Technical Papers
Mar 21, 2014

Experimental Study of Thermal Actions on a Solid Slab Concrete Deck Bridge and Comparison with Eurocode 1

Publication: Journal of Bridge Engineering
Volume 19, Issue 10

Abstract

This paper presents extensive temperature measurements obtained during a period of 4 years in an integral solid slab prestressed concrete bridge deck. There is very little experimental information available for this bridge typology. The quality of the measured temperature data are validated by comparing experimentally measured displacements at the ends of the bridge with theoretical displacements determined with the recorded temperature components. The measured temperatures are also compared with common design parameters made considering the specifications for thermal actions proposed by Eurocode 1. The results corroborate that the Eurocode 1 formulations are generally adequate to represent thermal actions on bridges; however, it may need to be complemented to define maximum and minimum temperatures for bridges in locations with daily temperature variations greater than 10°C.

Get full access to this article

View all available purchase options and get full access to this article.

References

AASHTO. (2010). AASHTO LRFD bridge design specifications, Washington, DC.
Barr, P., Stanton, J., and Eberhard, M. (2005). “Effects of temperature variations on precast, prestressed concrete bridge girders.” J. Bridge Eng., 186–194.
Corres, H., Ezeberry, J., Petschke, T., and Perez, A. (2008). “Instrumentación y Auscultación de un Puente Integral.” Proc., IV Congreso de ACHE, Asociación Científico-técnica de Hormigón Estructura, Madrid, Spain, 75–76 (in Spanish).
Crespo, P. (2005). “Contraste experimental y de las variaciones térmicas en puentes.” Proc., III Congreso de ACHE, Vol. I, Asociación Científico-técnica de Hormigón Estructura, Madrid, Spain, 371–385 (in Spanish).
Emerson, M. (1981). “Thermal movements of concrete bridges: Field measurements and methods of predictions.” ACI SP70-05, American Concrete Institute, Detroit, 77–102.
European Committee for Standardization (CEN). (2004). “Eurocode 1: Actions on structures—Part 1-5: General actions—Thermal actions.” EN 1991-1-5, Brussels, Belgium.
Fennema, J., Laman, J., and Linzell, D. (2005). “Predicted and measured response of and integral abutment bridge.” J. Bridge Eng., 666–677.
Fu, Y., and Dewolf, J. (2004). “Effect of differential temperature on a curved post-tensioned concrete bridge.” Adv. Struct. Eng., 7(5), 385–397.
Hedegaard, B. D., French, C. E. W., and Shield, C. K. (2013a). “Investigation of thermal gradient effects in the I-35W St. Anthony Falls Bridge.” J. Bridge Eng., 890–900.
Hedegaard, B. D., French, C. E. W., Shield, C. K., Stolarski, H. K., and Jilk, B. J. (2013b). “Instrumentation and modeling of I-35W St. Anthony Falls Bridge.” J. Bridge Eng., 476–485.
Hue, F., Serrano, G., and Bolaño, J. (2000). “Öresund Bridge. Temperature and cracking control of the deck slab concrete at early ages.” Autom. Construct., 9(5–6), 437–445.
Inaudi, D., et al. (2009). “Structural Health Monitoring System for the new I-35W St. Anthony Falls Bridge.” Proc., 4th Int. Conf. on Structural Health Monitoring on Intelligent Infrastructure (SHMII-4), Int. Society for Structural Health Monitoring of Intelligence Infrastructure, Winnipeg, MB, Canada.
Larsson, O. (2009). “Modelling of temperature profiles in a concrete slab under climatic exposure.” Struct. Concr., 10(4), 193–201.
Larsson, O., and Karoumi, R. (2011). “Modelling of climatic thermal actions in hollow concrete box cross-sections.” Struct. Eng. Int., 21(1), 74–79.
Larsson, O., and Thelandersson, S. (2011). “Estimating extreme values of thermal gradients in concrete structures.” Mater. Struct., 44(8), 1491–1500.
León, J., et al. (2011). “Resultados Parciales del Proyecto de I+D+i para la Supresión de Juntas en Puentes Existentes.” Proc., V Congreso de ACHE, Asociación Científico-técnica de Hormigón Estructura, Madrid, Spain (in Spanish).
Li, D., Maes, M., and Dilger, W. (2004). “Thermal design criteria for deep prestressed concrete girders based on data from confederation bridge.” Can. J. Civ. Eng., 31(5), 813–825.
Lowell, G., Phares, B., Faris, A., and Bigelow, J. (2008). “Instrumentation and monitoring of integral bridge abutment-to-approach slab connection.” Final Rep., Center for Transportation Research and Education, Iowa State Univ., Ames, IA.
Mari Bernat, A., and Mirambell Arrizabalaga, E. (1989). “Sobre la conveniencia de considerar la acción térmica ambiental en el dimensionamiento de estructuras de hormigón frente a estados límites últimos.” Hormig. Acero., 172, 9–19 (in Spanish).
Moorty, S., and Roeder, C. W. (1992). “Temperature-dependent bridge movements.” J. Struct. Eng., 1090–1105.
Ortega, M., Millanes, F., and Mansilla, J. (2010). “Análisis de la instrumentación de temperaturas del viaducto mixto de alta velocidad Arroyo las Piedras.” Hormig. Acero., 61(258), 81–97.
Ortega, M., Millanes, F., and Mansilla, J. (2011). “Contraste normativo y experimental de los efectos térmicos en puentes de hormigón, metálicos y mixtos.” Proc., V Congreso de ACHE, Asociación Científico-técnica de Hormigón Estructura, Madrid, Spain (in Spanish).
Phares, B. M., Faris, A. S., and Lowell, G. (2013). “Integral bridge abutment to approach slab connection.” J. Bridge Eng., 179–181.
Rodriguez, L. E., Barr, P. J., and Halling, M. W. (2013). “Temperature effects on a box girder, integral abutment bridge.” J. Perform. Constr. Facil., in press.
Shoukry, S., William, G., and Riad, M. (2008). “Response of an integral abutment bridge to temperature variations.” Proc., Structures Congress: Crossing Borders, ASCE, Reston, VA, 1–10.
William, G., Shoukry, S., and Riad, M. (2012). “Study of thermal stresses in skewed integral abutment steel girder bridges.” Struct. Eng. Int., 22(3), 308–317.

Information & Authors

Information

Published In

Go to Journal of Bridge Engineering
Journal of Bridge Engineering
Volume 19Issue 10October 2014

History

Received: Jun 24, 2013
Accepted: Feb 19, 2014
Published online: Mar 21, 2014
Discussion open until: Aug 21, 2014
Published in print: Oct 1, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Hugo Corres Peiretti [email protected]
Professor, Structural Concrete Research Group, Dept. of Continuum Mechanics and Structures, Escuela Técnica Superior de Ingenieros (ETSI) de Caminos, Canales y Puertos, Polytechnic Univ. of Madrid, 28040 Madrid, Spain (corresponding author). E-mail: [email protected]
Javier Ezeberry Parrotta [email protected]
Structural Engineer, IDOM, S.A. Av. Monasterio de el Escorial 4, 28049 Madrid, Spain. E-mail: [email protected]
Amets Berecibar Oregui [email protected]
Structural Engineer, FHECOR Consulting Engineers, Barquillo 23, 28004 Madrid, Spain. E-mail: [email protected]
Alejandro Perez Caldentey [email protected]
Associate Professor, Structural Concrete Research Group, Dept. of Continuum Mechanics and Structures, Escuela Técnica Superior de Ingenieros (ETSI) de Caminos, Canales y Puertos, Polytechnic Univ. of Madrid, 28040 Madrid, Spain. E-mail: [email protected]
Freddy Ariñez Fernandez [email protected]
Ph.D. Student, Structural Concrete Research Group, Dept. of Continuum Mechanics and Structures, Escuela Técnica Superior de Ingenieros (ETSI) de Caminos, Canales y Puertos, Polytechnic Univ. of Madrid, 28040 Madrid, Spain. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share