Technical Papers
Nov 5, 2021

Crack-Width-Based Sectional Analysis of Fiber-Reinforced Concrete Applied to the Structural Design of the Slab of a Fly-Over Bridge

Publication: Journal of Bridge Engineering
Volume 27, Issue 1

Abstract

The use of fibers in reinforced concrete offers an opportunity to optimize the structural design while increasing durability. A sectional analysis that considers the stress-crack-width relation obtained for steel fiber–reinforced concrete (SFRC) and polyolefin fiber–reinforced concrete (PFRC) was used for the structural design of two fly-over bridge typologies. Moment-curvature diagrams were produced using an iterative process that took into account not only the strain conditions but also the crack appearance and evolution. The contribution of fibers to the shear resistance was calculated following the formulation proposed by Model Code 2010. The results obtained showed that the contribution of the fibers enabled a reduction in flexural reinforcement of up to 40% and 30% in the cases of SFRC and PFRC respectively. In relation to shear stirrups, notable reductions could be achieved for both SFRC and PFRC but could be greater in the case of PFRC. Lastly, the economic impact of the use of fibers in the construction costs was quantified.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge the financial support provided by Ministry of Economy and Competitiveness of Spain by means of the Research Fund Project PID2019-108978RB-C31. They also offer their gratitude to SIKA SAU for supporting the Enterprises University Chair “Cátedra Sika”.

References

AASHTO (American Association of State Highway and Transportation Officials). 2014. AASHTO LFRD bridge design specifications. Washington, DC: AASHTO.
Abdul-Ahad, R. B., and O. Q. Aziz. 1999. “Flexural strength of reinforced concrete T-beams with steel fibers.” Cem. Concr. Compos. 21 (4): 263–268. https://doi.org/10.1016/S0958-9465(99)00009-8.
ACI (American Concrete Institute). 2011. Building code requirements for structural concrete. ACI 318-11. Farmington Hills, MI: ACI.
Alberti, M. G., A. Enfedaque, and J. C. Gálvez. 2014a. “On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete.” Constr. Build. Mater. 55: 274–288. https://doi.org/10.1016/j.conbuildmat.2014.01.024.
Alberti, M. G., A. Enfedaque, and J. C. Gálvez. 2015. “Comparison between polyolefin fibre reinforced vibrated conventional concrete and self-compacting concrete.” Constr. Build. Mater. 85 (15): 182–194. https://doi.org/10.1016/j.conbuildmat.2015.03.007.
Alberti, M. G., A. Enfedaque, and J. C. Gálvez. 2016a. “Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size.” Eng. Fract. Mech. 154: 225–244. https://doi.org/10.1016/j.engfracmech.2015.12.032.
Alberti, M. G., A. Enfedaque, and J. C. Gálvez. 2016b. “On the prediction of the orientation factor and fibre distribution of steel and macro-synthetic fibres for fibre-reinforced concrete.” Cem. Concr. Compos. 77: 29–48. https://doi.org/10.1016/j.cemconcomp.2016.11.008.
Alberti, M. G., A. Enfedaque, J. C. Gálvez, and V. Agrawal. 2016c. “Fibre distribution and orientation of macro-synthetic polyolefin fibre reinforced concrete elements.” Constr. Build. Mater. 122: 505–517. https://doi.org/10.1016/j.conbuildmat.2016.06.083.
Alberti, M. G., A. Enfedaque, J. C. Gálvez, and V. Agrawal. 2016d. “Reliability of polyolefin fibre reinforced concrete beyond laboratory sizes and construction procedures.” Compos. Struct. 140 (15): 506–524. https://doi.org/10.1016/j.compstruct.2015.12.068.
Alberti, M. G., A. Enfedaque, J. C. Gálvez, M. F. Cánovas, and I. R. Osorio. 2014b. “Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions.” Mater. Des. 60: 57–65. https://doi.org/10.1016/j.matdes.2014.03.050.
Alberti, M. G., A. Enfedaque, J. C. Gálvez, and L. Pinillos. 2017a. “Structural cast-in-place application of polyolefin fiber–reinforced concrete in a water pipeline supporting elements.” J. Pipeline Syst. Eng. Pract. 8 (4): 05017002. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000274.
Alberti, M. G., A. Enfedaque, J. C. Gálvez, and E. Reyes. 2017b. “Numerical modelling of the fracture of polyolefin fibre reinforced concrete by using a cohesive fracture approach.” Composites, Part B 111: 200–210. https://doi.org/10.1016/j.compositesb.2016.11.052.
Alberti, M. G., J. C. Gálvez, A. Enfedaque, A. Carmona, C. Valverde, and G. Pardo. 2018. “Use of steel and polyolefin fibres in the La Canda tunnels: Applying MIVES for assessing sustainability evaluation.” Sustainability 10 (12): 4765. https://doi.org/10.3390/su10124765.
ASTM. 2007. Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading). ASTM C1609/C1690M-07. West Conshohocken, PA: ASTM.
Avanaki, M., A. Hoseini, S. Vahdani, and A. de la Fuente. 2018. “Numerical-aided design of fiber reinforced concrete tunnel segment joints subjected to seismic loads.” Constr. Build. Mater. 170: 40–54. https://doi.org/10.1016/j.conbuildmat.2018.02.219.
Barr, B., and M. K. Lee. 2003. “Modelling the strain-softening behaviour of plain concrete using a double-exponential model.” Mag. Concr. Res. 55 (4): 343–353. https://doi.org/10.1680/macr.2003.55.4.343.
Barros, J. A. O., V. M. C. F. Cunha, A. F. Ribeiro, and J. A. B. Antunes. 2005. “Post-cracking behaviour of steel fibre reinforced concrete.” Mater. Struct. 38 (1): 47–56. https://doi.org/10.1007/BF02480574.
Blanco, A., P. Pujadas, A. de la Fuente, S. Cavalaro, and A. Aguado. 2013. “Application of constitutive models in European codes to RC–FRC.” Constr. Build. Mater. 40: 246–259. https://doi.org/10.1016/j.conbuildmat.2012.09.096.
CNR (Consiglio Nazionale delle Riserche). 2006. Guide for the design and construction of fiber-reinforced concrete structures. CNR-DT 204. Roma: CNR.
Conforti, A., F. Minelli, and G. A. Plizzari. 2017. “Shear behaviour of prestressed double tees in self-compacting polypropylene fibre reinforced concrete.” Eng. Struct. 146: 93–104. https://doi.org/10.1016/j.engstruct.2017.05.014.
DBV (Deutsche Beton Vereins). 2001. Merkblatt stahlfaserbeton. Berlin: DBV.
Enfedaque, A., M. G. Alberti, and J. C. Gálvez. 2019. “Influence of fiber distribution and orientation in the fracture behavior of polyolefin fiber-reinforced concrete.” Materials 12 (2): 220. https://doi.org/10.3390/ma12020220.
Enfedaque, A., M. G. Alberti, J. C. Gálvez, and M. Beltrán. 2018a. “Constitutive relationship of polyolefin fibre–reinforced concrete: Experimental and numerical approaches to tensile and flexural behaviour.” Fatigue Fract. Eng. Mater. Struct. 41 (2): 358–373. https://doi.org/10.1111/ffe.12688.
Enfedaque, A., M. G. Alberti, J. C. Gálvez, and J. Domingo. 2017. “Numerical simulation of the fracture behaviour of glass fibre reinforced cement.” Constr. Build. Mater. 136: 108–117. https://doi.org/10.1016/j.conbuildmat.2016.12.130.
Enfedaque, A., M. G. Alberti, J. C. Gálvez, M. Rivera, and J. Simón-Talero. 2018b. “Can polyolefin fibre reinforced concrete improve the sustainability of a flyover bridge?” Sustainability 10 (12): 4583. https://doi.org/10.3390/su10124583.
Enfedaque, A., H. L. Romero, and J. C. Gálvez. 2014. “Fracture energy evolution of two concretes resistant to the action of freeze-thaw cycles.” Mater. Constr. 64 (313): e005. https://doi.org/10.3989/mc.2014.00813.
fib (International Federation for Structural Concrete). 2010. Model code 2010. Paris: fib.
Foster, S. J. 2009. “The application of steel-fibres as concrete reinforcement in Australia: From material to structure.” Mater. Struct. 42 (9): 1209–1220. https://doi.org/10.1617/s11527-009-9542-7.
Graeff, A., K. Pilakoutas, K. Neocleous, and M. Peres. 2012. “Fatigue resistance and cracking mechanism of concrete pavements reinforced with recycled steel fibres recovered from post-consumer tyres.” Eng. Struct. 45: 385–395. https://doi.org/10.1016/j.engstruct.2012.06.030.
Hardy, N., S. Foster, R. Cox, H. V. Goudarzi, and A. Amin. 2018. “Investigation into the use of macro synthetic fibre reinforced concrete for breakwater armour units.” Coastal Eng. 140: 60–71. https://doi.org/10.1016/j.coastaleng.2018.06.004.
Imran, I., S. Sugiri, and I. Pane. 2015. “Behaviour of macro synthetic fiber reinforced concrete columns under concentric axial compression.” Procedia Eng. 125: 987–994. https://doi.org/10.1016/j.proeng.2015.11.152.
Job, T., and A. Ramaswamy. 2006. “Crack width in partially prestressed T-beams having steel fibers.” ACI Struct. J. 103 (4): 568.
Joshi, S. S., N. Thammishetti, and S. S. Prakash. 2018. “Efficiency of steel and macro-synthetic structural fibers on the flexure-shear behaviour of prestressed concrete beams.” Eng. Struct. 171: 47–55. https://doi.org/10.1016/j.engstruct.2018.05.067.
Kawashima, K., R. Zafra, T. K. K. Sasaki, and M. Nakayama. 2011. “Effect of polypropylene fiber reinforced cement composite and steel fiber reinforced concrete for enhancing the seismic performance of bridge columns.” J. Earthquake Eng. 15 (8): 1194–1211. https://doi.org/10.1080/13632469.2011.569051.
Laranjeira, F., A. Aguado, C. Molins, S. Grünewald, J. Walraven, and S. Cavalaro. 2012. “Framework to predict the orientation of fibers in FRC: A novel philosophy.” Cem. Concr. Res. 42 (6): 752–768. https://doi.org/10.1016/j.cemconres.2012.02.013.
Liao, L., A. de la Fuente, S. Cavalaro, A. Aguado, and G. Carbonari. 2015. “Experimental and analytical study of concrete blocks subjected to concentrated loads with an application to TBM-constructed tunnels.” Tunnelling Underground Space Technol. 49: 295–306. https://doi.org/10.1016/j.tust.2015.04.020.
Lopez, J., P. Serna, E. Camacho, H. Coll, and J. Navarro-Gregori. 2014. “First ultra-high-performance fibre-reinforced concrete footbridge in Spain: Design and construction.” Struct. Eng. Int. 24 (1): 101–104. https://doi.org/10.2749/101686614X13830788505793.
Mangat, P., and M. Azari. 1984. “Influence of steel fibre reinforcement on the fracture behaviour of concrete in compression.” Int. J. Cem. Compos. Lightweight Concrete 6 (4): 219–232. https://doi.org/10.1016/0262-5075(84)90017-4.
McMahon, J., and A. Birely. 2018. “Service performance of steel fiber reinforced concrete (SFRC) slabs.” Eng. Struct. 168: 58–68. https://doi.org/10.1016/j.engstruct.2018.04.067.
Meda, A., F. Minelli, and G. A. Plizzari. 2012. “Flexural behaviour of RC beams in fibre reinforced concrete.” Composites, Part B 43 (8): 2930–2937. https://doi.org/10.1016/j.compositesb.2012.06.003.
Ministerio de Fomento. 2011. Instrucción sobre las acciones a considerar en el proyecto de puentes de carretera. Madrid, Spain: Ministerio de Fomento.
Mobasher, B., Y. Yao, and C. Soranakom. 2015. “Analytical solutions for flexural design of hybrid steel fiber reinforced concrete beams.” Eng. Struct. 100: 164–177. https://doi.org/10.1016/j.engstruct.2015.06.006.
Picazo, A., J. C. Gálvez, M. G. Alberti, and A. Enfedaque. 2018. “Assessment of the shear behaviour of polyolefin fibre reinforced concrete and verification by means of digital image correlation.” Constr. Build. Mater. 181: 565–578. https://doi.org/10.1016/j.conbuildmat.2018.05.235.
Pereiro-Barceló, J., J. López-Juárez, S. Ivorra, and J. Bonet. 2019. “Experimental analysis of longitudinal shear between the web and flanges of T-beams made of fibre-reinforced concrete.” Eng. Struct. 196: 109280. https://doi.org/10.1016/j.engstruct.2019.109280.
Pons, O., A. de la Fuente, and A. Aguado. 2016. “The use of MIVES as a sustainability assessment MCDM method for architecture and civil engineering applications.” Sustainability 8 (5): 460. https://doi.org/10.3390/su8050460.
RILEM. 2002. Bending test: Final recommendations. RILEM TC-162-TDF. Paris: RILEM.
Salehian, H., and J. A. Barros. 2015. “Assessment of the performance of steel fibre reinforced self-compacting concrete in elevated slabs.” Cem. Concr. Compos. 55: 268–280. https://doi.org/10.1016/j.cemconcomp.2014.09.016.
Sancho, J., J. Planas, D. Cendón, E. Reyes, and J. Gálvez. 2007. “An embedded crack model for finite element analysis of concrete fracture.” Eng. Fract. Mech. 74 (1): 75–86. https://doi.org/10.1016/j.engfracmech.2006.01.015.
Serna, P., S. Arango, T. Ribeiro, A. M. Núñez, and E. Garcia-Taengua. 2009. “Structural cast-in-place SFRC: Technology, control criteria and recent applications in Spain.” Mater. Struct. 42 (9): 1233–1246. https://doi.org/10.1617/s11527-009-9540-9.
SOFiSTiK. 2010. Structural calculation software. Instruction manual. Nürnberg, Germany: SOFISTIK.
Spanish Minister of Public Works. 2008. Spanish structural concrete code. EHE-08. Madrid, Spain: Spanish Minister of Public Works.
Steffens, A., D. Dinkler, and H. Ahrens. 2002. “Modeling carbonation for corrosion risk prediction of concrete structures.” Cem. Concr. Res. 32 (6): 935–941. https://doi.org/10.1016/S0008-8846(02)00728-7.
Suárez, F., J. C. Gálvez, A. Enfedaque, and M. G. Alberti. 2019. “Modelling fracture on polyolefin fibre reinforced concrete specimens subjected to mixed-mode loading.” Eng. Fract. Mech. 211: 244–253. https://doi.org/10.1016/j.engfracmech.2019.02.018.
Tan, Y., H. Yu, H. Ma, Y. Zhang, and C. Wu. 2017. “Study on the micro-crack evolution of concrete subjected to stress corrosion and magnesium sulfate.” Constr. Build. Mater. 141: 453–460. https://doi.org/10.1016/j.conbuildmat.2017.02.127.
Torrijos, M. C., B. E. Barragán, and R. L. Zerbino. 2010. “Placing conditions, mesostructural characteristics and post-cracking response of fibre reinforced self-compacting concretes.” Constr. Build. Mater. 24 (6): 1078–1085. https://doi.org/10.1016/j.conbuildmat.2009.11.008.
UNE. 2007. Test method for metallic fibre concrete. Measuring the flexural tensile strength (limit of proportionality (LOP), residual). EN 14651:2007+A1. Geneva: UNE.
Xia, J., T. Chan, K. R. Mackie, M. A. Saleem, and A. Mirmiran. 2018. “Sectional analysis for design of ultra-high performance fiber reinforced concrete beams with passive reinforcement.” Eng. Struct. 160: 121–132. https://doi.org/10.1016/j.engstruct.2018.01.035.

Information & Authors

Information

Published In

Go to Journal of Bridge Engineering
Journal of Bridge Engineering
Volume 27Issue 1January 2022

History

Received: Mar 17, 2021
Accepted: Aug 5, 2021
Published online: Nov 5, 2021
Published in print: Jan 1, 2022
Discussion open until: Apr 5, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Departamento de Ingeniería Civil: Construcción, E.T.S de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Profesor Aranguren, s/n, 28040 Madrid, Spain; Torroja Ingeniería, C/Pedro de Valdivia 36, L20, 28006 Madrid, Spain. Email: [email protected]
Departamento de Ingeniería Civil: Construcción, E.T.S de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Profesor Aranguren, s/n, 28040 Madrid, Spain (corresponding author). ORCID: https://orcid.org/0000-0002-5659-7358. Email: [email protected]
Departamento de Ingeniería Civil: Construcción, E.T.S de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Profesor Aranguren, s/n, 28040 Madrid, Spain. ORCID: https://orcid.org/0000-0002-7276-8030. Email: [email protected]
J. C. Gálvez [email protected]
Departamento de Ingeniería Civil: Construcción, E.T.S de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Profesor Aranguren, s/n, 28040 Madrid, Spain. Email: [email protected]
J. M. Simón-Talero [email protected]
Departamento de Mecánica de Medios Continuos y Teoría de Estructuras, E.T.S de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Profesor Aranguren, s/n, 28040 Madrid, Spain; Torroja Ingeniería, C/Pedro de Valdivia 36, L20, 28006 Madrid, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Uneven distribution of interfacial bond stress in steel fiber-reinforced concrete-encased steel composite structures, Structure and Infrastructure Engineering, 10.1080/15732479.2022.2162550, (1-17), (2023).
  • Use of fiber reinforced concrete in bridges – Metrorrey Line 2 case study, Engineering Structures, 10.1016/j.engstruct.2022.115373, 276, (115373), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share