State-of-the-Art Review
Apr 24, 2019

Residual Capacity of Corroded Reinforced Concrete Bridge Components: State-of-the-Art Review

Publication: Journal of Bridge Engineering
Volume 24, Issue 7

Abstract

The current paper provides a comprehensive review of experimental studies on corrosion-damaged reinforced concrete (RC) components and the ability of current state-of-the-art numerical models to predict the residual capacity of these corroded RC components. The experimental studies on corroded RC components are classified into five different categories: (1) beams in flexure, (2) beams in shear, (3) columns under pure axial compression, (4) circular columns in flexure, and (5) rectangular columns in flexure. For each group, a summary of all previous research is provided. Through regression analyses, the experimental results of each aforementioned group were used to examine the adverse effect of corrosion on ductility and flexural, shear, and axial capacity loss of the corroded RC components. Finally, the observed results of the previous experimental studies were compared with the predicted values using the state-of-the-art numerical models currently available in the literature. The summarized experimental results showed that corrosion has much more adverse impact on ductility of the RC columns than strength. However, the effect of corrosion on ductility and strength reduction of RC beams was the same. Moreover, results of cross-sectional moment-curvature analyses using the state-of-the-art corrosion damage models showed a good correlation between the predicted residual flexural capacity and observed experimental results. Finally, the existing shortcomings in the literature and open issues to be addressed in future research are discussed, and some recommendations are provided.

Get full access to this article

View all available purchase options and get full access to this article.

References

Afsar Dizaj, E., R. Madandoust, and M. M. Kashani. 2018a. “ Exploring the impact of chloride-induced corrosion on seismic damage limit states and residual capacity of reinforced concrete structures.” Struct. Infrastruct. Eng. 14 ( 6 ): 714 – 729. https://doi.org/10.1080/15732479.2017.1359631.
Afsar Dizaj, E., R. Madandoust, and M. M. Kashani. 2018b. “ Probabilistic seismic vulnerability analysis of corroded reinforced concrete frames including spatial variability of pitting corrosion.” Soil Dyn. Earthquake Eng. 114 : 97 – 112. https://doi.org/10.1016/j.soildyn.2018.07.013.
Akiyama, M., and D. M. Frangopol. 2014. “ Long-term seismic performance of RC structures in an aggressive environment: Emphasis on bridge piers.” Struct. Infrastruct. Eng. 10 ( 7 ): 865 – 879. https://doi.org/10.1080/15732479.2012.761246.
Akiyama, M., D. M. Frangopol, and H. Matsuzaki. 2011. “ Life-cycle reliability of RC bridge piers under seismic and airborne chloride hazards.” Earthquake Eng. Struct. Dyn. 40 ( 15 ): 1671 – 1687. https://doi.org/10.1002/eqe.1108.
Alaskar, A. 2013. “ Shear behaviour of slender RC beams with corroded web reinforcement.” Master thesis, Univ. of Waterloo.
Alexopoulos, N. D., C. A. Apostolopoulos, M. P. Papadopoulos, and S. G. Pantelakis. 2007. “ Mechanical performance of BStIV grade steel bars with regard to the long-term material degradation due to corrosion damage.” Constr. Build. Mater. 21 ( 6 ): 1362 – 1369. https://doi.org/10.1016/j.conbuildmat.2005.09.008.
Alipour, A., B. Shafei, and M. Shinozuka. 2011. “ Performance evaluation of deteriorating highway bridges located in high seismic areas.” J. Bridge Eng. 6 ( 5 ): 597 – 611. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000197.
Almusallam, A. A. 2001. “ Effect of degree of corrosion on the properties of reinforcing steel bars.” Constr. Build. Mater. 15 ( 8 ): 361 – 368. https://doi.org/10.1016/S0950-0618(01)00009-5.
Al-Saidy, A. H., H. Saadatmanesh, S. El-Gamal, K. S. Al-Jabri, and B. M. Waris. 2016. “ Structural behavior of corroded RC beams with/without stirrups repaired with CFRP sheets.” Mater. Struct. 49 ( 9 ): 3733 – 3747. https://doi.org/10.1617/s11527-015-0751-y.
Apostolopoulos, C. A. 2009. “ The influence of corrosion and cross-section diameter on the mechanical properties of B500c steel.” J. Mater. Eng. Perform. 18 ( 2 ): 190 – 195. https://doi.org/10.1007/s11665-008-9281-x.
Apostolopoulos, C. A., and P. G. Koutsoukos. 2008. “ Study of the corrosion of reinforcement in concrete elements used for the repair of monuments.” Constr. Build. Mater. 22 ( 7 ): 1583 – 1593. https://doi.org/10.1016/j.conbuildmat.2007.03.022.
Apostolopoulos, C. A., and D. Michalopoulos. 2007. “ Corrosion of reinforcing steel and low cycle fatigue behaviour.” Mater. Corros. 58 ( 6 ): 438 – 446. https://doi.org/10.1002/maco.200604026.
Apostolopoulos, C. A., and V. G. Papadakis. 2008. “ Consequences of steel corrosion on the ductility properties of reinforcement bar.” Constr. Build. Mater. 22 ( 12 ): 2316 – 2324. https://doi.org/10.1016/j.conbuildmat.2007.10.006.
Apostolopoulos, C. A., and M. P. Papadopoulos. 2007. “ Tensile and low cycle fatigue behavior of corroded reinforcing steel bars S400.” Constr. Build. Mater. 21 ( 4 ): 855 – 864. https://doi.org/10.1016/j.conbuildmat.2005.12.012.
Apostolopoulos, C. A., M. P. Papadopoulos, and S. G. Pantelakis. 2006. “ Tensile behavior of corroded reinforcing steel bars BSt 500s.” Constr. Build. Mater. 20 ( 9 ): 782 – 789. https://doi.org/10.1016/j.conbuildmat.2005.01.065.
Apostolopoulos, C. A., and V. P. Pasialis. 2008. “ Use of quality indices in comparison of corroded technical steel bars B500c and S500s on their mechanical performance basis.” Constr. Build. Mater. 22 ( 12 ): 2325 – 2334. https://doi.org/10.1016/j.conbuildmat.2007.10.002.
Aquino, W. 2002. “ Long-term performance of seismically rehabilitated corrosion-damaged columns.” Ph.D. thesis, Univ. of Illinois at Urbana Champaign.
Aquino, W., and N. M. Hawkins. 2007. “ Seismic retrofitting of corroded reinforced concrete columns using carbon composites.” ACI Struct. J. 104 ( 3 ): 348 – 356.
ASCE. 2017. “ Report card for America’s infrastructure.” https://www.infrastructurereportcard.org/catitem/bridges/.
Azad, A. K., S. Ahmad, and B. H. A. Al-gohi. 2010. “ Flexural strength of corroded reinforced concrete beams.” Mag. Concr. Res. 62 ( 6 ): 405 – 414. https://doi.org/10.1680/macr.2010.62.6.405.
Azad, A. K., S. Ahmad, and S. Azher. 2007. “ Residual strength of corrosion-damage reinforced concrete beams.” ACI Struct. J. 104 ( 1 ): 40 – 47.
Azam, R. 2010. “ Behaviour of shear critical RC beams with corroded longitudinal steel reinforcement.” M.A.Sc. thesis, Univ. of Waterloo.
Bae, S. W., A. Belarbi, and J. J. Myers. 2005. “ Performance of corrosion-damaged RC columns repaired by CFRP sheets.” ACI Spec. Publ. 230 : 1447 – 1464.
Belarbi, A. l., and S-W. Bae. 2007. “ An experimental study on the effect of environmental exposures and corrosion on RC columns with FRP composite jackets.” Compos. Part B: Eng. 38 ( 5–6 ): 674 – 684. https://doi.org/10.1016/j.compositesb.2006.09.004.
Berto, L., R. Vitaliani, A. Saetta, and P. Simioni. 2009. “ Seismic assessment of existing RC structures affected by degradation phenomena.” Struct. Saf. 31 ( 4 ): 284 – 297. https://doi.org/10.1016/j.strusafe.2008.09.006.
Biondini, F., E. Camnasio, and A. Palermo. 2014. “ Lifetime seismic performance of concrete bridges exposed to corrosion.” Struct. Infrastruct. E 10 ( 7 ): 880 – 900. https://doi.org/10.1080/15732479.2012.761248.
Bousias, S. N., T. C. Triantafillou, M. N. Fardis, and L. Spathis. 2004. “ Fiber-reinforced polymer retrofitting of rectangular reinforced concrete columns with or without corrosion.” ACI Sruct. J. 101 ( 4 ): 512 – 520.
Broomfield, J. P. 2007. Corrosion of steel in concrete: Understanding, investigation and repair. 2nd ed. New York : Taylor and Francis.
Cairns, J., Y. Du, and D. Law. 2008. “ Structural performance of corrosion-damaged concrete beams.” Mag. Concr. Res. 60 ( 5 ): 359 – 370. https://doi.org/10.1680/macr.2007.00102.
Cairns, J., G. A. Plizzari, Y. G. Du, D. W. Law, and F. Chiara. 2005. “ Mechanical properties of corrosion-damaged reinforcement.” ACI Mater. J. 102 ( 4 ): 256 – 264.
Cairns, J., and Z. Zhao. 1993. “ Behavior of concrete beams with exposed reinforcement.” In Vol. 99 of Proc., Institution of Civil Engineers, Structures and Building, 141 – 154. London : ICE Publishing.
Castel, A., R. François, and G. Arliguie. 2000. “ Mechanical behaviour of corroded reinforced concrete beams—Part 1: Experimental study of corroded beams.” Mater. Struct. 33 ( 9 ): 539 – 544. https://doi.org/10.1007/BF02480533.
Chiu, C. K., F. J. Tu, and F. P. Hsiao. 2015. “ Lifetime seismic performance assessment for chloride-corroded reinforced concrete buildings.” Struct. Infrastruct. Eng. 11 ( 3 ): 345 – 362. https://doi.org/10.1080/15732479.2014.886596.
Choe, D., P. Gardoni, D. Rosowsky, and T. Haukaas. 2008. “ Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion.” Reliab. Eng. Syst. Saf. 93 ( 3 ): 383 – 393. https://doi.org/10.1016/j.ress.2006.12.015.
Choe, D., P. Gardoni, D. Rosowsky, and T. Haukaas. 2009. “ Seismic fragility estimates for reinforced concrete bridges subject to corrosion.” Struct. Saf. 31 ( 4 ): 275 – 283. https://doi.org/10.1016/j.strusafe.2008.10.001.
Chung, L., N. Husam, and B. Perumalsamy. 2008. “ Flexural behavior of concrete slabs with corroded bars. Cement & concrete composites.” Cem. Concr. Compos. 30 ( 3 ): 184 – 193. https://doi.org/10.1016/j.cemconcomp.2007.08.005.
Coronelli, D., and P. Gambarova. 2004. “ Structural assessment of corroded reinforced concrete beams: Modeling guidelines.” J. Struct. Eng. 130 ( 8 ): 1214 – 1224. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1214).
Cui, F., H. Zhang, M. Ghosn, and Y. Xu. 2018. “ Seismic fragility analysis of deteriorating RC bridge substructures subject to marine chloride-induced corrosion.” Eng. Struct. 155 : 61 – 72. https://doi.org/10.1016/j.engstruct.2017.10.067.
Dhakal, R. P., and K. Maekawa. 2002. “ Reinforcement stability and fracture of cover concrete in RC members.” J. Struct. Eng. 128 ( 10 ): 1253 – 1262. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1253).
Di Carlo, F., A. Meda, and Z. Rinaldi. 2017a. “ Numerical cyclic behaviour of un-corroded and corroded RC columns reinforced with HPFRC jacket.” Compos. Struct. 163 : 432 – 443. https://doi.org/10.1016/j.compstruct.2016.12.038.
Di Carlo, F., A. Meda, and Z. Rinaldi. 2017b. “ Numerical evaluation of the corrosion influence on the cyclic behaviour of RC columns.” Eng. Struct. 153 : 264 – 278. https://doi.org/10.1016/j.engstruct.2017.10.020.
Du, Y. G., L. A. Clark, and A. H. C. Chan. 2005a. “ Effect of corrosion on ductility of reinforcing bars.” Mag. Concr. Res. 57 ( 7 ): 407 – 419. https://doi.org/10.1680/macr.2005.57.7.407.
Du, Y. G., L. A. Clark, and A. H. C. Chan. 2005b. “ Residual capacity of corroded reinforcing bars.” Mag. Concr. Res. 57 ( 3 ): 135 – 147. https://doi.org/10.1680/macr.57.3.135.60482.
Du, Y., L. A. Clark, and A. H. C. Chan. 2007. “ Impact of reinforcement corrosion on ductile behaviour of reinforced concrete beams.” ACI Struct. J. 104 ( 3 ): 285 – 293.
El Maaddawy, T., K. Soudki, and T. Topper. 2005a. “ Analytical model to predict nonlinear flexural behaviour of corroded reinforced concrete beams.” ACI Struct. J. 102 ( 4 ): 550 – 559.
El Maaddawy, T., K. Soudki, and T. Topper. 2005b. “ Long-term performance of corrosion-damaged reinforced concrete beams.” ACI Struct. J. 102 ( 5 ): 649 – 656.
El-Sayed, A. K. 2017. “ Shear capacity assessment of reinforced concrete beams with corroded stirrups.” Constr. Build. Mater. 134 : 176 – 184. https://doi.org/10.1016/j.conbuildmat.2016.12.118.
El-Sayed, A. K., R. R. Hussain, and A. Shuraim. 2016. “ Influence of stirrup corrosion on shear strength of reinforced concrete slender beams.” ACI Struct. J. 113 ( 6 ): 1223 – 1232.
Fernandez, I., J. M. Bairán, and A. R. Marí. 2015. “ Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and σ-ε behavior.” Constr. Build. Mater. 101 : 772 – 783. https://doi.org/10.1016/j.conbuildmat.2015.10.139.
Ghosh, J., and J. Padgett. 2010. “ Aging considerations in the development of time-dependent seismic fragility curves.” J. Struct. Eng. 136 ( 12 ): 1497 – 1511. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000260.
Ghosh, J., and P. Sood. 2016. “ Consideration of time-evolving capacity distributions and improved degradation models for seismic fragility assessment of aging highway bridges.” Reliab. Eng. Syst. Saf. 154 : 197 – 218. https://doi.org/10.1016/j.ress.2016.06.001.
Guo, A., H. Li, X. Ba, X. Guan, and H. Li. 2015a. “ Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment.” Eng. Struct. 105 : 1 – 11. https://doi.org/10.1016/j.engstruct.2015.09.031.
Guo, A., W. Yuan, C. Lan, X. Guan, and H. Li. 2015b. “ Time-dependent seismic demand and fragility of deteriorating bridges for their residual service life.” Bull. Earthquake Eng. 13 ( 8 ): 2389 – 2409. https://doi.org/10.1007/s10518-014-9722-x.
Higgins, C., and W. Farrow. 2006. “ Tests of reinforced concrete beams with corrosion damaged stirrups.” ACI Struct. J. 103 ( 1 ): 133 – 141.
Jeon, J. S., R. DesRoches, L. N. Lowes, and I. Brilakis. 2015. “ Framework of aftershock fragility assessment-case studies: older California reinforced concrete building frames.” Earthquake Eng. Struct. Dyn. 44 ( 15 ): 2617 – 2636. https://doi.org/10.1002/eqe.2599.
Kallias, A. N. 2011. “ Advanced probabilistic resistance assessment of corroding RC beams.” Ph.D. thesis, Univ. of Surrey.
Kallias, A. N., and M. I. Rafiq. 2013. “ Performance assessment of corroding RC beams using response surface methodology.” Eng. Struct. 49 : 671 – 685. https://doi.org/10.1016/j.engstruct.2012.11.015.
Kashani, M. M. 2014. “ Seismic performance of corroded RC bridge piers: Development of a multi-mechanical nonlinear fibre beam-column model.” Ph.D. thesis, Univ. of Bristol.
Kashani, M. M., P. Alagheband, R. Khan, and S. Davis. 2015a. “ Impact of corrosion on low-cycle fatigue degradation of reinforcing bars with the effect of inelastic buckling.” Int. J. Fatigue 77 : 174 – 185. https://doi.org/10.1016/j.ijfatigue.2015.03.013.
Kashani, M. M., A. J. Crewe, and N. A. Alexander. 2013a. “ Nonlinear cyclic response of corrosion-damaged reinforcing bars with the effect of buckling.” Constr. Build. Mater. 41 : 388 – 400. https://doi.org/10.1016/j.conbuildmat.2012.12.011.
Kashani, M. M., A. J. Crewe, and N. A. Alexander. 2013b. “ Nonlinear stress–strain behaviour of corrosion-damaged reinforcing bars including inelastic buckling.” Eng. Struct. 48 : 417 – 429. https://doi.org/10.1016/j.engstruct.2012.09.034.
Kashani, M. M., A. J. Crewe, and N. A. Alexander. 2017. “ Structural capacity assessment of corroded RC bridge piers.” Proc. Inst. Civ. Eng. Bridge Eng. 170 ( 1 ): 28 – 41. https://doi.org/10.1680/jbren.15.00023.
Kashani, M. M., L. N. Lowes, A. J. Crewe, and N. A. Alexander. 2015b. “ Phenomenological hysteretic model for corroded reinforcing bars including inelastic buckling and low-cycle fatigue degradation.” Comput. Struct. 156 : 58 – 71. https://doi.org/10.1016/j.compstruc.2015.04.005.
Kashani, M. M., L. N. Lowes, A. J. Crewe, and N. A. Alexander. 2016. “ Nonlinear fibre element modelling of RC bridge piers considering inelastic buckling of reinforcement.” Eng. Struct. 116 : 163 – 177. https://doi.org/10.1016/j.engstruct.2016.02.051.
Khan, I., R. François, and A. Castel. 2014. “ Experimental and analytical study of corroded shear-critical reinforced concrete beams.” Mater. Struct. 47 ( 9 ): 1467 – 1481. https://doi.org/10.1617/s11527-013-0129-y.
Lee, C., J. F. Bonacci, M. D. Thomas, M. Maalej, S. Khajehpour, N. Hearn, and S. Sheikh. 2000. “ Accelerated corrosion and repair of reinforced concrete columns using carbon fibre reinforced polymer sheets.” Can. J. Civ. Eng. 27 ( 5 ): 941 – 948. https://doi.org/10.1139/l00-030.
Lee, H. S., and Y. S. Cho. 2009. “ Evaluation of the mechanical properties of steel reinforcement embedded in concrete specimen as a function of the degree of reinforcement corrosion.” Int. J. Fract. 157 ( 1–2 ): 81 – 88. https://doi.org/10.1007/s10704-009-9334-7.
Lee, H., T. Kage, T. Noguchi, and F. Tomosawa. 2003. “ An experimental study on the retrofitting effects of reinforced concrete columns damaged by rebar corrosion strengthened with carbon fibre sheets.” Cem. Concr. Res. 33 : 536 – 570.
Li, D., R. Wei, F. Xing, L. Sui, Y. Zhou, and W. Wang. 2018. “ Influence of non-uniform corrosion of steel bars on the seismic behavior of reinforced concrete columns.” Constr. Build. Mater. 167 : 20 – 32. https://doi.org/10.1016/j.conbuildmat.2018.01.149.
Li, J., J. Gong, and L. Wang. 2009. “ Seismic behavior of corrosion-damaged reinforced concrete columns strengthened using combined carbon fiber-reinforced polymer and steel jacket.” Constr. Build. Mater. 23 ( 7 ): 2653 – 2663. https://doi.org/10.1016/j.conbuildmat.2009.01.003.
Li, X., Y.-S. Liang, Z.-H. Zhao, and H.-L. Lv. 2015. “ Low-cycle fatigue behavior of corroded and CFRP-wrapped reinforced concrete columns.” Constr. Build. Mater. 101 : 902 – 917. https://doi.org/10.1016/j.conbuildmat.2015.10.063.
Lim, S., M. Akiyama, D. M. Frangopol, and H. Jiang. 2017. “ Experimental investigation of the spatial variability of the steel weight loss and corrosion cracking of reinforced concrete members: Novel X-ray and digital image processing techniques.” Struct. Infrastruct. Eng. 13 ( 1 ): 118 – 134. https://doi.org/10.1080/15732479.2016.1198397.
Liu, X., H. Jiang, and L. He. 2017. “ Experimental investigation on seismic performance of corroded reinforced concrete moment-resisting frames.” Eng. Struct. 153 : 639 – 652. https://doi.org/10.1016/j.engstruct.2017.10.034.
Lundgren, K., P. Kettil, K. Hanjari, H. Schlune, and A. Roman. 2012. “ Analytical model for the bond-slip behaviour of corroded ribbed reinforcement.” Struct. Infrastruct. Eng. 8 ( 2 ): 157 – 169. https://doi.org/10.1080/15732470903446993.
Ma, Y., Y. Che, and J. Gong. 2012. “ Behavior of corrosion damaged circular reinforced concrete columns.” Constr. Build. Mater. 29 : 548 – 556. https://doi.org/10.1016/j.conbuildmat.2011.11.002.
Malumbela, G., P. Moyo, and M. G. Alexander. 2009. “ Behaviour of RC beams corroded under sustained service loads.” Constr. Build. Mater. 23 ( 11 ): 3346 – 3351. https://doi.org/10.1016/j.conbuildmat.2009.06.005.
Mander, J. B., M. J. N. Priestley, and R. Park. 1988a. “ Observed stress-strain behavior of confined concrete.” J. Struct. Eng. 114 ( 8 ): 1827 – 1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827).
Mander, J. B., M. J. N. Priestley, and R. Park. 1988b. “ Theoretical stress-strain model for confined concrete.” J. Struct. Eng. 114 ( 8 ): 1804 – 1825. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
Mangat, P. S., and M. S. Elgarf. 1999. “ Flexural strength of concrete beams with corroding reinforcement.” ACI Struct. J. 96 ( 1 ): 149 – 159.
McKenna, F. 2011. “ OpenSees: A framework for earthquake engineering simulation.” Comput. Sci. Eng. 13 ( 4 ): 58 – 66. https://doi.org/10.1109/MCSE.2011.66.
Meda, A., S. Mostosi, Z. Rinaldi, and P. Riva. 2014. “ Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns.” Eng. Struct. 76 : 112 – 123. https://doi.org/10.1016/j.engstruct.2014.06.043.
Michel, A., M. R. Geiker, H. Stang, and M. Lepech. 2015. “ Multi-physics and multi-scale deterioration modelling of reinforced concrete part I: Coupling transport and corrosion at the material scale.” In Proc., 2015 Symp. of the Federation Internationale du Beton (fib). Copehnagen, Denmark : fib.
Ni Choine, M., M. M. Kashani, L. N. Lowes, A. O'Connor, A. J. Crewe, N. A. Alexander, and J. E. Padgett. 2016. “ Nonlinear dynamic analysis and seismic fragility assessment of a corrosion damaged integral bridge.” Int. J. Struct. Integrity 7 ( 2 ): 227 – 239. https://doi.org/10.1108/IJSI-09-2014-0045.
Ou, Y., and H. Chen. 2014. “ Cyclic behavior of reinforced concrete beams with corroded transverse steel reinforcement.” J. Struct. Eng. 140 ( 9 ): 04014050. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000932.
Ou, Y. C., H. D. Fan, and N. D. Nguyen. 2013. “ Long-term seismic performance of reinforced concrete bridges under steel reinforcement corrosion due to chloride attack.” Earthquake Eng. Struct. Dyn. 42 ( 14 ): 2113 – 2127.
Ou, Y., L. Tsai, and H. Chen. 2011. “ Cyclic performance of large‐scale corroded reinforced concrete beams.” Earthquake Eng. Struct. Dyn. 41 ( 4 ): 592 – 603.
Palsson, R., and M. S. Mirza. 2002. “ Mechanical response of corroded steel reinforcement of abandoned concrete bridge.” ACI Struct. J. 99 ( 2 ): 157 – 162.
Pantazopoulou, S. J., J. F. Bonacci, S. T. Sheikh, M. D. A. Thomas, and N. A. Hearn. 2001. “ Repair of corrosion-damaged columns with FRP wraps.” J. Compos. Constr. 5 ( 1 ): 3 – 11. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(3).
Papadopoulos, M. P., C. A. Apostolopoulos, N. D. Alexopoulos, and S. G. Pantelakis. 2007. “ Effect of salt spray corrosion exposure on the mechanical performance of different technical class reinforcing steel bars.” Mater. Des. 28 ( 8 ): 2318 – 2328. https://doi.org/10.1016/j.matdes.2006.07.017.
Park, R., N. Priestley, and W. Gill. 1982. “ Ductility of square-confined concrete columns.” J. Struct. Div. 108 ( 4 ): 929 – 950.
Penelis, G., and A. Kappos. 1997. Earthquake resistance concrete structures. London : E & FN Spon.
Rao, A. S., M. D. Lepech, and A. Kiremidjian. 2016a. “ Development of time-dependent fragility functions for deteriorating reinforced concrete bridge piers.” Struct. Infrastruct. Eng. 13 ( 1 ): 67 – 83. https://doi.org/10.1080/15732479.2016.1198401.
Rao, A. S., M. D. Lepech, A. S. Kiremidjian, and X.-Y. Sun. 2016b. “ Simplified structural deterioration model for reinforced concrete bridge piers under cyclic loading.” Struct. Infrastruct. Eng. 13 ( 1 ): 55 – 66. https://doi.org/10.1080/15732479.2016.1198402.
Razak, H. A., and F. C. Choi. 2001. “ The effect of corrosion on the natural frequency and modal damping of reinforced concrete beams.” Eng. Struct. 23 ( 9 ): 1126 – 1133. https://doi.org/10.1016/S0141-0296(01)00005-0.
Rodriguez, J., L. M. Ortega, J. Aragoncillo, D. Izquierdo, and C. Andrade. 2005. “ Methodology for the structural assessment of concrete affected by reinforcement corrosion.” ACI Struct. J. 229 : 305 – 318.
Rodriguez, J., L. M. Ortega, and J. Casal. 1997. “ Load carrying capacity of concrete structures with corroded reinforcement.” Constr. Build. Mater. 11 ( 4 ): 239 – 248. https://doi.org/10.1016/S0950-0618(97)00043-3.
Rodriguez, J., L. M. Ortega, J. Casal, and J. Diez. 1996. “ Corrosion of reinforcement and service life of concrete structures.” In Proc., Seventh Int. Conf. on Durability of Building Materials and Components. Oxon, England : E&FN Spon.
Simon, J., J. M. Brac, and P. Gardoni. 2010. “ Seismic response and fragility of deteriorated reinforced concrete bridges.” J. Struct. Eng. 136 ( 10 ): 1273 – 1281. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000220.
Spacone, E., F. C. Filippou, and F. F. Taucer. 1996a. “ Fibre beam-column model for non-linear analysis of R/C frames: Part I. formulation.” Earthquake Eng. Struct. Dyn. 25 ( 7 ): 711 – 725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7%3C711::AID-EQE576%3E3.0.CO;2-9.
Spacone, E., F. C. Filippou, and F. F. Taucer. 1996b. “ Fibre beam-column model for non-linear analysis of R/C frames: Part II. applications.” Earthquake Eng. Struct. Dyn. 25 ( 7 ): 727 – 742. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7%3C727::AID-EQE577%3E3.0.CO;2-O.
Stewart, M. G. 2004. “ Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure.” Struct. Saf. 26 ( 4 ): 453 – 470. 2004 ; https://doi.org/10.1016/j.strusafe.2004.03.002.
Suffern, C., A. El-Sayed, and K. Soudki. 2010. “ Shear strength of disturbed regions with corroded stirrups in reinforced concrete beams.” Can. J. Civ. Eng. 37 ( 8 ): 1045 – 1056. https://doi.org/10.1139/L10-031.
Tastani, S. P., and S. J. Pantazopoulou. 2004. “ Experimental evaluation of FRP jackets in upgrading RC corroded columns with substandard detailing.” Eng. Struct. 26 ( 6 ): 817 – 829. https://doi.org/10.1016/j.engstruct.2004.02.003.
Taucer, F., E. Spacone, and F. C. Filippou. 1991. A fiber beam-column element for seismic response analysis of reinforced concrete structures. Berkeley, CA : EERC College of Engineering, Univ. of California.
Torres-Acosta, A. A., S. Navarro-Gutierrez, and J. Terán-Guillén 2007. “ Residual flexure capacity of corroded reinforced concrete beams.” Eng. Struct. ( 29 ( 6 ): 1145 – 1152. https://doi.org/10.1016/j.engstruct.2006.07.018.
Transportation Research Board. 1991. Highway deicing: Comparing salt and calcium magnesium acetate. Special Rep. 235. Washington, DC : National Research Council.
Vidal, T., A. Castel, and R. François. 2004. “ Analyzing crack width to predict corrosion in reinforced concrete.” Cem. Concr. Res. 34 ( 1 ): 165 – 174. https://doi.org/10.1016/S0008-8846(03)00246-1.
Vu, N. S., B. Yu, and B. Li. 2016. “ Prediction of strength and drift capacity of corroded reinforced concrete columns.” Constr. Build. Mater. 115 : 304 – 318. https://doi.org/10.1016/j.conbuildmat.2016.04.048.
Vu, N. S., B. Yu, and B. Li. 2017. “ Stress-strain model for confined concrete with corroded transverse reinforcement.” Eng. Struct. 151 : 472 – 487. https://doi.org/10.1016/j.engstruct.2017.08.049.
Wallbank, E. J. 1989. The performance of concrete in bridges: A survey of 200 highway bridges. London : HMSO.
Wang, L., X. Zhang, Y. Ma, and Y. Liu. 2015. “ Effects of stirrup and inclined bar corrosion on shear behavior of RC beams.” Constr. Build. Mater. 98 : 537 – 546. https://doi.org/10.1016/j.conbuildmat.2015.07.077.
Xia, J., W. Jin, and L. Li. 2011. “ Shear performance of reinforced concrete beams with corroded stirrups in chloride environment.” Corros. Sci. 53 ( 5 ): 1794 – 1805. https://doi.org/10.1016/j.corsci.2011.01.058.
Yang, S., X. Song, H. Jia, X. Chen, and X. Liu. 2016. “ Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar.” Constr. Build. Mater. 121 : 319 – 327. https://doi.org/10.1016/j.conbuildmat.2016.06.002.
Ye, Z., W. Zhang, and X. Gu. 2018. “ Deterioration of shear behavior of corroded reinforced concrete beams.” Eng. Struct. 168 : 708 – 720. https://doi.org/10.1016/j.engstruct.2018.05.023.
Yoon, D. J., W. Weiss, and S. P. Shah. 2000. “ Assessing damage in corroded reinforced concrete using acoustic emission.” J. Eng. Mech. 126 ( 3 ): 189 – 194.
Yu, L., R. François, V. H. Dang, V. L’Hostis, and R. Gagné. 2015. “ Structural performance of RC beams damaged by natural corrosion under sustained loading in a chloride environment.” Eng. Struct. 96 : 30 – 40. https://doi.org/10.1016/j.engstruct.2015.04.001.
Yuan, W., A. Guo, W. Yuan, and H. Li. 2018. “ Shaking table tests of coastal bridge piers with different levels of corrosion damage caused by chloride penetration.” Constr. Build. Mater. 173 : 160 – 171. https://doi.org/10.1016/j.conbuildmat.2018.04.048.
Yuan, Z., C. Fang, M. Parsaeimaram, and S. Yang. 2017. “ Cyclic behavior of corroded reinforced concrete bridge piers.” J. Bridge Eng. 22 ( 7 ): 1 – 21.
Zhang, R., A. Castel, and R. François. 2009. “ Serviceability limit state criteria based on steel–concrete bond loss for corroded reinforced concrete in chloride environment.” Mater. Struct. 42 ( 10 ): 1407 – 1421. https://doi.org/10.1617/s11527-008-9460-0.
Zhu, W., and R. François. 2014. “ Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam.” Constr. Build. Mater. 51 : 461 – 472. https://doi.org/10.1016/j.conbuildmat.2013.11.015.
Zhu, W., and R. François. 2015. “ Structural performance of RC beams in relation with the corroded period in chloride environment.” Mater. Struct. 47 : 1 – 13.
Zhu, W., R. François, D. Coronelli, and D. Cleland. 2013. “ Effect of corrosion of reinforcement on the mechanical behaviour of highly corroded RC beams.” Eng. Struct. 56 : 544 – 554. https://doi.org/10.1016/j.engstruct.2013.04.017.

Information & Authors

Information

Published In

Go to Journal of Bridge Engineering
Journal of Bridge Engineering
Volume 24Issue 7July 2019

History

Published online: Apr 24, 2019
Published in print: Jul 1, 2019
Discussion open until: Sep 24, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Faculty of Engineering and Physical Sciences, Univ. of Southampton, Southampton SO17 1BJ, UK (corresponding author). ORCID: https://orcid.org/0000-0003-0008-0007. Email: [email protected]
Jake Maddocks
M.Eng. Student, Faculty of Engineering and Physical Sciences, Univ. of Southampton, Southampton SO17 1BJ, UK.
Ebrahim Afsar Dizaj, Ph.D. [email protected]
Postdoctoral Researcher, Faculty of Engineering, Univ. of Guilan, Rasht, Guilan 43514, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share