Technical Papers
Nov 12, 2018

Design Methods for Strengthening Masonry Buildings Using Textile-Reinforced Mortar

Publication: Journal of Composites for Construction
Volume 23, Issue 1

Abstract

This investigation defines the problem and proposes guidelines for seismically upgrading masonry buildings using textile-reinforced mortar (TRM). The TRM technique in the form of externally applied jackets is appropriate for protecting masonry structures because it can provide sufficient strength and deformation capacity while satisfying the compatibility, reversibility, and durability requirements. Theoretical models are developed based on analytical equations using the material properties of masonry and TRM. In-plane flexure and shear failure modes are treated separately for biaxial stress. The capacity against out-of-plane loads is estimated for the overturning, horizontal, and vertical flexural collapse mechanisms. The proposed design methods apply to the ultimate limit state design. The theoretical models are validated using experimental data and the models are found to be reliable and reasonably conservative. Results of this study will improve the understanding of the performance and mechanisms of TRM under seismic loading. Recommendations for structural design and a series of guidelines for designers are also provided.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The first author gratefully acknowledges the financial support by the EU Commission in the framework of the Marie Curie ITN ENDURE.

References

Abrams, D. P., R. Angel, and J. Uzarski. 1996. “Out-of-plane strength of unreinforced masonry infill panels.” Earthquake Spectra 12 (4): 825–844. https://doi.org/10.1193/1.1585912.
ACI (American Concrete Institute). 2013. Design and construction guide of externally bonded FRCM systems for concrete and masonry repair and strengthening. ACI 549. Farmington Hills, MI: ACI.
Alecci, V., M. De Stefano, R. Luciano, L. Rovero, and G. Stipo. 2016. “Experimental investigation on bond behavior of cement-matrix–based composites for strengthening of masonry structures.” J. Compos. Constr. 20 (1): 4015041. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000598.
Anil, Ö., C. Durucan, M. E. Kara, and Ö. Başeğmez. 2017. “Nonlinear three-dimensional FE analyses of RC beams retrofitted using externally bonded CFRP sheets with or without anchorages.” J. Adhes. Sci. Technol. 31 (7): 770–786. https://doi.org/10.1080/01694243.2016.1232040.
Ascione, L., G. de Felice, and S. De Santis. 2015. “A qualification method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems.” Composites Part B 78: 497–506. https://doi.org/10.1016/j.compositesb.2015.03.079.
Askouni, P. D., and C. G. Papanicolaou. 2017. “Experimental investigation of bond between glass textile reinforced mortar overlays and masonry: The effect of bond length.” Mater. Struct. 50 (2): 164. https://doi.org/10.1617/s11527-017-1033-7.
Babaeidarabad, S., D. Arboleda, G. Loreto, and A. Nanni. 2014a. “Shear strengthening of un-reinforced concrete masonry walls with fabric-reinforced-cementitious-matrix.” Constr. Build. Mater. 65: 243–253. https://doi.org/10.1016/j.conbuildmat.2014.04.116.
Babaeidarabad, S., F. De Caso, and A. Nanni. 2014b. “Out-of-plane behavior of URM walls strengthened with fabric-reinforced cementitious matrix composite.” J. Compos. Constr. 18 (4): 4013057. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000457.
Babaeidarabad, S., F. De Caso, and A. Nanni. 2014c. “URM walls strengthened with fabric-reinforced cementitious matrix composite subjected to diagonal compression.” J. Compos. Constr. 18 (2): 4013045. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000441.
Babatunde, S. A. 2017. “Review of strengthening techniques for masonry using fiber reinforced polymers.” Compos. Struct. 161: 246–255. https://doi.org/10.1016/j.compstruct.2016.10.132.
Bakis, C. E., L. C. Bank, V. L. Brown, E. Cosenza, J. F. Davalos, J. J. Lesko, A. Machida, S. H. Rizkalla, and T. C. Triantafillou. 2002. “Fiber-reinforced polymer composites for construction—State-of-the-art review.” J. Compos. Constr. 6 (2): 73–87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73).
Basili, M., G. Marcari, and F. Vestroni. 2016. “Nonlinear analysis of masonry panels strengthened with textile reinforced mortar.” Eng. Struct. 113: 245–258. https://doi.org/10.1016/j.engstruct.2015.12.021.
Betti, M., L. Galano, M. Petracchi, and A. Vignoli. 2015. “Diagonal cracking shear strength of unreinforced masonry panels: A correction proposal of the b shape factor.” Bull. Earthquake Eng. 13 (10): 3151–3186. https://doi.org/10.1007/s10518-015-9756-8.
Bilotta, A., F. Ceroni, E. Nigro, and M. Pecce. 2017. “Experimental tests on FRCM strengthening systems for tuff masonry elements.” Constr. Build. Mater. 138: 114–133. https://doi.org/10.1016/j.conbuildmat.2017.01.124.
Bui, T. T., and A. Limam. 2014. “Out-of-plane behaviour of hollow concrete block masonry walls unstrengthened and strengthened with CFRP composite.” Composites Part B 67: 527–542. https://doi.org/10.1016/j.compositesb.2014.08.006.
CEN (European Committee for Standardization). 2004. Eurocode 6: Design of masonry structures. Part 1: General rules for buildings. EN 1996. Brussels, Belgium: CEN.
D’Ambrisi, A., L. Feo, and F. Focacci. 2013. “Experimental and analytical investigation on bond between carbon-FRCM materials and masonry.” Composites Part B 46: 15–20. https://doi.org/10.1016/j.compositesb.2012.10.018.
de Felice, G. 2016. “Pros and cons of mortar-based composites for strengthening historic structures.” In Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls: Proc., 10th Int. Conf. on Structural Analysis of Historical Constructions, SAHC 2016, edited by K. Van Balen and E. Verstrynge, 312. Boca Raton, FL: CRC Press.
de Felice, G., S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P. B. Lourenço, D. V. Oliveira, F. Paolacci, and C. G. Papanicolaou. 2014. “Mortar-based systems for externally bonded strengthening of masonry.” Mater. Struct. 47 (12): 2021–2037. https://doi.org/10.1617/s11527-014-0360-1.
De Santis, S., and G. de Felice. 2015. “Tensile behaviour of mortar-based composites for externally bonded reinforcement systems.” Composites Part B 68: 401–413. https://doi.org/10.1016/j.compositesb.2014.09.011.
Ewing, R. D., and J. C. Kariotis. 1981. “Methodology for mitigation of seismic hazards in existing unreinforced masonry buildings: Wall testing, out-of-plane.” In Methodology for mitigation of seismic hazards in existing unreinforced masonry buildings: Diaphragm testing. El Segundo, CA: ABK.
Faella, C., E. Martinelli, E. Nigro, and S. Paciello. 2010. “Shear capacity of masonry walls externally strengthened by a cement-based composite material: An experimental campaign.” Constr. Build. Mater. 24 (1): 84–93. https://doi.org/10.1016/j.conbuildmat.2009.08.019.
Ferreira, T. M., A. A. Costa, A. Arêde, H. Varum, and A. Costa. 2016. “In situ out-of-plane cyclic testing of original and strengthened traditional stone masonry walls using airbags.” J. Earthquake Eng. 20 (5): 749–772. https://doi.org/10.1080/13632469.2015.1107662.
Fossetti, M., and G. Minafò. 2017. “Comparative experimental analysis on the compressive behaviour of masonry columns strengthened by FRP, BFRCM or steel wires.” Composites Part B 112: 112–124. https://doi.org/10.1016/j.compositesb.2016.12.048.
Garmendia, L., J. T. San-José, D. García, and P. Larrinaga. 2011. “Rehabilitation of masonry arches with compatible advanced composite material.” Constr. Build. Mater. 25 (12): 4374–4385. https://doi.org/10.1016/j.conbuildmat.2011.03.065.
Greco, F., L. Leonetti, R. Luciano, and P. Trovalusci. 2017. “Multiscale failure analysis of periodic masonry structures with traditional and fiber-reinforced mortar joints.” Composites Part B 118: 75–95. https://doi.org/10.1016/j.compositesb.2017.03.004.
Gries, T., M. Raina, T. Quadflieg, and O. Stolyarov. 2016. “Manufacturing of textiles for civil engineering applications.” In Textile fibre composites in civil engineering. Edited by T. C. Triantafillou, 3–24. Cambridge, UK: Woodhead Publishing.
Harajli, M., H. ElKhatib, and J. T. San-Jose. 2010. “Static and cyclic out-of-plane response of masonry walls strengthened using textile-mortar system.” J. Mater. Civ. Eng. 22 (11): 1171–1180. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000128.
ICC Evaluation Services. 2007. Acceptance criteria for concrete and reinforced and unreinforced masonry strengthening using externally bonded fiber-reinforced polymer (FRP) composite systems. AC125. Whittier, CA: ICC.
Indirli, M., L. A. S. Kouris, A. Formisano, R. P. Borg, and F. M. Mazzolani. 2013. “Seismic damage assessment of unreinforced masonry structures after the Abruzzo 2009 earthquake: The case study of the historical centers of L’Aquila and Castelvecchio Subequo.” Int. J. Archit. Heritage 7 (5): 536–578. https://doi.org/10.1080/15583058.2011.654050.
Ismail, N., and J. M. Ingham. 2014. “Polymer textiles as a retrofit material for masonry walls.” Proc. Inst. Civ. Eng. Struct. Build. 167 (1): 15–25. https://doi.org/10.1680/stbu.11.00084.
Ismail, N., and J. M. Ingham. 2016. “In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar.” Eng. Struct. 118: 167–177. https://doi.org/10.1016/j.engstruct.2016.03.041.
Koutas, L., T. Triantafillou, and S. Bousias. 2014. “Analytical modeling of masonry-infilled RC frames retrofitted with textile-reinforced mortar.” J. Compos. Constr. 19 (5): 1–14. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000553.
Krevaikas, T. D., and T. C. Triantafillou. 2005a. “Computer-aided strengthening of masonry walls using fibre-reinforced polymer strips.” Mater. Struct. 38 (275): 93–98. https://doi.org/10.1007/BF02480580.
Krevaikas, T. D., and T. C. Triantafillou. 2005b. “Masonry confinement with fiber-reinforced polymers.” J. Compos. Constr. 9 (2): 128–135. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(128).
Kyriakides, M. A., M. A. N. Hendriks, and S. L. Billington. 2012. “Simulation of unreinforced masonry beams retrofitted with engineered cementitious composites in flexure.” J. Mater. Civ. Eng. 24 (5): 506–515. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000412.
Lagomarsino, S., and S. Resemini. 2009. “The assessment of damage limitation state in the seismic analysis of monumental buildings.” Earthquake Spectra 25 (2): 323–346. https://doi.org/10.1193/1.3110242.
Larrinaga, P., C. Chastre, H. C. Biscaia, and J. T. San-José. 2014. “Experimental and numerical modeling of basalt textile reinforced mortar behavior under uniaxial tensile stress.” Mater. Des. 55: 66–74. https://doi.org/10.1016/j.matdes.2013.09.050.
Lignola, G. P., A. Prota, and G. Manfredi. 2009. “Nonlinear analyses of tuff masonry walls strengthened with cementitious matrix-grid composites.” J. Compos. Constr. 13 (4): 243–251. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000007.
Malena, M., F. Focacci, C. Carloni, and G. de Felice. 2017. “The effect of the shape of the cohesive material law on the stress transfer at the FRP-masonry interface.” Composites Part B 110: 368–380. https://doi.org/10.1016/j.compositesb.2016.11.012.
Marcari, G., M. Basili, and F. Vestroni. 2017. “Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar.” Composites Part B 108: 131–142. https://doi.org/10.1016/j.compositesb.2016.09.094.
Martins, A., G. Vasconcelos, R. Fangueiro, and F. Cunha. 2015. “Experimental assessment of an innovative strengthening material for brick masonry infills.” Composites Part B 80: 328–342. https://doi.org/10.1016/j.compositesb.2015.06.012.
Mechtcherine, V., K. Schneider, and W. Brameshuber. 2016. “Mineral-based matrices for textile-reinforced concrete.” In Textile fibre composites in civil engineering, 25–44. Cambridge, UK: Woodhead Publishing.
Minafò, G., J. D’Anna, C. Cucchiara, A. Monaco, and L. La Mendola. 2017. “Analytical stress-strain law of FRP confined masonry in compression: Literature review and design provisions.” Composites Part B 115: 160–169. https://doi.org/10.1016/j.compositesb.2016.10.019.
Mosallam, A. S. 2007. “Out-of-plane flexural behavior of unreinforced red brick walls strengthened with FRP composites.” Composites Part B 38 (5–6): 559–574. https://doi.org/10.1016/j.compositesb.2006.07.019.
Olivito, R. S., A. Tedesco, R. Codispoti, and G. Spadea. 2014. “Strengthening strategies of a historical masonry construction.” In Key engineering materials, 627–634.
Ortlepp, R., U. Hampel, and M. Curbach. 2006. “A new approach for evaluating bond capacity of TRC strengthening.” Cem. Concr. Compos. 28 (7): 589–597. https://doi.org/10.1016/j.cemconcomp.2006.05.003.
Papanicolaou, C., T. Triantafillou, and M. Lekka. 2011. “Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels.” Constr. Build. Mater. 25 (2): 504–514. https://doi.org/10.1016/j.conbuildmat.2010.07.018.
Papanicolaou, C. G., T. C. Triantafillou, K. Karlos, and M. Papathanasiou. 2007. “Textile-reinforced mortar (TRM) versus FRP as strengthening material of URM walls: In-plane cyclic loading.” Mater. Struct. 40 (10): 1081–1097. https://doi.org/10.1617/s11527-006-9207-8.
Papanicolaou, C. G., T. C. Triantafillou, M. Papathanasiou, and K. Karlos. 2008. “Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: Out-of-plane cyclic loading.” Mater. Struct. 41 (1): 143–157. https://doi.org/10.1617/s11527-007-9226-0.
Parisi, F., I. Iovinella, A. Balsamo, N. Augenti, and A. Prota. 2013. “In-plane behaviour of tuff masonry strengthened with inorganic matrix-grid composites.” Composites Part B 45 (1): 1657–1666. https://doi.org/10.1016/j.compositesb.2012.09.068.
Parisi, F., G. P. Lignola, N. Augenti, A. Prota, and G. Manfredi. 2011. “Nonlinear behavior of a masonry subassemblage before and after strengthening with inorganic matrix-grid composites.” J. Compos. Constr. 15 (5): 821–832. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000203.
Prota, A., G. Marcari, G. Fabbrocino, G. Manfredi, and C. Aldea. 2006. “Experimental in-plane behavior of tuff masonry strengthened with cementitious matrix–grid composites.” J. Compos. Constr. 10 (3): 223–233. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:3(223).
Sagar, S. L., V. Singhal, D. C. Rai, and P. Gudur. 2017. “Diagonal shear and out-of-plane flexural strength of fabric-reinforced cementitious matrix–strengthened masonry walletes.” J. Compos. Constr. 21 (4): 4017016. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000796.
Shermi, C., and R. N. Dubey. 2017. “Study on out-of-plane behaviour of unreinforced masonry strengthened with welded wire mesh and mortar.” Constr. Build. Mater. 143: 104–120. https://doi.org/10.1016/j.conbuildmat.2017.03.002.
Triantafillou, T., K. Karlos, K. Kefalou, and E. Argyropoulou. 2018. “An innovative structural and energy retrofitting system for masonry walls using textile reinforced mortars combined with thermal insulation.” In Vol. 15 of RILEM Bookseries, 752–761.
Triantafillou, T. C. 1998a. “Composites: A new possibility for the shear strengthening of concrete, masonry and wood.” Compos. Sci. Technol. 58 (8): 1285–1295. https://doi.org/10.1016/S0266-3538(98)00017-7.
Triantafillou, T. C. 1998b. “Strengthening of masonry structures using epoxy-bonded FRP laminates.” J. Compos. Constr. 2 (2): 96–104. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(96).
Triantafillou, T. C. 2016a. “Strengthening of existing masonry structures: Concepts and structural behavior.” In Textile fibre composites in civil engineering. Edited by T. C. Triatafillou, 361–374. Cambridge, UK: Woodhead Publishing.
Triantafillou, T. C. 2016b. “Strengthening of existing masonry structures: Design models.” In Textile fibre composites in civil engineering. Edited by T. C. Triantafillou, 375–388. Cambridge, UK: Woodhead Publishing.
Triantafillou, T. C., and M. N. Fardis. 1997. “Strengthening of historic masonry structures with composite materials.” Mater. Struct. 30 (8): 486–496. https://doi.org/10.1007/BF02524777.
Valluzzi, M. R., F. da Porto, E. Garbin, and M. Panizza. 2014. “Out-of-plane behaviour of infill masonry panels strengthened with composite materials.” Mater. Struct. 47 (12): 2131–2145. https://doi.org/10.1617/s11527-014-0384-6.
Wang, X., B. Ghiassi, D. V. Oliveira, and C. C. Lam. 2017. “Modelling the nonlinear behaviour of masonry walls strengthened with textile reinforced mortars.” Eng. Struct. 134: 11–24. https://doi.org/10.1016/j.engstruct.2016.12.029.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 23Issue 1February 2019

History

Received: Jul 25, 2017
Accepted: Jul 5, 2018
Published online: Nov 12, 2018
Published in print: Feb 1, 2019
Discussion open until: Apr 12, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Leonidas Alexandros S. Kouris, Ph.D. https://orcid.org/0000-0002-4859-7382 [email protected]
Research Associate, Dept. of Civil Engineering, Univ. of Patras, Patras GR-26504, Greece (corresponding author). ORCID: https://orcid.org/0000-0002-4859-7382. Email: [email protected]
Thanasis C. Triantafillou, M.ASCE [email protected]
Professor, Dept. of Civil Engineering, Univ. of Patras, Patras GR-26504, Greece. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share