Abstract

This paper presents a new, accurate, and fast methodology, remote sensing satellites coverage analysis (RSS-CA) for determining the coverage area of Earth observation satellites in concurrent design facilities (CDFs) devoted to space mission analysis. The Earth observation areas of interest are discretized by grid points and the coverage surface is computed from the intersection between the grid and the satellite viewing geometry. This geometry is modeled for off-nadir pointing conical and rectangular field-of-view (FOV) sensors and considering a perfectly spherical Earth. To test the RSS-CA methodology, the MARTINLARA mission analysis was selected as a case study. This mission analysis was carried out at the CDF of the Instituto de Microgravedad “Ignacio Da Riva” (IDR/UPM Institute). The results were compared to the ones obtained with the well-known AGI System Tool Kit (STK) software. The high accuracy of the results shows that the developed methodology (RSS-CA) can be simply and effectively applied in CDFs designed for space mission analysis, representing the possibility of a more open and user-friendly environment in relation to other commercial tools.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was partially funded by Comunidad de Madrid S2018/NMT-4333 MARTINLARA-CM. The authors are indebted to the IDR/UPM staff and the members of the MARTINLARA consortium for the support during the development of this work. The authors are also grateful to Project Y2020/NMT-6427 OAPES from the program Sinérgicos 202 from Comunidad de Madrid. Finally, the authors are grateful to the reviewers, whose comments helped to improve this paper.

References

Ali, I., N. Al-Dhahir, and J. Hershey. 1999. “Predicting the visibility of LEO satellites.” IEEE Trans. Aerosp. Electron. Syst. 35 (4): 1183–1190. https://doi.org/10.1109/7.805436.
Bandecchi, M., B. Melton, B. Gardini, and F. Ongaro. 2000. “The ESA/ESTEC concurrent design facility.” In Proc., 2nd European Systems Engineering Conf. (EuSEC 2000). San Diego: International Council on Systems Engineering.
Barsi, J. A., J. R. Schott, S. J. Hook, N. G. Raqueno, B. L. Markham, and R. G. Radocinski. 2014. “Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration.” Remote Sens. 6 (11): 11607–11626. https://doi.org/10.3390/rs61111607.
Bermejo, J., J. Álvarez, P. Arcenillas, E. Roibás-Millán, J. Cubas, and S. Pindado. 2018. “CDF as a tool for space engineering master’s student collaboration and concurrent design learning.” In Proc., 8th Int. Systems & Concurrent Engineering for Space Applications Conf. SECESA 2018. Noordwijk, Netherlands: European Space Agency.
Campbell, J. B., and R. H. Wynne. 2011. Introduction to remote sensing. 5th ed. New York: Guilford Press.
Crisp, N., S. Livadiotti, and P. C. E. Roberts. 2018. “A semi-analytical method for calculating revisit time for satellite constellations with discontinuous coverage.” Preprint, submitted July 5, 2018. http://arxiv.org/abs/1807.02021.
Cubas, J., A. Farrahi, and S. Pindado. 2015a. “Magnetic attitude control for satellites in polar or sun-synchronous orbits.” J. Guid. Control Dyn. 38 (10): 1947–1958. https://doi.org/10.2514/1.G000751.
Cubas, J., S. Pindado, and C. De Manuel. 2014a. “Explicit expressions for solar panel equivalent circuit parameters based on analytical formulation and the Lambert w-function.” Energies 7 (7): 4098–4115. https://doi.org/10.3390/en7074098.
Cubas, J., S. Pindado, and A. Farrahi. 2013. “New method for analytical photovoltaic parameter extraction.” In Proc., 2013 Int. Conf. on Renewable Energy Research and Applications (ICRERA), 873–877. Yenimahalle, Ankara: International Journal of Renewable Energy Research.
Cubas, J., S. Pindado, and A. Sanz-Andrés. 2015b. “Accurate simulation of MPPT methods performance when applied to commercial photovoltaic panels.” Sci. World J. 2015: 1–16. https://doi.org/10.1155/2015/914212.
Cubas, J., S. Pindado, and F. Sorribes-Palmer. 2017. “Analytical calculation of photovoltaic systems maximum power point (MPP) based on the operation point.” Appl. Sci. 7 (9): 870. https://doi.org/10.3390/app7090870.
Cubas, J., S. Pindado, and M. Victoria. 2014b. “On the analytical approach for modeling photovoltaic systems behavior.” J. Power Sources 247 (Feb): 467–474. https://doi.org/10.1016/j.jpowsour.2013.09.008.
Cui, H., and C. Han. 2011. “Satellite constellation configuration design with rapid performance calculation and ordinal optimization.” Chin. J. Aeronaut. 24 (5): 631–639. https://doi.org/10.1016/S1000-9361(11)60074-5.
Domenikiotis, C., A. Loukas, and N. R. Dalezios. 2003. “The use of NOAA/AVHRR satellite data for monitoring and assessment of forest fires and floods.” Nat. Hazards Earth Syst. Sci. 3 (1–2): 115–128. https://doi.org/10.5194/nhess-3-115-2003.
Drusch, M., et al. 2012. “Sentinel-2: ESA’s optical high-resolution mission for GMES operational services.” Remote Sens. Environ. 120 (May): 25–36. https://doi.org/10.1016/j.rse.2011.11.026.
Escobal, P. R. 1963. “Rise and set time of a satellite about an oblate planet.” AIAA J. 1 (10): 2306–2310. https://doi.org/10.2514/3.2057.
European Space Agency. 2021. “Studies/reviews.” Accessed November 3, 2021. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/CDF/Studies_Reviews.
Fernández-Rico, G., I. Pérez-Grande, A. Sanz-Andres, I. Torralbo, and J. Woch. 2016. “Quasi-autonomous thermal model reduction for steady-state problems in space systems.” Appl. Therm. Eng. 105 (Jul): 456–466. https://doi.org/10.1016/j.applthermaleng.2016.03.017.
Fortescue, P., G. Swinerd, and J. Stark. 2011. “Spacecraft system engineering.” Chap. 20 in Spacecraft systems engineering. Hoboken, NY: Wiley.
Fu, W., J. Ma, P. Chen, and F. Chen. 2019. “Remote sensing satellites for digital earth.” In Manual of digital earth, 55–123. Singapore: Springer.
García-Pérez, A. 2020. “Optimum preliminary design of ion thrusters in concurrent design facility.” Concurrent Eng. 28 (3): 189–197. https://doi.org/10.1177/1063293X20938422.
García-Pérez, A., M. C. Manguán, Á. Sanz-Andrés, and G. Alonso. 2019a. “Numerical results of modal coupling in the UPMSat-2 structure.” In Proc., 8th European Conf. for Aeronautics and Space Sciences (EUCASS). Sint-Genesius-Rode: EUCASS.
García-Pérez, A., Á. Sanz-Andrés, G. Alonso, and M. C. Manguán. 2019b. “Dynamic coupling on the design of space structures.” Aerosp. Sci. Technol. 84 (Jan): 1035–1048. https://doi.org/10.1016/j.ast.2018.11.045.
García-Pérez, A., F. Sorribes-Palmer, G. Alonso, and A. Ravanbakhsh. 2018. “Overview and application of FEM methods for shock analysis in space instruments.” Aerosp. Sci. Technol. 80 (Sep): 572–586. https://doi.org/10.1016/j.ast.2018.07.035.
García-Pérez, A., F. Sorribes-Palmer, G. Alonso, and A. Ravanbakhsh. 2019c. “FEM simulation of space instruments subjected to shock tests by mechanical impact.” Int. J. Impact Eng. 126 (Apr): 11–26. https://doi.org/10.1016/j.ijimpeng.2018.12.008.
Gómez-San-Juan, A., I. Pérez-Grande, and A. Sanz-Andrés. 2018. “Uncertainty calculation for spacecraft thermal models using a generalized sea method.” Acta Astronaut. 151 (Oct): 691–702. https://doi.org/10.1016/j.actaastro.2018.05.045.
Gómez-San-Juan, A. M., J. C. Cano, and S. P. Carrion. 2020. “On the thermo-electric modelling of smallsats.” In Proc. 2020 Int. Conf. on Environmental Systems. Emmaus, PA: ICES.
Han, C., S. Bai, S. Zhang, X. Wang, and X. Wang. 2019. “Visibility optimization of satellite constellations using a hybrid method.” Acta Astronaut. 163 (Part B): 250–263. https://doi.org/10.1016/j.actaastro.2019.01.025.
Han, C., X. Gao, and X. Sun. 2017. “Rapid satellite-to-site visibility determination based on self-adaptive interpolation technique.” Sci. China Technol. Sci. 60 (2): 264–270. https://doi.org/10.1007/s11431-016-0513-8.
Han, C., P. Yang, X. Wang, and S. Liu. 2018. “A fast computation method for the satellite-to-site visibility.” In Proc., 2018 IEEE Congress on Evolutionary Computation (CEC), 1–8. New York: IEEE.
Hihn, J., D. Chattopadhyay, G. Karpati, and M. McGuire. 2011. “Aerospace concurrent engineering design teams: Current state, next steps and a vision for the future.” In Proc., AIAA SPACE 2011 Conf. and Exposition. Reston, VA: American Institute of Aeronautics and Astronautics.
IDR/UPM Institute (Instituto de Microgravedad “Ignacio Da Riva). 2020. “Mission requirements document (MRD).” Accessed November 3, 2021. https://martinlara3.webnode.es/martinlara-mission/.
Li, Y., S. Zhao, and J. Wu. 2016. “A general evaluation criterion for the coverage performance of LEO constellations.” Aerosp. Sci. Technol. 48 (Jan): 94–101. https://doi.org/10.1016/j.ast.2015.11.003.
Liang, S., X. Li, and J. Wang. 2012. Advanced remote sensing. A systematic view of remote sensing. 1st ed. London: Academic.
Mai, Y., and P. Palmer. 2001. “Fast algorithm for prediction of satellite imaging and communication opportunities.” J. Guid. Control Dyn. 24 (6): 1118–1124. https://doi.org/10.2514/2.4846.
McDonald, M., and V. Badescu. 2014. The international handbook of space technology. Berlin: Springer.
National Oceanic and Atmospheric Administration. 2016. “Wandering of the geomagnetic poles.” Accessed November 3, 2021. https://www.ngdc.noaa.gov/geomag/GeomagneticPoles.shtml.
Nugnes, M., C. Colombo, and M. Tipaldi. 2019. “Coverage area determination for conical fields of view considering an oblate earth.” J. Guid. Control Dyn. 42 (10): 2233–2245. https://doi.org/10.2514/1.G004156.
Palacios Lazaro, M. A., M. Bergadà Pujades, R. González Sola, A. Gamonal Coto, J. L. Garcia Fernández, and Y. Camacho. 2014. “Design, development and calibration of the MWR microwave radiometer on board Sentinel-3.” In European Microwave Week 2014: Connecting the Future, EuMW 2014—Conf. Proc., EuMC 2014: 44th European Microwave Conf., 1671–1674. Louvain-la-Neuve, Belgium: European Microwave Association.
Pindado, S., et al. 2016. “Master in space systems, an advanced master’s degree in space engineering.” In Proc., ATINER’s Conf. Paper Series ENGEDU2016-1953, 1–16. Athens, Greece: Athens Institute for Education & Research.
Pindado, S., and J. Cubas. 2017. “Simple mathematical approach to solar cell/panel behavior based on datasheet information.” Renewable Energy 103 (Apr): 729–738. https://doi.org/10.1016/j.renene.2016.11.007.
Pindado, S., J. Cubas, E. Roibás-Millán, F. Bugallo-Siegel, and F. Sorribes-Palmer. 2018a. “Assessment of explicit models for different photovoltaic technologies.” Energies 11 (6): 1353. https://doi.org/10.3390/en11061353.
Pindado, S., J. Cubas, E. Roibás-Millán, and F. Sorribes-Palmer. 2018b. “Project-based learning applied to spacecraft power systems: A long-term engineering and educational program at UPM University.” CEAS Space J. 10 (3): 307–323. https://doi.org/10.1007/s12567-018-0200-1.
Pindado, S., J. Cubas, and F. Sorribes-Palmer. 2015. “On the analytical approach to present engineering problems: Photovoltaic systems behavior, wind speed sensors performance, and high-speed train pressure wave effects in tunnels.” Math. Probl. Eng. 2015: 1–17. https://doi.org/10.1155/2015/897357.
Porras-Hermoso, A., D. Alfonso-Corcuera, J. Piqueras, E. Roibás-Millán, J. Cubas, J. Pérez-Ávarez, and S. Pindado. 2021. “Design, ground testing and on-orbit performance of a sun sensor based on cots photodiodes for the UPMSat-2 satellite.” Sensors 21 (14): 4905. https://doi.org/10.3390/s21144905.
Rodriguez-Rojo, E., J. Cubas, E. Roibás-Millán, and S. Pindado. 2019. “On the UPMSat-2 attitude, control and determination subsystems design.” In Proc., 8th European Conf. for Aeronautics and Space Sciences. Rhode-St-Genese, Belgium: European Conference for AeroSpace Sciences.
Roibás-Millán, E., D. Alfonso-Corcuera, J. Cubas, J. M. Álvarez, S. Pindado, and A. M. Gomez-San-Juan. 2020a. “Performance analysis of photovoltaic systems: Research at IDR/UPM institute.” In Proc., 2020 IEEE International Conf. on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe), 1–6. New York: IEEE.
Roibás-Millán, E., A. Alonso-Moragón, A. G. Jiménez-Mateos, and S. Pindado. 2017. “Testing solar panels for small-size satellites: The UPMSat-2 mission.” Meas. Sci. Technol. 28 (11): 115801. https://doi.org/10.1088/1361-6501/aa85fc.
Roibás-Millán, E., J. L. Cubero-Estalrrich, A. Gonzalez-Estrada, R. Jado-Puente, M. Sanabria-Pinzón, D. Alfonso-Corcuera, J. M. Álvarez, J. Cubas, and S. Pindado. 2020b. “Lambert w-function simplified expressions for photovoltaic current-voltage modelling.” In Proc., 2020 IEEE Int. Conf. on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe), 1–6. New York: IEEE.
Roibás-Millán, E., F. Sorribes-Palmer, and M. Chimeno-Manguán. 2018a. “The MEOW lunar project for education and science based on concurrent engineering approach.” Acta Astronaut. 148 (Jul): 111–120. https://doi.org/10.1016/j.actaastro.2018.04.047.
Roibás-Millán, E., F. Sorribes-Palmer, J. Cubas, S. Pindado, M. Chimeno-Manguan, A. Gustavo, A. Sanz-Andres, J. Perez-Alvarez, S. Franchini, and I. Pérez-Grande. 2018b. “Implementation of concurrent engineering in muse (master in space systems) master’s degree in space engineering.” In Proc., 3rd Annual Int. Conf. on Engineering Education & Teaching (ENGEDU—ATINER). Athens, Greece: Athens Institute for Education & Research.
Salvatore, A., J. Negron, and M. Jennifer. 1992. “Rapid determination of satellite visibility periods.” J. Astronaut. Sci. 40: 17 40 (2): 281–296.
Sun, X., H. Cui, C. Han, and T. Geshi. 2012. “APCHI technique for rapidly and accurately predicting multi-restriction satellite visibility.” In Vol. 143 of Proc., 22nd AAS/AIAA Space Flight Mechanics Meeting. Springfield, VA: American Astronautical Society.
Torralbo, I., I. Perez-Grande, A. Sanz-Andrés, and J. Piqueras. 2018. “Correlation of spacecraft thermal mathematical models to reference data.” Acta Astronaut. 144 (Mar): 305–319. https://doi.org/10.1016/j.actaastro.2017.12.033.
Toth, C., and G. Jozkow. 2016. “Remote sensing platforms and sensors: A survey.” ISPRS J. Photogramm. Remote Sens. 115 (May): 22–36. https://doi.org/10.1016/j.isprsjprs.2015.10.004.
Ulybyshev, Y. 2000. “Geometric analysis of low-earth-orbit satellite communication systems: Covering functions.” J. Spacecr. Rockets 37 (3): 385–391. https://doi.org/10.2514/2.3572.
Vallado, D. A. 2013. Chap. 11 in Fundamentals of astrodynamics and applications. 4th ed. Cleveland: Microcosm Press.
Wang, X., C. Han, P. Yang, and X. Sun. 2019. “Onboard satellite visibility prediction using metamodeling based framework.” Aerosp. Sci. Technol. 94 (Nov): 105377. https://doi.org/10.1016/j.ast.2019.105377.
Wertz, J. R., and W. Larson. 1999. Chap. 7 in Space mission analysis and design. 3rd ed. Cleveland: Microcosm Press.
Zhang, P., C. Xu, C. Hu, and Y. Chen. 2012. “Coordinate transformations in satellite navigation systems.” In Electrical Engineering, 140 LNEE, 249–257. Berlin: Springer.
Zhou, Y., H. Leung, and M. Blanchette. 1996. “Sensor alignment using the earth-centered earth-fixed (ECEF) coordinate system.” In Vol. 1 of Proc., Conf. Record of the 30th Asilomar Conf. on Signals, Systems and Computers, 469–473. Grove, CA: Asilomar.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 35Issue 3May 2022

History

Received: Jul 28, 2021
Accepted: Nov 17, 2021
Published online: Jan 20, 2022
Published in print: May 1, 2022
Discussion open until: Jun 20, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain; Ph.D. Student, Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM), Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain (corresponding author). ORCID: https://orcid.org/0000-0003-0737-0613. Email: [email protected]
Professor, Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM), Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain. ORCID: https://orcid.org/0000-0003-0180-6973. Email: [email protected]
Professor, Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM), Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain. ORCID: https://orcid.org/0000-0003-2073-8275. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share