Technical Papers
Jul 7, 2022

Thermal Stability Analysis of Three-Phase CNTRFC Cylindrical Shell Panels

Publication: Journal of Aerospace Engineering
Volume 35, Issue 5

Abstract

The linear and non-linear thermal stability characteristics of three-phase randomly distributed carbon nanotube (CNT)–reinforced fiber composite (RD-CNTRFC) shell panels are explored in the present study. Nonlinear kinematics for shell panels are expressed based on higher-order shear deformation theory (HSDT) and von-Kármán non-linearity. Effective properties of the RD-CNTRFC are computed in two stages: The first stage estimates the effective properties of the matrix reinforced with randomly distributed carbon nanotubes (i.e., hybrid matrix) using the Eshelby-Mori-Tanaka approach, and the second stage estimates the effective properties of a hybrid matrix reinforced with unidirectional fibers by adopting various homogenization techniques. Effective material properties of composite are considered to be temperature-dependent. Hamilton’s principle is employed to derive the governing partial differential equations (PDEs) by utilizing kinematic and constitutive model of the RD-CNTRFC shell panels. Then, Galerkin’s method reduces the PDEs into nonlinear algebraic equations. An iterative eigenvalue approach is used to estimate the stability characteristics of the RD-CNTRFC panels. The present investigation is initially verified by comparison with published results. Next, numerical results are presented in detail to understand the influence of CNT agglomeration, temperature-dependent properties, mass fraction, aspect ratio, and ply sequences on the thermal stability characteristics.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all of the data, models, and code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Al-Furjan, M. S. H., M. Habibi, A. Rahimi, G. Chen, H. Safarpour, M. Safarpour, and A. Tounsi. 2020. “Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM.” Eng. Comput. 38 (1): 1–24. https://doi.org/10.1007/s00366-020-01144-2.
Ayatollahi, M. R., S. Shadlou, M. M. Shokrieh, and M. Chitsazzadeh. 2011. “Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites.” Polym. Test. 30 (5): 548–556. https://doi.org/10.1016/j.polymertesting.2011.04.008.
Bhagat, V., P. Jeyaraj, and S. M. Murigendrappa. 2018. “Buckling and free vibration behavior of a temperature dependent FG-CNTRC cylindrical panel under thermal load.” Mater. Today: Proc. 5 (11): 23682–23691. https://doi.org/10.1016/j.matpr.2018.10.158.
Cetkovic, M. 2016. “Thermal buckling of laminated composite plates using layerwise displacement model.” Compos. Struct. 142 (May): 238–253. https://doi.org/10.1016/j.compstruct.2016.01.082.
Chakraborty, S., and T. Dey. 2021. “Non-linear stability analysis of CNT reinforced composite cylindrical shell panel subjected to thermomechanical loading.” Compos. Struct. 255 (Jan): 112995. https://doi.org/10.1016/j.compstruct.2020.112995.
Chakraborty, S., T. Dey, and R. Kumar. 2019. “Stability and vibration analysis of CNT-reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach.” Composites, Part B Eng. 168 (Jul): 1–14. https://doi.org/10.1016/j.compositesb.2018.12.051.
Chamis, C. C. 1983. Simplified composite micromechanics equations for hygral, thermal and mechanical properties. NASA TM-83320. Cleveland: NASA Lewis Research Center.
Chandrashekhara, K. 1992. “Thermal buckling of laminated plates using a shear flexible finite element.” Finite Elem. Anal. Des. 12 (1): 51–61. https://doi.org/10.1016/0168-874X(92)90006-X.
Chen, L.-W., and L.-Y. Chen. 1991. “Thermal postbuckling behaviors of laminated composite plates with temperature-dependent properties.” Compos. Struct. 19 (3): 267–283. https://doi.org/10.1016/0263-8223(91)90031-S.
Cheshmeh, E., M. Karbon, A. Eyvazian, D. W. Jung, M. Habibi, and M. Safarpour. 2020. “Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory.” Mech. Based Des. Struct. Mach. 50 (4): 1137–1160. https://doi.org/10.1080/15397734.2020.1744005.
Craft, W. J., and R. M. Christensen. 1981. “Coefficient of thermal expansion for composites with randomly oriented fibers.” J. Compos. Mater. 15 (1): 2–20. https://doi.org/10.1177/002199838101500102.
De Cicco, D., Z. Asaee, and F. Taheri. 2017. “Use of nanoparticles for enhancing the interlaminar properties of fiber-reinforced composites and adhesively bonded joints—A review.” Nanomaterials (Basel) 7 (11): 360. https://doi.org/10.3390/nano7110360.
Dey, T., and L. S. Ramachandra. 2014. “Static and dynamic instability analysis of composite cylindrical shell panels subjected to partial edge loading.” Int. J. Non-Linear Mech. 64 (Sep): 46–56. https://doi.org/10.1016/j.ijnonlinmec.2014.03.014.
Duc, N. D., P. D. Nguyen, N. H. Cuong, N. Van Sy, and N. D. Khoa. 2019. “An analytical approach on nonlinear mechanical and thermal post-buckling of nanocomposite double-curved shallow shells reinforced by carbon nanotubes.” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233 (11): 3888–3903. https://doi.org/10.1177/0954406218802921.
Fantuzzi, N., M. Bacciocchi, J. Agnelli, and D. Benedetti. 2020. “Three-phase homogenization procedure for woven fabric composites reinforced by carbon nanotubes in thermal environment.” Compos. Struct. 254 (Dec): 112840. https://doi.org/10.1016/j.compstruct.2020.112840.
Fazzolari, F. A. 2018. “Thermoelastic vibration and stability of temperature-dependent carbon nanotube-reinforced composite plates.” Compos. Struct. 196 (Jul): 199–214. https://doi.org/10.1016/j.compstruct.2018.04.026.
Foroutan, K., E. Carrera, and H. Ahmadi. 2021a. “Nonlinear hygrothermal vibration and buckling analysis of imperfect FG-CNTRC cylindrical panels embedded in viscoelastic foundations.” Eur. J. Mech. A. Solids 85 (Jan/Feb): 104107. https://doi.org/10.1016/j.euromechsol.2020.104107.
Foroutan, K., E. Carrera, and H. Ahmadi. 2021b. “Static and dynamic hygrothermal postbuckling analysis of sandwich cylindrical panels with an FG-CNTRC core surrounded by nonlinear viscoelastic foundations.” Compos. Struct. 259 (Mar): 113214. https://doi.org/10.1016/j.compstruct.2020.113214.
Girish, J., and L. S. Ramachandra. 2005. “Thermomechanical postbuckling analysis of symmetric and antisymmetric composite plates with imperfections.” Compos. Struct. 67 (4): 453–460. https://doi.org/10.1016/j.compstruct.2004.02.004.
Girish, J., and L. S. Ramachandra. 2006. “Thermomechanical postbuckling analysis of cross-ply laminated cylindrical shell panels.” J. Eng. Mech. 132 (2): 133–140. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(133).
Hashemi, R., M. Mirzaei, and M. R. Adlparvar. 2021. “On thermally induced instability of FG-CNTRC cylindrical panels.” Adv. Nano Res. 10 (1): 43–57. https://doi.org/10.12989/anr.2021.10.1.043.
He, Y., S. Yang, H. Liu, Q. Shao, Q. Chen, C. Lu, Y. Jiang, C. Liu, and Z. Guo. 2018. “Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties.” J. Colloid Interface Sci. 517 (May): 40–51. https://doi.org/10.1016/j.jcis.2018.01.087.
Kiani, Y. 2017. “Thermal post-buckling of FG-CNT reinforced composite plates.” Compos. Struct. 159 (Jan): 299–306. https://doi.org/10.1016/j.compstruct.2016.09.084.
Kiani, Y. 2018. “Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets.” J. Therm. Stresses 41 (7): 866–882. https://doi.org/10.1080/01495739.2018.1425645.
Kiarasi, F., M. Babaei, R. Dimitri, and F. Tornabene. 2020. “Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation.” Continuum Mech. Thermodyn. 33 (4): 911–932. https://doi.org/10.1007/s00161-020-00929-6.
Kumar, R., L. S. Ramachandra, and B. Banerjee. 2016. “Nonlinear stability characteristics of composite cylindrical panel subjected to non-uniform in-plane mechanical and localized thermal loadings.” Proc. Indian Natl. Sci. Acad. 82 (2): 271–288. https://doi.org/10.16943/ptinsa/2016/48419.
Kumar, R., L. S. Ramachandra, and B. Banerjee. 2017. “Semi-analytical approach for thermal buckling and postbuckling response of rectangular composite plates subjected to localized thermal heating.” Acta Mech. 228 (5): 1767–1791. https://doi.org/10.1007/s00707-016-1797-9.
Lee, S.-Y. 2018. “Dynamic instability assessment of carbon nanotube/fiber/polymer multiscale composite skew plates with delamination based on HSDT.” Compos. Struct. 200 (Sep): 757–770. https://doi.org/10.1016/j.compstruct.2018.05.121.
Makhecha, D. P., M. Ganapathi, and B. P. Patel. 2001. “Dynamic analysis of laminated composite plates subjected to thermal/mechanical loads using an accurate theory.” Compos. Struct. 51 (3): 221–236. https://doi.org/10.1016/S0263-8223(00)00133-1.
Matsunaga, H. 2005. “Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory.” Compos. Struct. 68 (4): 439–454. https://doi.org/10.1016/j.compstruct.2004.04.010.
Matsunaga, H. 2006. “Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory.” Compos. Struct. 72 (2): 177–192. https://doi.org/10.1016/j.compstruct.2004.11.016.
Mehar, K., S. Kumar Panda, Y. Devarajan, and G. Choubey. 2019. “Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading.” Compos. Struct. 216 (May): 406–414. https://doi.org/10.1016/j.compstruct.2019.03.002.
Mehar, K., and S. K. Panda. 2019. “Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure.” Adv. Nano Res. 7 (3): 181–190. https://doi.org/10.12989/anr.2019.7.3.181.
Mirzaei, M. 2018. “Thermal buckling of temperature-dependent composite super elliptical plates reinforced with carbon nanotubes.” J. Therm. Stresses 41 (7): 920–935. https://doi.org/10.1080/01495739.2018.1429969.
Mirzaei, M., and Y. Kiani. 2016. “Thermal buckling of temperature dependent FG-CNT reinforced composite plates.” Meccanica 51 (9): 2185–2201. https://doi.org/10.1007/s11012-015-0348-0.
Moradi-Dastjerdi, R., K. Behdinan, B. Safaei, and Z. Qin. 2020. “Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers.” Eng. Struct. 222 (Nov): 111141. https://doi.org/10.1016/j.engstruct.2020.111141.
Morimoto, T., Y. Tanigawa, and R. Kawamura. 2006. “Thermal buckling of functionally graded rectangular plates subjected to partial heating.” Int. J. Mech. Sci. 48 (9): 926–937. https://doi.org/10.1016/j.ijmecsci.2006.03.015.
Noor, A. K., and W. S. Burton. 1992. “Three-dimensional solutions for thermal buckling of multilayered anisotropic plates.” J. Eng. Mech. 118 (4): 683–701. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:4(683).
Noor, A. K., J. M. Peters, and W. S. Burton. 1994. “Three-dimensional solutions for initially stressed structural sandwiches.” J. Eng. Mech. 120 (2): 284–303. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:2(284).
Oh, I.-K., and I. Lee. 2001. “Thermal snapping and vibration characteristics of cylindrical composite panels using layerwise theory.” Compos. Struct. 51 (1): 49–61. https://doi.org/10.1016/S0263-8223(00)00123-9.
Poveda, R. L., and N. Gupta. 2014. “Electrical properties of carbon nanofiber reinforced multiscale polymer composites.” Mater. Des. 56 (Apr): 416–422. https://doi.org/10.1016/j.matdes.2013.11.074.
Rafiee, M., X. Q. He, and K. M. Liew. 2014. “Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection.” Int. J. Non Linear Mech. 59 (Jan): 37–51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011.
Rahman, M. M., M. Hosur, A. G. Ludwick, S. Zainuddin, A. Kumar, J. Trovillion, and S. Jeelani. 2012. “Thermo-mechanical behavior of epoxy composites modified with reactive polyol diluent and randomly-oriented amino-functionalized multi-walled carbon nanotubes.” Polym. Test. 31 (6): 777–784. https://doi.org/10.1016/j.polymertesting.2012.05.006.
Raju, K. K., and G. V. Rao. 1988. “Thermal post-buckling of a square plate resting on an elastic foundation by finite element method.” Comput. Struct. 28 (2): 195–199. https://doi.org/10.1016/0045-7949(88)90039-9.
Reddy, J. N. 1984. “A simple higher-order theory for laminated composite plates.” J. Appl. Mech. Trans. ASME 51 (4): 745–752. https://doi.org/10.1115/1.3167719.
Schapery, R. A. 1968. “Thermal expansion coefficients of composite materials based on energy principles.” J. Compos. Mater. 2 (3): 380–404. https://doi.org/10.1177/002199836800200308.
Shen, H.-S. 2009. “Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments.” Compos. Struct. 91 (1): 9–19. https://doi.org/10.1016/j.compstruct.2009.04.026.
Shen, H.-S. 2016. “Postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations subjected to lateral pressure in thermal environments.” Eng. Struct. 122 (Sep): 174–183. https://doi.org/10.1016/j.engstruct.2016.05.004.
Shen, H.-S., and Y. Xiang. 2015. “Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations.” Compos. Struct. 123 (May): 383–392. https://doi.org/10.1016/j.compstruct.2014.12.059.
Shen, H.-S., and C. L. Zhang. 2010. “Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates.” Mater. Des. 31 (7): 3403–3411. https://doi.org/10.1016/j.matdes.2010.01.048.
Shen, H.-S., and Z. H. Zhu. 2010. “Buckling and postbuckling behavior of functionally graded nanotube-reinforced composite plates in thermal environments.” Comput. Mater. Continua 18 (2): 155–182. https://doi.org/10.3970/cmc.2010.018.155.
Shen, H.-S., and Z. H. Zhu. 2012. “Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations.” Eur. J. Mech. A. Solids 35 (Sep–Oct): 10–21. https://doi.org/10.1016/j.euromechsol.2012.01.005.
Shi, D.-L., X.-Q. Feng, Y. Y. Huang, K. C. Hwang, and H. Gao. 2004. “The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites.” J. Eng. Mater. Technol. Trans. ASME 126 (3): 250–257. https://doi.org/10.1115/1.1751182.
Shi, Y., R. Y. Y. Lee, and C. Mei. 1999. “Thermal postbuckling of composite plates using the finite element modal coordinate method.” J. Therm. Stresses 22 (6): 595–614. https://doi.org/10.1080/014957399280779.
Singh, G., G. V. Rao, and N. G. R. Iyengar. 1994. “Thermal postbuckling behavior of laminated composite plates.” AIAA J. 32 (6): 1336–1338. https://doi.org/10.2514/3.12143.
Singh, V., R. Kumar, and S. N. Patel. 2021. “Non-linear vibration and instability of multi-phase composite plate subjected to non-uniform in-plane parametric excitation: Semi-analytical investigation.” Thin-Walled Struct. 162 (May): 107556. https://doi.org/10.1016/j.tws.2021.107556.
Singh, V., R. Vescovini, R. Kumar, S. N. Patel, and G. Watts. 2022. “Nonlinear vibration and instability of a randomly distributed CNT-reinforced composite plate subjected to localized in-plane parametric excitation.” Appl. Math. Model. 101 (Jan): 453–480. https://doi.org/10.1016/j.apm.2021.08.018.
Singha, M. K., L. S. Ramachandra, and J. N. Bandyopadhyay. 2001. “Stability and strength of composite skew plates under thermomechanical loads.” AIAA J. 39 (8): 1618–1623. https://doi.org/10.2514/2.1489.
Soldatos, K. P. 1984. “A comparison of some shell theories used for the dynamic analysis of cross-ply laminated circular cylindrical panels.” J. Sound Vib. 97 (2): 305–319. https://doi.org/10.1016/0022-460X(84)90324-9.
Torabi, J., R. Ansari, and R. Hassani. 2019. “Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory.” Eur. J. Mech. A. Solids 73 (Jan–Feb): 144–160. https://doi.org/10.1016/j.euromechsol.2018.07.009.
Tornabene, F., M. Bacciocchi, N. Fantuzzi, and J. N. Reddy. 2019. “Multiscale approach for three-phase CNT/polymer/ fiber laminated nanocomposite structures.” Supplement, Polym. Compos. 40 (S1): E102–E126. https://doi.org/10.1002/pc.24520.
Vosoughi, A. R., P. Malekzadeh, Mo. R. Banan, and Ma. R. Banan. 2011. “Thermal postbuckling of laminated composite skew plates with temperature-dependent properties.” Thin-Walled Struct. 49 (7): 913–922. https://doi.org/10.1016/j.tws.2011.02.017.
Wang, J. F., S. H. Cao, and W. Zhang. 2021. “Thermal vibration and buckling analysis of functionally graded carbon nanotube reinforced composite quadrilateral plate.” Eur. J. Mech. A. Solids 85 (Jan–Feb): 104105. https://doi.org/10.1016/j.euromechsol.2020.104105.
Yadav, A., M. Amabili, S. K. Panda, T. Dey, and R. Kumar. 2021. “Nonlinear damped vibrations of three-phase CNT-FRC circular cylindrical shell.” Compos. Struct. 255 (Jan): 112939. https://doi.org/10.1016/j.compstruct.2020.112939.
Zenkour, A. M. 2004. “Analytical solution for bending of cross-ply laminated plates under thermo-mechanical loading.” Compos. Struct. 65 (3–4): 367–379. https://doi.org/10.1016/j.compstruct.2003.11.012.
Zhang, L. W., Z. G. Song, and K. M. Liew. 2016. “Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow.” Comput. Methods Appl. Mech. Eng. 300 (Mar): 427–441. https://doi.org/10.1016/j.cma.2015.11.029.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 35Issue 5September 2022

History

Received: Nov 30, 2021
Accepted: Apr 1, 2022
Published online: Jul 7, 2022
Published in print: Sep 1, 2022
Discussion open until: Dec 7, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Sumeet Chakraborty [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Dhanbad 826004, India. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Indian Institute of Technology, Dhanbad 826004, India (corresponding author). Email: [email protected]
Vishal Singh [email protected]
Research Scholar, Dept. of Civil Engineering, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, India. Email: [email protected]
Rajesh Kumar [email protected]
Assistant Professor, Dept. of Civil Engineering, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Nonlinear Stability of Curved Multiphase Composite Panels: Influence of Agglomeration in Randomly Distributed Carbon Nanotubes with Nonuniform In-Plane Loads, Journal of Aerospace Engineering, 10.1061/JAEEEZ.ASENG-5297, 37, 3, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share