Technical Papers
Aug 29, 2018

Acceptance Criteria for Tensile Characterization of Fabric-Reinforced Cementitious Matrix Systems for Concrete and Masonry Repair

Publication: Journal of Composites for Construction
Volume 22, Issue 6

Abstract

Fabric-reinforced cementitious matrix (FRCM) composites are a new class of materials used to repair and strengthen existing structures. Mechanical performance varies widely based on the type and volume of fibers, fabric architecture, mortar properties, and bond characteristics. Moreover, test setup and boundary conditions are of the utmost importance for their mechanical characterization because of the complex interaction between fabric and brittle matrix. Therefore, the challenge is to define characterization and acceptance criteria that are (1) suitable for a wide spectrum of existing FRCM systems, and (2) produce representative values for the design of strengthened members. In this paper, three FRCM systems comprising carbon, glass, and steel fabrics were tested in accordance with two different acceptance methods. One method, which has been developed and adopted in the United States, is based on tensile tests on FRCM coupons with a clevis-grip mechanism that allows slippage at the fabric–matrix interface and provides mechanical properties that are directly used for design. The other method, developed within RILEM TC 250-CSM, combines the results of clamping-grip tensile tests on bare textile specimens with those of FRCM-to-substrate shear bond tests to obtain mechanical properties accounting for a broad range of possible failure modes. The results provided by the two methods are discussed and compared in relation to FRCM field applications.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge the financial support of (1) the University Transportation Center “Research on Concrete; Applications for Sustainable Transportation (RE-CAST)” under US DOT Grant No. DTRT13-G-UTC45; (2) the National Science Foundation (NSF) Industry/University Center for Integration of Composites into Infrastructure (CICI) under Grant No. NSF IIP-1439543; and (3) the Italian Ministry for Foreign Affairs (MAECI) for the Research Project “Composites with inorganic matrix for sustainable strengthening of architectural heritage” under Grant No. PGR00234, for the years 2016–2018.

References

Abercrombie, S. 1977. Building with cement, sand, and wire mesh. New York: Schocken Books.
ACI (American Concrete Institute). 1997. State-of-the-art report on ferrocement. ACI 549R. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 2013. Guide to design and construction of externally bonded fabric-reinforced cementitious matrix (FRCM) systems for repair and strengthening concrete and masonry structures. ACI 549.4R. Farmington Hills, MI: ACI.
Ahmed, H. I., and L. Robles-Austriaco. 1991. “State-of-the-art report on rehabilitation and restrengthening of structures using ferrocement.” J. Ferrocement 21 (3): 243–258.
Alecci, V., F. Focacci, L. Rovero, G. Stipo, and M. De Stefano. 2016. “Extrados strengthening of brick masonry arches with PBO-FRCM composites: Experimental and analytical investigations.” Compos. Struct. 149: 184–196. https://doi.org/10.1016/j.compstruct.2016.04.030.
Aljazaeri, Z. R., and J. J. Myers. 2017. “Strengthening of reinforced-concrete beams in shear with a fabric-reinforced cementitious matrix.” J. Compos. Constr. 21 (5): 04017041. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000822.
Anwar, A. W., P. Nimityongskul, R. P. Pama, and L. Robles-Austriaco. 1991. “Method of rehabilitation of structural beam elements using ferrocement.” J. Ferrocement 21 (3): 229–234.
Arboleda, D. 2014. “Fabric reinforced cementitious matrix (FRCM) composites for infrastructure strengthening and rehabilitation: Characterization methods.” Ph.D. thesis, Dept. of Civil, Architectural and Environmental Engineering, Univ. of Miami.
Arboleda, D., F. Carozzi, A. Nanni, and C. Poggi. 2016. “Testing procedures for the uniaxial tensile characterization of fabric-reinforced cementitious matrix composites.” J. Compos. Constr. 20 (3): 04015063. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000626.
Ascione, L., G. de Felice, and S. De Santis. 2015. “A qualification method for externally bonded fiber reinforced cementitious matrix (FRCM) strengthening systems.” Composites Part B 78: 497–506. https://doi.org/10.1016/j.compositesb.2015.03.079.
Azam, R., K. Soudki, J. S. West, and M. Noël. 2018. “Behavior of shear-critical RC beams strengthened with CFRCM.” J. Compos. Constr. 22 (1): 4017046. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000829.
Babaeidarabad, S., F. De Caso, and A. Nanni. 2014a. “Out-of-plane behavior of URM walls strengthened with fabric-reinforced cementitious matrix composite.” J. Compos. Constr. 18 (4): 04013057. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000457.
Babaeidarabad, S., G. Loreto, and A. Nanni. 2014b. “Flexural strengthening of RC beams with an externally bonded fabric-reinforced cementitious matrix.” J. Compos. Constr. 18 (5): 04014009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000473.
Babaeidarabad, S., and A. Nanni. 2015. “In-plane behavior of unreinforced masonry walls strengthened with fabric-reinforced cementitious matrix (FRCM).” ACI Spec. Publ. 299: 69–80.
Bakis, C. E., L. C. Bank, V. Brown, E. Cosenza, J. F. Davalos, J. J. Lesko, A. Machida, S. H. Rizkalla, and T. C. Triantafillou. 2002. “Fiber-reinforced polymer composites for construction—State-of-the-art review.” J. Compos. Constr. 6 (2): 73–87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73).
Barton, B., E. Wobbe, L. R. Dharani, P. Silva, V. Birman, A. Nanni, T. Alkhrdaji, J. Thomas, and G. Tunis. 2005. “Characterization of reinforced concrete beams strengthened by steel reinforced polymer and grout (SRP and SRG) composites.” Mater. Sci. Eng. A 412 (1–2): 129–136. https://doi.org/10.1016/j.msea.2005.08.151.
Bellini, A., A. Incerti, M. Bovo, and C. Mazzotti. 2018. “Effectiveness of FRCM reinforcement applied to masonry walls subject to axial force and out-of-plane loads evaluated by experimental and numerical studies.” Int. J. Archit. Heritage 12 (3): 376–394. https://doi.org/10.1080/15583058.2017.1323246.
Borri, A., P. Casadei, G. Castori, and J. Hammond. 2009. “Strengthening of brick masonry arches with externally bonded steel reinforced composites.” J. Compos. Constr. 13 (6): 468–475. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000030.
Brameshuber, W. 2006. Textile reinforced concrete. State-of-the-art report of RILEM Technical Committee 201-TRC. Bagneux, France: RILEM.
Caggegi, C., F. G. Carozzi, S. De Santis, F. Fabbrocino, F. Focacci, L. Hojdys, E. Lanoye, and L. Zuccarino. 2017. “Experimental analysis on the behavior of PBO and aramid FRCM strengthening systems applied to masonry substrate.” Composites Part B 127: 175–195. https://doi.org/10.1016/j.compositesb.2017.05.048.
Carloni, C., C. Mazzotti, M. Savoia, and K. V. Subramaniam. 2014. “Confinement of masonry columns with PBO FRCM composites.” Key Eng. Mater. 624: 644–651. https://doi.org/10.4028/www.scientific.net/KEM.624.644.
Carozzi, F. G., et al. 2017. “Experimental investigation on tensile and shear bond properties of carbon-FRCM composite materials applied on masonry substrates.” Composites Part B 70: 215–230. https://doi.org/10.1016/j.compositesb.2014.10.056.
CEN (European Committee for Standardization). 1995. Aerospace series—Carbon fibre reinforced plastics—Unidirectional laminates—Tensile test parallel to the fibre direction. EN 2561:1995. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2002. Eurocode 0: Basis of structural design. EN 1990:2002. Brussels, Belgium: CEN.
Cescatti, E., F. da Porto, and C. Modena. 2018. “In-situ destructive testing of ancient strengthened masonry vaults.” Int. J. Archit. Heritage 12 (3): 350–361. https://doi.org/10.1080/15583058.2017.1323243.
Colajanni, P., F. De Domenico, A. Recupero, and N. Spinella. 2014. “Concrete columns confined with fibre reinforced cementitious mortars: Experimentation and modelling.” Constr. Build. Mater 52: 375–384. https://doi.org/10.1016/j.conbuildmat.2013.11.048.
D’Ambrisi, A., and F. Focacci. 2011. “Flexural strengthening of RC beams with cement-based composites.” J. Compos. Constr. 15 (5): 707–720. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000218.
de Felice, G., et al. 2018. “Recommendation of RILEM Technical Committee 250-CSM: Test method to characterize the textile reinforced mortar to substrate bond behaviour.” Mater. Struct. 51 (4): 95. https://doi.org/10.1617/s11527-018-1216-x.
de Felice, G., S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P. B. Lourenço, D. V. Oliveira, F. Paolacci, and C. G. Papanicolaou. 2014. “Mortar-based systems for externally bonded strengthening of masonry.” Mater. Struct. 47 (12): 2021–2037. https://doi.org/10.1617/s11527-014-0360-1.
De Santis, S. 2017. “Bond behaviour of steel reinforced grout for the extrados strengthening of masonry vaults.” Constr. Build. Mater. 150: 367–382. https://doi.org/10.1016/j.conbuildmat.2017.06.010.
De Santis, S., et al. 2017a. “Round robin test on tensile and bond behaviour of steel reinforced grout systems.” Composites Part B 127: 100–120. https://doi.org/10.1016/j.compositesb.2017.03.052.
De Santis, S., F. G. Carozzi, G. de Felice, and C. Poggi. 2017b. “Test methods for textile reinforced mortar characterization.” Composites Part B 127: 121–132. https://doi.org/10.1016/j.compositesb.2017.03.016.
De Santis, S., P. Casadei, G. De Canio, G. de Felice, M. Malena, M. Mongelli, and I. Roselli. 2016. “Seismic performance of masonry walls retrofitted with steel reinforced grout.” Earthquake Eng. Struct. Dyn. 45 (2): 229–251. https://doi.org/10.1002/eqe.2625.
De Santis, S., F. Roscini, and G. de Felice. 2018. “Full-scale tests on masonry vaults strengthened with steel reinforced grout.” Composites Part B 141: 20–36. https://doi.org/10.1016/j.compositesb.2017.12.023.
Donnini, J., F. De Caso y Basalo, V. Corinaldesi, G. Lancioni, and A. Nanni. 2017. “Fabric-reinforced cementitious matrix behavior at high-temperature: Experimental and numerical results.” Composites Part B 108: 108–121. https://doi.org/10.1016/j.compositesb.2016.10.004.
Elsanadedy, H. M., T. H. Almusallam, S. H. Alsayed, and Y. A. Al-Salloum. 2013. “Flexural strengthening of RC beams using textile reinforced mortar—Experimental and numerical study.” Compos. Struct. 97: 40–55. https://doi.org/10.1016/j.compstruct.2012.09.053.
Escrig, C., L. Gil, and E. Bernat-Maso. 2017. “Experimental comparison of reinforced concrete beams strengthened against bending with different types of cementitious-matrix composite materials.” Constr. Build. Mater. 137: 317–329. https://doi.org/10.1016/j.conbuildmat.2017.01.106.
Faella, C., E. Martinelli, E. Nigro, and S. Paciello. 2010. “Shear capacity of masonry walls externally strengthened by a cement-based composite material: An experimental campaign.” Constr. Build. Mater. 24 (1): 84–93. https://doi.org/10.1016/j.conbuildmat.2009.08.019.
FIEC (European Construction Industry Federation). 2017. The construction activity in EUROPE. Brussels, Belgium: European Construction Industry Federation.
Fossetti, M., and G. Minafò. 2015. “Strengthening of masonry columns with BFRCM or with steel wires: An experimental study.” Fibers 4 (2): 15. https://doi.org/10.3390/fib4020015.
Garmendia, L., P. Larrinaga, D. García, and I. Marcos. 2014. “Textile-reinforced mortar as strengthening material for masonry arches.” Int. J. Architect. Heritage 8 (5): 627–648. https://doi.org/10.1080/15583058.2012.704480.
Gonzalez-Libreros, J. H., L. H. Sneed, T. D’Antino, and C. Pellegrino. 2017. “Behavior of RC beams strengthened in shear with FRP and FRCM composites.” Eng. Struct 150: 830–842. https://doi.org/10.1016/j.engstruct.2017.07.084.
Hadad, H. A., V. Pino, and A. Nanni. 2017. Performance of FRCM strengthened beams subject to fatigue. Coral Gables, FL: RE-CAST—Univ. of Miami.
Ho, I. F. Y., E. S. S. Lam, B. Wu, and Y. Y. Wang. 2013. “Monotonic behavior of reinforced concrete columns confined with high-performance ferrocement.” J. Struct. Eng. 139 (4): 574–583. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000684.
Hollaway, L. C., and J. G. Teng, eds. 2008. Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites. Cambridge, UK: Woodhead.
ICC-ES (International Code Council-Evaluation Service). 2013. Acceptance criteria for masonry and concrete strengthening using fiber-reinforced cementitious matrix (FRCM) composite systems. ICC-ES AC434. Whittier, CA: ICC-ES.
Ismail, N., T. El-Maaddawy, N. Khattak, and A. Najmal. 2018. “In-plane shear strength improvement of hollow concrete masonry panels using a fabric-reinforced cementitious matrix.” J. Compos. Constr. 22 (2): 04018004. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000835.
Jones, R. M. 1975. Mechanics of composite materials. Washington, DC: Scripta Book.
Kariou, F. A., S. P. Triantafyllou, D. A. Bournas, and L. N. Koutas. 2018. “Out-of-plane response of masonry walls strengthened using textile-mortar system.” Constr. Build. Mater. 165: 769–781. https://doi.org/10.1016/j.conbuildmat.2018.01.026.
Leone, M., et al. 2017. “Experimental study of glass fibre reinforced mortar system on masonry substrate.” Composites Part B 127: 196–214. https://doi.org/10.1016/j.compositesb.2017.06.028.
Lignola, G. P., et al. 2017. “Performance assessment of basalt FRCM for retrofit applications on masonry.” Composites Part B 128: 1–18. https://doi.org/10.1016/j.compositesb.2017.05.003.
Loreto, G., S. Babaeidarabad, L. Leardini, and A. Nanni. 2015. “RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite.” Int. J. Adv. Struct. Eng. 7 (4): 341–352. https://doi.org/10.1007/s40091-015-0102-9.
Marcari, G., M. Basili, and F. Vestroni. 2017. “Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar.” Composites Part B 108: 131–142. https://doi.org/10.1016/j.compositesb.2016.09.094.
Minafò, G., and L. La Mendola. 2018. “Experimental investigation on the effect of mortar grade on the compressive behaviour of FRCM confined masonry columns.” Composites Part B 146: 1–12. https://doi.org/10.1016/j.compositesb.2018.03.033.
Naaman, A. E. 2012. “Evolution in ferrocement and thin reinforced cementitious composites.” Arabian J. Sci. Eng. 37 (2): 421–441. https://doi.org/10.1007/s13369-012-0187-4.
Nanni, A. 1995. “Concrete repair with externally bonded FRP reinforcement.” Concr. Int. 17 (6): 22–26.
Nanni, A. 2012. “FRCM strengthening—A new tool in the concrete and masonry repair toolbox.” Concr. Int. 34 (4): 43–49.
Napoli, A., and R. Realfonzo. 2015. “Reinforced concrete beams strengthened with SRP/SRG systems: Experimental investigation.” Constr. Build. Mater. 93: 654–677. https://doi.org/10.1016/j.conbuildmat.2015.06.027.
Ombres, L. 2014. “Concrete confinement with a cement based high strength composite material.” Compos. Struct. 109: 294–304. https://doi.org/10.1016/j.compstruct.2013.10.037.
Ombres, L. 2015a. “Confinement effectiveness in eccentrically loaded masonry columns strengthened by fiber reinforced cementitious matrix (FRCM) jackets.” Key Eng. Mater. 624: 551–558. https://doi.org/10.4028/www.scientific.net/KEM.624.551.
Ombres, L. 2015b. “Structural performances of reinforced concrete beams strengthened in shear with a cement based fiber composite material.” Compos. Struct. 122: 316–329. https://doi.org/10.1016/j.compstruct.2014.11.059.
Papanicolaou, C. G., T. C. Triantafillou, K. Karlos, and M. Papathanasiou. 2007. “Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: In-plane cyclic loading.” Mater. Struct. 40 (10): 1081–1097. https://doi.org/10.1617/s11527-006-9207-8.
Papanicolaou, C. G., T. C. Triantafillou, M. Papathanasiou, and K. Karlos. 2008. “Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: Out-of-plane cyclic loading.” Mater. Struct. 41 (1): 143–157. https://doi.org/10.1617/s11527-007-9226-0.
Pino, V., H. Akbari Hadad, F. De Caso y Basalo, A. Nanni, U. Ali Ebead, and A. El Refai. 2017. “Performance of FRCM-strengthened RC beams subject to fatigue.” J. Bridge Eng. 22 (10): 04017079. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001107.
Prota, A., G. Marcari, G. Fabbrocino, G. Manfredi, and C. Aldea. 2006. “Experimental in-plane behavior of tuff masonry strengthened with cementitious matrix-grid composite.” J. Compos. Constr. 10 (3): 223–233. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:3(223).
Ramaglia, G., G. P. Lignola, A. Balsamo, A. Prota, and G. Manfredi. 2017. “Seismic strengthening of masonry vaults with abutments using textile reinforced mortar.” J. Compos. Constr. 21 (2): 04016079. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000733.
Raoof, S. M., L. N. Koutas, and D. A. Bournas. 2017. “Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams.” Constr. Build. Mater. 151: 279–291. https://doi.org/10.1016/j.conbuildmat.2017.05.023.
RILEM Technical Committee 232-TDT (Wolfgang Brameshuber). 2016. “Recommendation of RILEM TC 232-TDT: Test methods and design of textile reinforced concrete. Uniaxial tensile test: Test method to determine the load bearing behavior of tensile specimens made of textile reinforced concrete.” Mater. Struct. 49 (12): 4923–4927.
Santandrea, M., G. Quartarone, C. Carloni, and X. Gu. 2017. “Confinement of masonry columns with steel and basalt FRCM composites.” Key Eng. Mater. 747: 342–349. https://doi.org/10.4028/www.scientific.net/KEM.747.342.
Tekieli, M., S. De Santis, G. de Felice, A. Kwiecień, and F. Roscini. 2016. “Application of digital image correlation to composite reinforcements testing.” Compos. Struct. 160: 670–688. https://doi.org/10.1016/j.compstruct.2016.10.096.
Transportation for America. 2013. “The fix we’re in for: The state of our nation’s bridges.” Accessed April 4, 2017. http://t4america.org/.
Triantafillou, T. C., and C. G. Papanicolaou. 2006. “Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets.” Mater. Struct. 39 (285): 93–103. https://doi.org/10.1007/s11527-005-9034-3.
Valluzzi, M. R., F. Da Porto, E. Garbin, and M. Panizza. 2014a. “Out-of-plane behavior of infill masonry panels strengthened with composite materials.” Mater. Struct. 47 (12): 2131–2145. https://doi.org/10.1617/s11527-014-0384-6.
Valluzzi, M. R., C. Modena, and G. de Felice. 2014b. “Current practice and open issues in strengthening historical buildings with composites.” Mater. Struct. 47 (12): 1971–1985. https://doi.org/10.1617/s11527-014-0359-7.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 22Issue 6December 2018

History

Received: Feb 23, 2018
Accepted: May 24, 2018
Published online: Aug 29, 2018
Published in print: Dec 1, 2018
Discussion open until: Jan 29, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Stefano De Santis, Ph.D. [email protected]
Researcher, Dept. of Engineering, Roma Tre Univ., Via Vito Volterra 62, Rome 00146, Italy (corresponding author). Email: [email protected]
Houman A. Hadad, Ph.D., S.M.ASCE [email protected]
Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Miami, 1251 Memorial Dr., McArthur Engineering Bldg., Coral Gables, FL 33146-0630. Email: [email protected]
Francisco De Caso y Basalo, Ph.D., A.M.ASCE [email protected]
Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Miami, 1251 Memorial Dr., McArthur Engineering Bldg., Coral Gables, FL 33146-0630. Email: [email protected]
Gianmarco de Felice, Ph.D. [email protected]
Professor, Dept. of Engineering, Roma Tre Univ., Via Vito Volterra 62, Rome 00146, Italy. Email: [email protected]
Antonio Nanni, Ph.D., F.ASCE [email protected]
Professor, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Miami, 1251 Memorial Dr., McArthur Engineering Bldg., Coral Gables, FL 33146-0630. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share