Portland cement concrete: A relative comparison with steel rebar using the hinged beam approach.” Sci. Eng. Compos. Mater. 24 (6): 909–918. https://doi.org/10.1515/secm-2015-0210.
Serbescu, A., M. Guadagnini, and K. Pilakoutas. 2014. “Mechanical characterization of basalt FRP rebars and long-term strength predictive model.” J. Compos. Constr. 19 (2): 04014037. https://doi.org./10.1061/(ASCE)CC.1943-5614.0000497.
Sólyom, S., G. L. Balázs, and A. Borosnyói. 2015. “Bond behaviour of FRP rebars–parameter study.” In Proc., 3rd Conf. on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Antalya: Third Conference on Smart Monitoring, Assessment & Rehabilitation of Civil Structures.
Tannous, F. E., and H. Saadatmanesh. 1999. “Durability of AR glass fiber reinforced plastic bars.” J. Compos. Constr. 3 (1): 12–19. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:1(12).
Tatar, J., P. Blackburn, C. Weston, and H. Hamilton. 2013. “Direct shear adhesive bond test.” In Proc., 11th Int. Symp. of Fiber Reinforced Polymer for Reinforced Concrete Structures. Guimaraes, Portugal: Fiber Reinforced Polymers For Reinforced Concrete Structures.
Tighiouart, B., B. Benmokrane, and D. Gao. 1998. “Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars.” Constr. Build. Mater. 12 (8): 453–462. https://doi.org/10.1016/S0950-0618(98)00027-0.
Trejo, D., F. Aguiniga, R. L. Yuan, R. W. James, and P. B. Keating. 2005. Characterization of design parameters for fiber reinforced polymer composite reinforced concrete systems. No. FHWA/TX-5/9-1520-3.
Visintin, P., D. J. Oehlers, C. Wu, and M. Haskett. 2012. “A mechanics solution for hinges in RC beams with multiple cracks.” Eng. Struct. 36: 61–69. https://doi.org/10.1016/j.engstruct.2011.11.028.
Wang, L., Y. Mao, H. Lv, S. Chen, and W. Li. 2018. “Bond properties between FRP bars and coral concrete under seawater conditions at 30, 60, and 80°C.” Constr. Build. Mater. 162: 442–449. https://doi.org/10.1016/j.conbuildmat.2017.12.058.
Wang, X., G. Wu, Z. Wu, Z. Dong, and Q. Xie. 2014. “Evaluation of prestressed basalt fiber and hybrid fiber reinforced polymer tendons under marine environment.” Mater. Des. 64: 721–728. https://doi.org/10.1016/j.matdes.2014.07.064.
Wang, Y., P. M. H. Wong, and V. Kodur. 2007. “An experimental study of the mechanical properties of fibre reinforced polymer (FRP) and steel reinforcing bars at elevated temperatures.” Compos. Struct. 80 (1): 131–140. https://doi.org/10.1016/j.compstruct.2006.04.069.
Wardeh, G., M. A. S. Mohamed, and E. Ghorbel. 2011. “Analysis of concrete internal deterioration due to frost action.” J. Build. Phys. 35 (1): 54–82. https://doi.org/10.1177/1744259110370854.
Wei, B., H. Cao, and S. Song. 2011. “Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater.” Corros. Sci. 53 (1): 426–431. https://doi.org/10.1016/j.corsci.2010.09.053.
Windisch, A. 1985. “A modified pull-out test and new evaluation methods for a more real local bond-slip relationship.” Mater. Struct. 18 (3): 181–184. https://doi.org/10.1007/BF02472967.
Won, J.-P., C.-G. Park, H.-H. Kim, S.-W. Lee, and C.-I. Jang. 2008. “Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete.” Composites Part B 39 (5): 747–755. https://doi.org/10.1016/j.compositesb.2007.11.005.
Won, J. P., C. G. Park, S. J. Lee, and B. T. Hong. 2013. “Durability of hybrid FRP reinforcing bars in concrete structures exposed to marine environments.” Int. J. Struct. Eng. 4 (1–2): 63–74. https://doi.org/10.1504/IJSTRUCTE.2013.050764.
Wu, G., Z.-Q. Dong, X. Wang, Y. Zhu, and Z.-S. Wu. 2014. “Prediction of long-term performance and durability of BFRP bars under the combined effect of sustained load and corrosive solutions.” J. Compos. Constr. 19 (3): 04014058. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000517.
Wu, G., X. Wang, Z. Wu, Z. Dong, and Q. Xie. 2015. “Degradation of basalt FRP bars in alkaline environment.” Sci. Eng. Compos. Mater. 22 (6): 649–657.
Wu, J., H. Li, and G. Xian. 2011. “Influence of elevated temperature on the mechanical and thermal performance of BFRP rebar.” In Advances in FRP Composites in Civil Engineering: Proc., 5th Int. Conf. on FRP Composites in Civil Engineering (CICE 2010), Sep 27–29, 2010, Beijing, China, edited by L. Ye, P. Feng, and Q. Yue, 69–72. Berlin, Heidelberg: Springer.
Wu, L., K. Murphy, V. M. Karbhari, and J. S. Zhang. 2002. “Short-term effects of sea water on E-glass/vinylester composites.” J. Appl. Polym. Sci. 84 (14): 2760–2767. https://doi.org/10.1002/app.10571.
Xie, T., M. S. M. Ali, P. Visintin, D. J. Oehlers, and A. H. Sheikh. 2018. “Partial interaction model of flexural behavior of PVA fiber–reinforced concrete beams with GFRP bars.” J. Compos. Constr. 22 (5): 04018043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000878.
Yan, F., and Z. Lin. 2017. “Bond durability assessment and long-term degradation prediction for GFRP bars to fiber-reinforced concrete under saline solutions.” Compos. Struct. 161: 393–406.
Yan, F., Z. Lin, and M. Yang. 2016a. “Bond mechanism and bond strength of GFRP bars to concrete: A review.” Composites Part B 98: 56–69. https://doi.org/10.1016/j.compositesb.2016.04.068.
Yan, F., Z. Lin, D. Zhang, Z. Gao, and M. Li. 2016b. “Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution.” Composites Part B 116: 406–421.
Zhou, J., X. Chen, and S. Chen. 2011. “Durability and service life prediction of GFRP bars embedded in concrete under acid environment.” Nucl. Eng. Des. 241 (10): 4095–4102. https://doi.org/10.1016/j.nucengdes.2011.08.038.
Zhou, J., X. Chen, and S. Chen. 2012. “Effect of different environments on bond strength of glass fiber-reinforced polymer and steel reinforcing bars.” KSCE J. Civil Eng. 16 (6): 994–1002. https://doi.org/10.1007/s12205-012-1462-3.
Zhu, H., G. Wu, L. Zhang, J. Zhang, and D. Hui. 2014. “Experimental study on the fire resistance of RC beams strengthened with near-surface-mounted high-Tg BFRP bars.” Composites Part B 60: 680–687. https://doi.org/10.1016/j.compositesb.2014.01.011.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 24Issue 4August 2020

History

Published online: Apr 24, 2020
Published in print: Aug 1, 2020
Discussion open until: Sep 24, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, School of Engineering, RMIT Univ., 124 La Trobe Street, Melbourne, VIC 3000, Australia. ORCID: https://orcid.org/0000-0002-8681-5045. Email: [email protected]
Ph.D. Candidate, School of Engineering, RMIT Univ., 124 La Trobe Street, Melbourne, VIC 3000, Australia. ORCID: https://orcid.org/0000-0001-9500-9005. Email: [email protected]
Scott T. Smith [email protected]
Professor, School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, SA 5005, Australia. Email: [email protected]
Associate Professor, School of Civil, Environmental and Mining Engineering, Univ. of Adelaide, SA 5005, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-4544-2043. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share