Technical Papers
Mar 18, 2022

Study of Aluminum Alloy 7075-T6 under Ultrasonic Fatigue Loading

Publication: Journal of Aerospace Engineering
Volume 35, Issue 4

Abstract

A detailed ultrasonic cycle fatigue study has been presented for aluminum alloy 7075-T6 (AA7075-T6) under fully reversed tension-compression loading to investigate the geometric sensitivity, frequency effects, size effects, surface roughness effects, and the corresponding failure mechanisms across different fatigue regimes. The dominating sources of life variability were identified using sensitivity studies conducted using finite-element analysis (FEA)–based modal and harmonic analyses and probability studies for typical ultrasonic fatigue specimens. In contrast to some studies of crack initiation for aluminum alloys under fatigue, subsurface crack initiations were observed for low stress amplitudes. The presence of both surface and subsurface crack initiations was strongly correlated to the surface conditions and loading conditions. Fatigue-fracture behavior was evaluated via detailed scanning electron microscopy (SEM) analysis of fracture surfaces, exhibiting unique features that are not observed under conventional fatigue testing of aluminum alloys.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to acknowledge the Department of Defense (DoD) through the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program for its financial support, and the Office of Naval Research (ONR) Defense University Research Instrumentation Program (DURIP) award N00014-16-1-2012, program manager William Nickerson.

References

Adams, R. C. 1987. Vol. 12 of ASM handbook: Fractography. Almere, Netherlands: ASM International.
Almaraz, G. M. D., A. G. Martínez, R. H. Sánchez, E. C. Gómez, M. G. Tapia, and J. C. V. Juárez. 2017. “Ultrasonic fatigue testing on the polymeric material PMMA, used in odontology applications.” Procedia Struct. Integrity 3 (Jan): 562–570. https://doi.org/10.1016/j.prostr.2017.04.039.
Arcari, A., N. Apetre, N. Dowling, M. Meischel, S. Stanzl-Tschegg, N. Iyyer, and N. Phan. 2015. “Variable amplitude fatigue life in VHCF and probabilistic life predictions.” Procedia Eng. 114 (Jan): 574–582. https://doi.org/10.1016/j.proeng.2015.08.107.
Arcari, A., N. Apetre, S. Sarkar, N. Iyyer, N. E. Dowling, S. Stanzl-Tschegg, N. Phan, and P. Kang. 2012. “Influence of superimposed VHCF loadings in cyclic fatigue of 7075-T6 aluminum alloy.” In Proc., Collection of Technical Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., 23–26. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2012-1732.
Bathias, C., L. Drouillac, and P. Le François. 2001. “How and why the fatigue S-N curve does not approach a horizontal asymptote.” Supplement, Int. J. Fatigue 23 (S1): 143–151. https://doi.org/10.1016/S0142-1123(01)00123-2.
Bathias, C., and P. C. Paris. 2004. Gigacycle fatigue in mechanical practice. Boca Raton, FL: CRC Press. https://doi.org/10.1201/9780203020609.
Brandes, M. C., M. J. Mills, and J. C. Williams. 2010. “The influence of slip character on the creep and fatigue fracture of an α Ti-Al alloy.” Metall. Mater. Trans. A 41 (13): 3463–3472. https://doi.org/10.1007/s11661-010-0407-z.
Castelluccio, G. M., W. D. Musinski, and D. L. McDowell. 2016. “Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes.” Int. J. Fatigue 93 (Dec): 387–396. https://doi.org/10.1016/j.ijfatigue.2016.05.019.
Caton, M. J., J. W. Jones, H. Mayer, S. Stanzl-Tschegg, and J. E. Allison. 2003. “Demonstration of an endurance limit in cast 319 aluminum.” Metall. Mater. Trans. A 34 (1): 33–41. https://doi.org/10.1007/s11661-003-0206-x.
Furuya, Y. 2011. “Notable size effects on very high cycle fatigue properties of high-strength steel.” Mater. Sci. Eng., A 528 (15): 5234–5240. https://doi.org/10.1016/j.msea.2011.03.082.
Gao, T., Z. Sun, H. Xue, and D. Retraint. 2020. “Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075-T6 aluminium alloy.” Int. J. Fatigue 139 (Jan): 105798. https://doi.org/10.1016/j.ijfatigue.2020.105798.
Guennec, B., A. Ueno, T. Sakai, M. Takanashi, and Y. Itabashi. 2014. “Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior.” Int. J. Fatigue 66 (Sep): 29–38. https://doi.org/10.1016/j.ijfatigue.2014.03.005.
He, C., Y. Liu, J. Dong, Q. Wang, D. Wagner, and C. Bathias. 2015. “Fatigue crack initiation behaviors throughout friction stir welded joints in AA7075-T6 in ultrasonic fatigue.” Int. J. Fatigue 81 (Dec): 171–178. https://doi.org/10.1016/j.ijfatigue.2015.07.012.
Holper, B., H. Mayer, A. K. Vasudevan, and S. E. Stanzl-Tschegg. 2003. “Near threshold fatigue crack growth in aluminium alloys at low and ultrasonic frequency: Influences of specimen thickness, strain rate, slip behaviour and air humidity.” Int. J. Fatigue 25 (5): 397–411. https://doi.org/10.1016/S0142-1123(02)00163-9.
Ilie, P., X. Lesperance, and A. Ince. 2020. “Development of an ultrasonic fatigue testing system for gigacycle fatigue.” Mater. Des. Process. Commun. 2 (6): 1–9. https://doi.org/10.1002/mdp2.120.
Kirkham, M. J. 2002. “Advances in ultra-high cycle fatigue.” Thesis, Dept. of Materials Science and Engineering, Univ. of Tennessee.
Lage, Y., M. de Freitas, D. Montalvão, A. M. R. Ribeiro, and L. Reis. 2012. “Ultrasonic fatigue analysis on steel specimen with temperature control: Evaluation of variable temperature effect.” In Proc., XIII Portuguese Conf. on Fracture, 1–6. Lisbon, Portugal: Instituto Superior Técnico.
Lee, W. S., and C. R. Lin. 2016. “Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures.” Cryogenics 79 (Oct): 26–34. https://doi.org/10.1016/j.cryogenics.2016.07.007.
Lesperance, X., P. Ilie, and A. Ince. 2021. “Very high cycle fatigue characterization of additively manufactured AlSi10Mg and AlSi7Mg aluminium alloys based on ultrasonic fatigue testing.” Fatigue Fract. Eng. Mater. Struct. 44 (3): 876–884. https://doi.org/10.1111/ffe.13406.
Li, S. X. 2012. “Effects of inclusions on very high cycle fatigue properties of high strength steels.” Int. Mater. Rev. 57 (2): 92–114. https://doi.org/10.1179/1743280411Y.0000000008.
Lu, L., and K. Shiozawa. 2006. “S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high-speed tool steel.” Jixie Gongcheng Xuebao/Chin. J. Mech. Eng. 42 (12): 89–94. https://doi.org/10.3901/JME.2006.12.089.
MatWeb. 2021. “Aluminum 7075-T6; 7075-T651.” Accessed August 1, 2021. http://www.matweb.com/search/DataSheet.aspx?MatGUID=4f19a42be94546b686bbf43f79c51b7d&ckck=1.
Mayer, H. 2006. “Ultrasonic torsion and tension-compression fatigue testing: Measuring principles and investigations on 2024-T351 aluminium alloy.” Int. J. Fatigue 28 (11): 1446–1455. https://doi.org/10.1016/j.ijfatigue.2005.05.020.
Mayer, H. 2016. “Recent developments in ultrasonic fatigue.” Fatigue Fract. Eng. Mater. Struct. 39 (1): 3–29. https://doi.org/10.1111/ffe.12365.
Mayer, H., M. Papakyriacou, R. Pippan, and S. Stanzl-tschegg. 2001. “Influence of loading frequency on the high cycle fatigue properties of AlZnMgCu1.5 aluminium alloy.” Mater. Sci. Eng. 314 (1–2): 48–54. https://doi.org/10.1016/S0921-5093(00)01913-4.
Mayer, H., R. Schuller, and M. Fitzka. 2013. “Fatigue of 2024-T351 aluminium alloy at different load ratios up to 1010 cycles.” Int. J. Fatigue 57 (Dec): 113–119. https://doi.org/10.1016/j.ijfatigue.2012.07.013.
Mohan, K., J. A. Suresh, P. Ramu, and R. Jayaganthan. 2016. “Microstructure and mechanical behavior of Al 7075-T6 subjected to shallow cryogenic treatment.” J. Mater. Eng. Perform. 25 (6): 2185–2194. https://doi.org/10.1007/s11665-016-2052-1.
Murakami, Y., N. N. Yokoyama, and J. Nagata. 2002. “Mechanism of fatigue failure in ultralong life regime.” Fatigue Fract. Eng. Mater. Struct. 25 (8–9): 735–746. https://doi.org/10.1046/j.1460-2695.2002.00576.x.
Myung, N. J., and N. S. Choi. 2016. “Dynamic stress analysis of the specimen gauge portion with a circular profile for the ultrasonic fatigue test.” Int. J. Fatigue 92 (Nov): 71–77. https://doi.org/10.1016/j.ijfatigue.2016.06.032.
Newman, J. C. 2015. “Fatigue and crack-growth analyses under giga-cycle loading on aluminum alloys.” Procedia Eng. 101 (C): 339–346. https://doi.org/10.1016/j.proeng.2015.02.041.
Paolino, D. S., A. Tridello, G. Chiandussi, and M. Rossetto. 2014. “On specimen design for size effect evaluation in ultrasonic gigacycle fatigue testing.” Fatigue Fract. Eng. Mater. Struct. 37 (5): 570–579. https://doi.org/10.1111/ffe.12149.
Papakyriacou, M., H. Mayer, U. Fuchs, S. E. Stanzl-Tschegg, and R. P. Wei. 2002. “Influence of atmospheric moisture on slow fatigue crack growth at ultrasonic frequency in aluminium and magnesium alloys.” Fatigue Fract. Eng. Mater. Struct. 25 (8–9): 795–804. https://doi.org/10.1046/j.1460-2695.2002.00571.x.
Pilchak, A. L., A. Bhattacharjee, A. H. Rosenberger, and J. C. Williams. 2009. “Low ΔK faceted crack growth in titanium alloys.” Int. J. Fatigue 31 (5): 989–994. https://doi.org/10.1016/j.ijfatigue.2008.03.036.
Racha, S. K. R. 2008. “Damage Characterization of four wrought aluminum alloys.” M.S. thesis, Dept. of Mechanical Engineering, Tennessee Technological Univ.
Sakai, T., B. Lian, M. Takeda, K. Shiozawa, N. Oguma, Y. Ochi, and T. Nakamura. 2010. “Statistical duplex S-N characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime.” Int. J. Fatigue 32 (3): 497–504. https://doi.org/10.1016/j.ijfatigue.2009.08.001.
Sakai, T., Y. Sato, and N. Oguma. 2001. “Characteristic S-N property of high carbon chromium bearing steel under axial loading in long life fatigue.” Nihon Kikai Gakkai Ronbunshu, A Hen/Trans. Jpn. Soc. Mech. Eng., Part A 67 (664): 1980–1987. https://doi.org/10.1299/kikaia.67.1980.
Schichtel, J. J., S. Datta, and A. Chattopadhyay. 2021. “Study of crack initiation and failure mechanisms in Al 7075 T6 alloy under ultrasonic fatigue.” In Proc., AIAA SciTech 2021 Forum. Reston, VA: American Institute of Aeronautics and Astronautics.
Schneider, N., J. Bödecker, C. Berger, and M. Oechsner. 2016. “Frequency effect and influence of testing technique on the fatigue behaviour of quenched and tempered steel and aluminium alloy.” Int. J. Fatigue 93 (Dec): 224–231. https://doi.org/10.1016/j.ijfatigue.2016.05.013.
Shi, Q., S. A. Hsie, J. W. Jones, and J. E. Allison. 2019. “Effects of alloying and processing on ultrasonic fatigue behavior in binary Ti-Al alloys.” Mater. Sci. Eng., A 756 (Mar): 564–577. https://doi.org/10.1016/j.msea.2019.03.079.
Stanzl-Tschegg, S. E., H. Mayer, R. Schuller, T. Przeorski, and P. Krug. 2012. “Fatigue properties of spray formed hypereutectic aluminium silicon alloy DISPAL ® S232 at high and very high numbers of cycles.” Mater. Sci. Eng., A 538 (Mar): 327–334. https://doi.org/10.1016/j.msea.2012.01.052.
Stanzl-Tschegg, S. E., M. Meischel, A. Arcari, N. Iyyer, N. Apetre, and N. Phan. 2016. “Combined cycle fatigue of 7075 aluminum alloy—Fracture surface characterization and short crack propagation.” Int. J. Fatigue 91 (Oct): 352–362. https://doi.org/10.1016/j.ijfatigue.2015.10.022.
Takahashi, Y., H. Yoshitake, R. Nakamichi, T. Wada, M. Takuma, T. Shikama, and H. Noguchi. 2014. “Fatigue limit investigation of 6061-T6 aluminum alloy in giga-cycle regime.” Mater. Sci. Eng., A 614 (Sep): 243–249. https://doi.org/10.1016/j.msea.2014.07.039.
Wang, Q. Y., N. Kawagoishi, and Q. Chen. 2006. “Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes.” Int. J. Fatigue 28 (11): 1572–1576. https://doi.org/10.1016/j.ijfatigue.2005.09.017.
Wang, Q. Y., T. Lib, and X. G. Zenga. 2010. “Gigacycle fatigue behavior of high strength aluminum alloys.” Procedia Eng. 2 (1): 65–70. https://doi.org/10.1016/j.proeng.2010.03.007.
Xu, L., Q. Wang, and M. Zhou. 2018. “Micro-crack initiation and propagation in a high strength aluminum alloy during very high cycle fatigue.” Mater. Sci. Eng., A 715 (Nov): 404–413. https://doi.org/10.1016/j.msea.2018.01.008.
Xue, H., Z. Sun, X. Zhang, T. Gao, and Z. Li. 2018. “Very high cycle fatigue of a cast aluminum alloy: Size effect and crack initiation.” J. Mater. Eng. Perform. 27 (10): 5406–5416. https://doi.org/10.1007/s11665-018-3617-y.
Xue, Y., H. El Kadiri, M. F. Horstemeyer, J. B. Jordon, and H. Weiland. 2007. “Micromechanisms of multistage fatigue crack growth in a high-strength aluminum alloy.” Acta Mater. 55 (6): 1975–1984. https://doi.org/10.1016/j.actamat.2006.11.009.
Zhu, X., J. W. Jones, and J. E. Allison. 2008. “Effect of frequency, environment, and temperature on fatigue behavior of E319 cast aluminum alloy: Stress-controlled fatigue life response.” Metall. Mater. Trans. A 39 (11): 2681–2688. https://doi.org/10.1007/s11661-008-9631-1.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 35Issue 4July 2022

History

Received: Sep 15, 2021
Accepted: Dec 22, 2021
Published online: Mar 18, 2022
Published in print: Jul 1, 2022
Discussion open until: Aug 18, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Jacob J. Schichtel [email protected]
Ph.D. Student, School for Engineering of Matter, Transport, and Energy, Arizona State Univ., Tempe, AZ 85281 (corresponding author). Email: [email protected]
Siddhant Datta
Postdoctoral Research Fellow, School for Engineering of Matter, Transport, and Energy, Arizona State Univ., Tempe, AZ 85281.
Aditi Chattopadhyay
Regents’ Professor, School for Engineering of Matter, Transport, and Energy, Arizona State Univ., Tempe, AZ 85281.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share