Technical Papers
Mar 15, 2013

Aerospace Propulsion and Power Materials and Structures Research at NASA Glenn Research Center

Publication: Journal of Aerospace Engineering
Volume 26, Issue 2

Abstract

The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is well recognized for its contributions toward development of advanced materials and structures for aerospace propulsion and power systems. The Structures and Materials Division conducts research across a broad range of technical areas relevant to the agency’s future aeronautics and space mission requirements. This paper will introduce the technical areas of strategic importance in the Structures and Materials Division today and briefly address some of the specific research activities within these areas. A broad look at how the research areas of emphasis have evolved over time, beginning in the early 1940s when the GRC was first formed, will be discussed. Examples of some of the more notable research accomplishments and their impact on the aerospace industry over this time period will be included. A discussion of the division’s planned technical directions believed to be required to meet the longer-term national aeronautics and space exploration goals will also be addressed.

Get full access to this article

View all available purchase options and get full access to this article.

References

ABAQUS 6.10 [Computer software]. Waltham, MA, Dassault Systemes.
Aboudi, J. (2004). “The generalized method of cells and high-fidelity generalized method of cells micromechanical models—A review.” Mech. Adv. Mater. Structures, 11(4–5), 329–366.
Bakhle, M. A., and Reddy, T. S. (2010). “Harmonic balance computations of fan aeroelastic stability.” NASA TM 216222, Glenn Research Center, Cleveland.
Bakhle, M. A., Reddy, T. S. R., and Stefko, G. L. (2010). “Comparison of flutter analysis of an experimental fan.” NASA TM 216221, Glenn Research Center, Cleveland.
Bakhle, M. A., Srivastava, R., and Stefko, G. L. (1996). “Development of an aeroelastic code based on an Euler/Navier-Stokes aerodynamic solver.” ASME 96-GT-311, American Society of Mechanical Engineers, New York.
Bansal, N. P. (1996). “CVD SiC fiber-reinforced barium aluminosilicate glass-ceramic matrix composite.” Mater. Sci. Eng. A, 220(1–2), 129–139.
Baudin, C., Sayir, A., and Berger, M. H. (2006). “Mechanical behavior of directionally solidified alumina/aluminum titanate ceramics.” Acta Mater., 54(14), 3835–3841.
Bednarcyk, B. A., Aboudi, J., and Arnold, S. M. (2010). “Micromechanics modeling of composites subjected to multiaxial progressive damage in the constituents.” AIAA J., 48(7), 1367–1378.
Bednarcyk, B. A., and Arnold, S. M. (2001). “Micromechanics-based deformation and failure prediction for longitudinally reinforced titanium composites.” Compos. Sci. Technol., 61(5), 705–729.
Bednarcyk, B. A., and Arnold, S. M. (2002a). “MAC/GMC 4.0 user‘s manual.” NASA TM 212077, 2, Lewis Research Center, Cleveland.
Bednarcyk, B. A., and Arnold, S. M. (2002b). “MAC/GMC 4.0 user‘s manual—Example problem.” NASA TM 212077, 3, Lewis Research Center, Cleveland.
Bednarcyk, B. A., and Arnold, S. M. (2003). “Micromechanics-based modeling of woven polymer matrix composites.” AIAA J., 41(9), 1788–1796.
Bednarcyk, B. A., and Arnold, S. M. (2012). “A multiscale, nonlinear, modeling framework enabling the design and analysis of composite materials and structures.” NASA TM 217244, NASA, Glenn Research Center, Cleveland.
Bhatt, R. T. (1992). “Oxidation effects on the mechanical properties of a SiC fiber reinforced reaction-bonded Si3N4 matrix composites.” J. Am. Ceram. Soc., 75(2), 406–412.
Bhatt, R. T., and Phillips, R. E. (1990). “Laminate behavior of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites.” J. Comp. Tech. Res., 12(1), 13–24.
Bigelow, G. S., Garg, A., Padula, S. A., Gaydosh, D. J., and Noebe, R. D. (2011). “Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti 29.7Hf 20 alloy.” Scr. Mater., 64(8), 725–728.
Bigelow, G. S., Padula, S. A., II, Garg, A., Gaydosh, D., and Noebe, R. D. (2010). “Characterization of ternary NiTiPd high-temperature shape-memory alloys under load-biased thermal cycling.” Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 41(12), 3065–3079.
Blinzler, B. J., Goldberg, R. K., and Binienda, W. K. (2012). “Macro scale independently homogenized subcells for modeling braided composites.” Proc., 52nd Structures, Structural Dynamics and Materials Conf., American Institute of Aeronautics and Astronautics, Reston, VA.
Bowman, R. R., Ritzert, F., and Freedman, M. (2003). “Evaluation of candidate materials for high temperature stirling converter heater head.” NASA TM 212734, Lewis Research Center, Cleveland.
Brewer, D. (1999). “HSR/EPM combustor materials development program.” Mater. Sci. Eng., A261, 284–291.
Brown, W. F., Jr., and Srawley, J. E. (1966). “Plane strain crack toughness testing of high strength metallic materials.” ASTM Special Technical Publication No. 410, 1–136.
Cable, T. L., Setlock, J. A., Farmer, S. C., and Eckel, A. J. (2011). “Regenerative performance of the NASA symmetrical solid oxide fuel cell design.” Appl. Ceram. Technol., 8(1), 1–12.
Campbell, S., and Scheiman, D. (2002). “Orientation of aromatic ion exchange diamines and the effect on melt viscosity and thermal stability of PMR-15/silicate nanocomposites.” High Perform. Polymer, 14(1), 31–40.
Carney, K., Pereira, J. M., Revilock, D., and Matheney, P. (2001). “Jet engine fan blade containment using two alternate geometries. Chapter I—Aerospace/fluids-structures interactions” 4th European, LS-DYNA Users’ Conf., 〈http://www.dynalook.com/european-conf-2003/jet-engine-fan-blade-containment-using-two.pdf〉.
Carney, K. S., Lawrence, C., and Carney, D. V. (2002). “Aircraft engine blade-out dynamics.” Proc., 7th Int. LS-DYNA Users Conf., W. Mindle, ed., 〈http://www.dynalook.com/international-conf-2002/Session_14-3.pdf〉, 14–26.
Chamis, C. C. (1970). “Characterization and design mechanics for fiber-reinforced metals.” NASA TN D-5784, Lewis Research Center, Cleveland.
Chamis, C. C. (2007). “Probabilistic design of composite structures.” Int. Conf. on Computational and Experimental Engineering and Sciences, 3(2), ICCES, Duluth, GA, 59–66.
Chuang, K. C., Bowles, K. J., Scheiman, D. A., Papadopoulos, D. S. and Hardy-Green, D. (1999). “Synthesis and Characterization of a High Tg Polyimide (DMBZ-15).” Polyimides & other high temperature polymers: Synthesis, characterization & applications, Vol. 1, K. L. Mittal, ed., Coronet Books, Philadelphia.
Dawson, V. P. (1991). “Appendix C management structure.” Engines and innovation: Lewis laboratory and American propulsion technology. The NASA history series. NASA SP-4306, U.S. Government Printing Office, Washington, DC, 241–253.
DellaCorte, C., and Bruckner, R. J. (2010). “Remaining technical challenges and future plans for oil-free turbomachinery.” NASA TM 216762, Glenn Research Center, Cleveland.
DellaCorte, C., and Edmonds, B. J. (2009). “NASA PS400: A new high temperature solid lubricant coating for high temperature wear applications.” NASA TM 215678, Glenn Research Center, Cleveland.
DellaCorte, C., Pepper, S., Noebe, R., Hull, D., and Glennon, G. (2009). “Intermetallic nickel-titanium alloys for oil-lubricated bearing applications.” NASA TM 215646, Glenn Research Center, Cleveland.
DeMange, J. J., Dunlap, P. H., Steinetz, B. M., and Drlik, G. J. (2007). “An evaluation of high temperature airframe seals for advanced hypersonic vehicles.” NASA TM 215043, Lewis Research Center, Cleveland.
DeMange, J. J., Finkbeiner, J.R., Dunlap, P. H., and Steinetz, B. M. (2006). “Long-term compression and recovery tests completed on space shuttle main landing gear door seals.” Research and technology 2006, Lewis Research Center, Cleveland, 303–304.
Dempsey, P. J. (2003). “Integrating oil debris and vibration measurements for intelligent machine health monitoring.” NASA TM 211307, Lewis Research Center, Cleveland.
Draper, S. L., and Lerch, B. A. (2008). “Durability assessment of TiAl alloys.” Structural aluminides for elevated temperatures gamma titanium and other metallic aluminides, Y.-W. Kim, D. Morris, and C. Leyens, eds., The Minerals, Metals and Materials Society, Warrendale, PA, 39–50.
Dunlap, P. H., and Steinetz, B. M. (2004). “High temperature propulsion system structural seals for future space launch vehicles.” NASA TM 212907, Lewis Research Center, Cleveland.
Dunlap, P. H., and Steinetz, B. M. (2012). “A comparison of candidate seal designs for future docking system.” NASA TM 217722 (AIAA-2012-4075), Glenn Research Center, Cleveland.
Dunlap, P. H., et al. (2007). “Full-scale system for quantifying leakage of docking system seals for space applications.” NASA TM 215024, Lewis Research Center, Cleveland.
Dunlap, P. H., Steinetz, B. M., Curry, D. M., DeMange, J. J., Rivers, H. K., and Hsu, S.-Y. (2002). “Investigations of control surface seals for re-entry vehicles.” NASA TM 211708, Lewis Research Center, Cleveland.
Dunlap, P. H., Steinetz, B. M., and DeMange, J. J. (2004). “High temperature propulsion system structural seals for future space launch vehicles.” NASA TM 212907, NASA, Washington, DC.
Fox, D. S. (1998). “Oxidation behavior of chemically-vapor-deposited silicon carbide and silicon nitride from 1200°-1600°C.” J. Am. Ceram. Soc., 81(4), 945–950.
Freche, J. C., and Ault, G. M. (1977). “Progress in advanced high temperature turbine materials, coatings, and technology.” NASA TMX 73628, Lewis Research Center, Cleveland.
Freche, J. C., and Hall, R. W. (1968). “Progress in NASA programs for development of high temperature alloys for advanced engines.” NASA TM X-52420, Lewis Research Center, Cleveland.
Gabb, T. P., Gayda, J., Telesman, J., and Kantzos, P. (2005). “Thermal and mechanical property characterization of the advanced disk alloy LSHR.” NASA TM 213645, National Aeronautics and Space Administration, Washington, DC.
Gabb, T. P., Telesman, J., Hazel, B., and Mourer, D. P. (2009). “The effects of hot corrosion pits on the fatigue resistance of a disk superalloy.” J. Mater. Eng. Perform., 209(4), 2047–2056.
Gayda, J., Gabb, T. P., and Kantzos, P. T. (2004). “The effect of dual microstructure heat treatment on an advanced nickel-base disk alloy,” Superalloy 2004, K. A. Gree, T. M. Pollock, and H. Harads, eds. The Minerals, Metals & Materials Society, Warrendale, PA, 323–330.
Goldberg, R. K. (2001). “Implementation of fiber substructuring into strain rate dependent micromechanics analysis of polymer matrix composites.” NASA TM 210822, Lewis Research Center, Cleveland.
Goldberg, R. K., Roberts, G. D., and Gilat, A. (2003a). “Implementation of an associative flow rule including hydrostatic stress effects into the high strain rate deformation analysis of polymer matrix composites,” NASA TM 212382, Lewis Research Center, Cleveland.
Goldberg, R. K., Roberts, G. D., and Gilat, A. (2003b). “Incorporation of mean stress effects into the micromechanical analysis of the high strain rate response of polymer matrix composites.” Compos., Part B Eng., 34(2), 151–165.
Grisaffe, S. J. (1987). “Lewis materials research and technology: An overview.” Aeropropulsion '87, Session 1: Aeropropulsion Materials Research 〈http://www.archive.org/details/nasa_techdoc_19920013267〉, 37–44.
Gschneidner, K. A., and Pecharsky, V. K. (2008). “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects.” Int. J. Refrig., 31(6), 945–961.
Guo, H., et al. (2011). “Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane.” ACS Appl. Mater. Interfaces, 3(2), 546–552.
Gyekenyesi, J. Z., Murthy, P. L. N., and Mital, S. K. (2005). “NASALIFE—Component fatigue and creep life prediction program.” NASA TM 213886, Lewis Research Center, Cleveland.
Halford, G. R., and Manson, S. S. (1968). “Application of method of estimating high-temperature low-cycle fatigue behavior of materials.” Am. Soc. Metals Trans., 61(1), 94–102.
Handschuh, R., Polly, J., and Morales, W. (2011). “Gear mesh loss-of-lubrication experiments and analytical simulation.” NASA TM 217106, Glenn Research Center, Cleveland.
Handschuh, R., Roberts, G. D., Sinnamon, R. R., Stringer, D. B., Dykes, B. D., and Kohlman, L. W. (2012). “Hybrid gear preliminary results—Application of composites to dynamic mechanical components.” NASA TM 217630, Glenn Research Center, Cleveland.
Handschuh, R. F., and Zakrajsek, A. J. (2010). “High pressure angle gears—Preliminary testing results.” NASA TM 216251, Glenn Research Center, Cleveland.
Handschuh, R. F., and Zakrajsek, J. J. (2006). “Current research activities in drive system technology is in support of the NASA rotorcraft program.” NASA TM 214052, ARL-TR-3707, National Aeronautics and Space Administration, Washington, DC.
Haynes, J. A., Pint, B. A., More, K. L., Wright, I. G., and Smialek, J. L. (2003). “Superalloy substrate influences on the oxidation behavior of aluminide bond coatings.” Proc., John Stringer Symp. on High Temperature Corrosion, American Society for Metals, International, Metals Park, OH, 27–37.
Hirschberg, M. H., and Halford, G. R. (1976). “Use of strainrange partitioning to predict high-temperature low-cycle fatigue life.” NASA TN D-8072, Lewis Research Center, Cleveland.
Hurst, J., Hull, D., and Gorica, D. (2005). “Synthesis of boron nitride nanotubes for engineering applications.” Ceram. Eng. Sci. Proc., 26(8), 3–7.
Hurst, J. B. (2007). “Synthesis of silicon carbide nanotubes.” Proc., 5th Annual NanoMaterials for Defense Applications Symp.: Accelerating the Transition, Air Force Research Laboratory, Dayton, OH, Army Research Laboratory, Adelphi, MD, The Office of Naval Research, Arlington, VA and Defense Advanced Research Projects Agency, Arlington, VA.
Hurst, J. B., and Hung, C.-C. (2011). “Boron nitride nanotubes grown on commercial silicon carbide fiber tows.” Nanostructured Materials and Nanotechnology VI, The American Ceramics Society, Westerville, OH, 21–29.
Hurst, J. B., Hung, C.-C., and Santiago-deJesus, D. (2012). “Boron nitride nanotube reinforcement of SiC composites.” Proc., 13th Int. Conf. on the Science and Application of Nanotubes, Int. Conf. Management Service Pty Ltd, Southbank, Victoria, Australia.
Hypersizer 6.3.34 [Computer software]. Newport News, VA, Collier Research Corporation.
Johnson, W., Yamauchi, G. K., and Watt, M. E. (2005). “NASA heavy lift study.” NASA TP 213467, Lewis Research Center, Cleveland.
Johnston, J. C., Rosenthal, B. N., Meyer, M. B., and Glasgow, T. K. (1988). “Preparation for: The role of the microgravity material science microgravity.” Proc., AIAA Space Programs and Technologies Conf., American Institute of Aeronautics and Astronautics, Reston, VA.
Jones, W. R., Jr., et al. (2000). “A new apparatus to evaluate lubricants for space applications: The spiral orbit tribometer (SOT).” NASA TM 209935, Glenn Research Center, Cleveland.
Kalluri, S., and Halford, G. R. (1993). “Damage mechanisms in bithermal and thermo-mechanical fatigue of Haynes 188. Thermomechanical fatigue behavior of materials.” American Society for Testing and Materials ASTM STP, 1186, 126–143.
Krause, D. L., Kalluri, S., and Bowman, R. R. (2007). “Structural benchmark testing for stirling converter heater heads.” NASA TM 214934, Lewis Research Center, Cleveland.
Krause, D. L., Kalluri, S., Shah, A. R., and Korovaichuk, I. (2010). “Experimental creep life assessment for the advanced stirling converter heater head.” NASA TM 216814, Glenn Research Center, Cleveland.
Lebron-Colon, M., Meador, M. A., Gaier, J. R., Sola, F., Scheiman, D. A., and McCorkle, L. S. (2010). “Reinforced thermoplastic polyimide with dispersed functionalized single wall carbon nanotube.” ACS Appl. Mater. Interfaces, 2(3), 669–676.
Lee, H. J., Murthy, P. L. N., and Chamis, C. C. (1990). “METCAN updates for high temperature composite behavior: Simulation/verification.” NASA TM 103682, National Aeronautics and Space Administration, Washington, DC.
Lee, K. N., Fox, D. S., and Bansal, N. P. (2005). “Rare earth silicate environmental barrier coatings for SiC/SiC composite and Si3N4 ceramics.” J. Eur. Ceram. Soc., 25(10), 1705–1715.
Levine, S. R., et al. (1994). “Composites research at NASA Lewis Research Center.” NASA TM 111137, Lewis Research Center, Cleveland, 1–24.
Li, B. Q., and deGroh, H. C., III. (2002). “Magnetic field effects on convection and solidification in normal and microgravity.” Proc., Microgravity Materials Science Conf., Lewis Research Center, Cleveland, 367–379.
Lipowitz, J., et al. (1997). “Structure and properties of sylramic silicon carbide fiber A polycrystalline, stoichiometric b-SiC composition.” Ceram. Eng. Sci. Proc., 18(3), 147–157.
Liu, K. C., and Arnold, S. M. (2011). “Impact of material and architecture model parameters on the failure of woven ceramic matrix composites (CMCs) via the multiscale generalized method of cells.” NASA TM 217011, Glenn Research Center, Cleveland.
Locci, I. E., Bowman, C. L., and Gabb, T. P. (2009). “Development of high temperature dissimilar joint technology for fission surface power system.” Proc., 4th Int. Brazing and Soldering Conf., American Welding Society, Miami, FL and the American Society of Materials, Materials Park, OH, 165–175.
Locci, I. E., Bowman, C. L., Geng, S. M., and Robbie, M. G. (2011). “Material studies related to the use of NaK heat exchanger coupled to stirling heater head.” NASA TM 217001, NASA, Glenn Research Center, Cleveland.
MacKay, R. A., Gabb, T. P., Garg, A., Rogers, R. B., and Nathal, M. V. (2012). “Influence of composition on microstructural parameters of single crystal nickel-base alloys.” Mater. Charact., 70, 83–100.
MacKay, R. A., and Nathal, M. V. (1986). “Microstructure-property relationships in directionally solidified single crystal nickel-base superalloys.” MiCon 1986: Optimization of processing, properties and service performance through microstructural control, ASTM Committee E-4, West Conshohoken, PA.
Manson, S. M. (1953). “Behavior of materials under conditions of thermal stress.” NACA TN 2933, Lewis Flight Propulsion Laboratory, Cleveland.
Manson, S. S. (1966). “Interfaces between fatigue, creep, and fracture.” Int. J. Fract. Mech., 2(1), 327–363.
Manson, S. S., and Halford, G. R. (2009). Fatigue and durability of metals at high temperatures, American Society for Metals, International, Metals Park, OH.
Manson, S. S., Halford, G. R., and Spera, D. A. (1971). “The role of creep in high temperature low cycle fatigue.” Advances in creep design. Halsted Press, New York, 229–249.
Meador, M. A., et al. (2009). “Structure-property relationships in porous 3D nanostructures: Epoxy-cross-linked silica aerogels produced using ethanol as the solvent.” ACS Appl. Mater. Interfaces, 1(4), 894–906.
Meador, M. A., et al. (2012). “Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine.” ACS Appl. Mater. Interfaces, 4(2), 536–544.
Miller, R. A. (2009). “History of thermal barrier coatings for gas turbine engines—Emphasizing NASA‘s role from 1942 to 1990.” NASA TM 215459, National Aeronautics and Space Administration, Washington, DC.
Miller, S. G., Bauer, J. L., Maryanski, M. J., and Heimann, P. J. (2009). “Influence of nanoparticles on the thermal and mechanical properties of PMR-15 and candidate replacement resins.” Global material technology: Soaring to new horizons, 41st Int. SAMPE Technical Conf., T. Chavez et al., eds., DEStech Publications, Inc., Lancaster, PA.
Min, J. B., Duffy, K. P., and Provenza, A. J. (2010). “Shunted piezoelectric vibration damping analysis including centrifugal loading effects.” Proc., 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., AIAA, Reston, VA.
Mireles, O. R., Shin, E. E., and Bowman, C. L. (2011). “Mixed neutron and gamma ray testing of stirling alternator candidate organic materials.” Proc., Nuclear and Emerging Technologies for Space, American Nuclear Society, New York, and American Institute of Aeronautics and Astronautics, Reston, VA.
Mital, S. K., and Murthy, P. L. N. (1996). “CEMCAN—Ceramic matrix composites analyzer user‘s guide—Version 2.” NASA TM 107187, Lewis Research Center, Cleveland.
Murthy, P. L. N., Ginty, C. A., and Sanfeliz, J. G. (1993). “Second generation integrated composite analyzer—ICAN-computer code.” NASA TP 3290, Lewis Research Center, Cleveland.
Murthy, P. L. N., Nemeth, N. N., Brewer, D. N., and Mital, S. (2004). “Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane.” NASA TM 213331, Lewis Research Center, Cleveland.
Nemeth, N., Jadaan, O., Palfi, T., and Baker, E. (2004). “Predicting the reliability of ceramics under transient loads and temperatures with CARES/life.” Probabilistic aspects of life prediction Johnson, W. and Hillberry B., eds., ASTM, West Conshohoken, PA.
Noebe, R. D., et al. (2008). “Nickel-titanium-platinum high-temperature shape-memory-alloy viability established through wind tunnel testing of a high-speed adaptive inlet.” Research and technology 2007, NASA TM 215054, Glenn Research Center, Cleveland, 141–143.
Noebe, R. D., Bowman, R. R., and Nathal, M. V. (1993). “Physical and mechanical properties of the B2 compound NiAl.” Int. Mater. Rev., 38(4), 193–232.
Opila, E. J., Fox, D. S., and Jacobson, N. S. (1997). “Mass spectrometric identification of Si-O H(g) species from the reaction of silica with water vapor at atmospheric pressure.” J. Am. Ceram. Soc., 80(4), 1009–1012.
Padula, S. A., II, et al. (2007). “Development of HTSMA-actuated surge control rod for high-temperature turbomachinery application.” Proc., 48th AIAA/ASME/AHS/ASC Structures, Structural Dynamics and Material Conf., American Institute of Aeronautics and Astronautics, Reston, VA.
Pai, S. S., and Nagpal, V. K. (2007). “Development of probabilistic structural analysis integrated with manufacturing processes.” NASA TM 214989, Glenn Research Center, Cleveland.
Patel, B. M., Nagpal, V. K., Pai, S. S., and Scaglione, L. J. (2004). “Probabilistic structural analysis of ultra efficient engine technology ceramic matrix composite combustor liners.” Proc., IEEE Annual Reliability and Maintainability Symp.—Product Quality & Integrity (RAMS). IEEE, New York, 320–323.
Pineda, E. J., Waas, A. M., Bednarcyk, B. A., Collier, C. S., and Yarrington, P. W. (2009). “Progressive damage and failure modeling in notched laminated fiber reinforced composites.” Int. J. Fract., 158(2), 125–143.
Proctor, M. P., and Delgado, I. R. (2008). “Preliminary test results of a non-contacting finger seal on a herringbone-grooved rotor.” NASA TM 215475 (AIAA-2008-4506), Lewis Research Center, Cleveland.
Riha, D. S., Thacker, B. H., Millwater, H. R., Wu, Y. T., and Enright, M. P. (2000). “Probabilistic engineering analysis using the NESSUS software.” AIAA-2000-1512, Southwest Research Institute, American Institute of Aeronautics and Astronautics, Reston, VA.
Rosenfeld, J. H., Locci, I. E., Sanzi, J. L., Hull, D. R., and Geng, S. M. (2011). “Post-test analysis of a 10-year sodium heat pipe life test.” Proc., Nuclear and Emerging Technologies for Space 2011, American Nuclear Society, New York, and American Institute of Aeronautics and Astronautics, Reston, VA.
Saleeb, A. F., Arnold, S. M., Castelli, T., Wilt, E., and Graf, W. E. (2001). “A general hereditary multimechanism-based deformation model with application to the viscoelastoplastic response of titanium alloys.” Int. J. Plast., 17(10), 1305–1350.
Saleeb, A. F., Padula, S. A., II, and Kumar, A. (2011). “A multi-axial, multimechanism based constitutive model for the comprehensive representation for the evolutionary response of SMAs under general thermomechanical loading conditions.” Int. J. Plast., 27(5), 655–687.
Sehirlioglu, A., Sayir, A., and Dynys, F. (2010). “Doping of BiScO3-PbTiO3 ceramics for enhanced properties.” J. Am. Ceram. Soc., 93(6), 1718–1724.
Sehirlioglu, A., Sayir, A., and Dynys, F. W. (2009). “High temperature properties of BiScO3-PbTiO3 ferroelectric ceramics.” J. Appl. Phys., 106(1), 014102, 〈http://dx.doi.org/10.1063/1.3158542〉.doi:10.1063/1.3158542
Sehirlioglu, A., Sayir, A., Dynys, F., Nittala, K., and Jones, J. (2011). “Structure and piezoelectric properties near the bismuth scandium oxide—Lead zirconate—Lead titanate ternary morphotropic phase boundary.” J. Am. Ceram. Soc., 94(3), 788–795.
Serafini, T. T., Delvigs, P., and Lightsey, G. R. (1972). “Thermally stable polyimides from solutions of monomer reactants.” J. Appl. Polym. Sci., 16(4), 905–915.
Serafini, T. T., Vannucci, R. D., and Alston, W. B. (1977). “Second-generation PMR polyimides.” NASA TM X 67803, Lewis Research Center, Cleveland.
Shah, A. R., Korovaichuk, I., Krause, D. L., and Kalluri, S. (2008). “Ádvanced stirling converter heater head durability and reliability quantification.” NASA TM 215449, NASA, Glenn Research Center, Cleveland.
Smialek, J., Robinson, R. C., Opila, E. J., Fox, D. S., and Jacobson, N. (1999). “SiC and Si3N4 recession due to SiO2 scale volatility under combustor conditions.” NASA TP 208696, National Aeronautics and Space Administration, Washington, DC.
Smialek, J. L. (2001). “Oxidative recession, sulfur release on Al2O3 spallation of Y-doped alloys.” Scr. Mater., 45(12), 1327–1333.
Smialek, J. L. (2005). “Moisture-induced delayed spallation and interfacial hydrogen embrittlement of alumina scales.” NASA TM-214030, National Aeronautics and Space Administration, Washington, DC.
Smialek, J. L. (2011). “Hydrogen and moisture induced scale spallation: Cathodic descaling of a single crystal superalloy.” Electrochim. Acta, 56(4), 1823–1834.
Smialek, J. L., Nesbitt, J. A., Barrett, C. A. and Lowell, C. E. (2000). “Cyclic oxidation testing and modeling: A NASA Lewis perspective.” NASA TM 209769, NASA, Glenn Research Center, Cleveland.
Smith, A., Bahl, R. H., Bjork, R., Englebrecht, K., Nielsen, K. K., and Pryds, N. (2012). Materials challenges for high performance magnetocaloric refrigeration devices, Advanced Energy Materials, Department of Energy Conversion and Storage Technical University of Denmark Frederiksborgvej, Roskilde, Denmark.
Smith, R. W., Hirschberg, M. H., and Manson, S. S. (1963). “Fatigue behavior of materials under strain cycling in low and intermediate life range.” NASA TN D-1574, Lewis Research Center, Cleveland.
Southwest Research Institute. (1989). “Probabilistic structural analysis 1114 methods for select propulsion system structural components (PSAM).” NASA CR 185125, 1-3, Lewis Research Center, Cleveland.
Southwest Research Institute. (1995). “Probabilistic structural analysis methods (PSAM) for select space propulsion system components.” Final Rep., NASA Contract NAS3-24389, Lewis Research Center, Cleveland.
Srawley, J. E. (1968). “Plane strain fracture toughness tests on two-inch-thick maraging steel plate at various strength levels.” NASA TM X-52470, National Aeronautics and Space Administration, Washington, DC, 1–19.
Steinetz, B. M., and Adams, M. L. (1998). “Effects of compression, staging and braid angle on braided rope seal performance.” J. Propulsion and Power, 14(6), 934–940.
Stevens, M. A., Handschuh, R. F., Lewicki, D. G. (2009). “Variable/multispeed rotorcraft drive system concepts.” NASA TM 215456, National Aeronautics and Space Administration, Washington, DC.
Storming Media. (2012). “Aircraft engine research lab, Cleveland, OH.” 〈http://www.stormingmedia.us/corpauthors/AIRCRAFT_ENGINE_RESEARCH_LAB_CLEVELAND_OH-3.html〉 (Nov. 30, 2012).
Sullivan, R. M. (2005). “A model for the oxidation of carbon silicon carbide composite structures.” Carbon, 43(2), 275–285.
Sutter, J. K. (1997). “Research and technology 1996. Compressor case manufactured using high-temperature polyimides.” NASA TM 107350, Lewis Research Center, Cleveland, 64–65.
Vannucci, R. D. (1987). “PMR polyimide compositions for improved performance at 371° C.” SAMPE Qrlty., 19(1), 31–36.
Vannucci, R. D., and Chriszt, J. K. (1995). “Low-cost non-MDA polyimides for high temperature applications.” Soc. Adv. Matl. Proc. Eng. Ser, 40(1), 277–287.
Vary, A. (1990). “Acoustic-ultrasonics.” J. Nondestruct. Test. Fiber-Reinforced Plastics Composit., 2, J. Summerscales, ed., Elsevier Applied Science, Barking, U.K., 18–54.
Vary, A. (1992). “NDE standards for high temperature materials.” Nondestructive testing standards—Present and future, H. Berger and L. Mordfin, eds., ASTM, West Conshohoken, PA, 211–224.
Williams, T., Meador, M. A., Miller, S., and Scheiman, D. (2011). “Effect of graphene addition on shape memory behavior of epoxy resins.” Proc., SAMPE Fall Technical Conf., Society for the Advancement of Materials and Processing, Covina, CA.
Zaretsky, E. V. (1982). “Advances in high-speed rolling element bearings.” NASA TM 82910, Lewis Research Center, Cleveland, 1–28.
Zaretsky, E. V. (2012). “Rolling bearing steels–A technical and historical perspective.” TM-210529, NASA, Cleveland, 〈http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010018968_2001018997.pdf〉.
Zaretsky, E. V., Poplawski, J. V., and Miller, C. R. (2000). “Roller bearing life prediction past present and future.” NASA TM 10529, Lewis Research Center, Cleveland.
Zheng, X., Goldberg, R. K., Binienda, W. K., and Roberts, G. D. (2003). “LS-DYNA implementation of polymer matrix composite model under high strain rate impact.” NASA TM 212583, Lewis Research Center, Cleveland.
Zhu, D., and Hurst, J. B. (2011). “Synthesis and property evaluations of silicon carbide nanotube reinforced ceramic matrix composites.” Proc., Materials Science and Technology 2011 Conf. and Exhibition, American Society For Materials, Metals Park, OH.
Zhu, D., Hurst, J. B., and Jaskowiak, M. H. (2012). “Advanced environmental barrier coating development and validation for SiC/SiC ceramic matrix composite turbine engine components.” Proc., 36th Annual Conf. on Composites, Materials, and Structures, United States Ceramic Advanced Association, Washington, DC.
Zhu, D., and Miller, R. A. (2004). “Development of advanced low conductivity thermal barrier coating.” Int. J. Appl. Ceram. Technol., 1(1), 86–94.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 26Issue 2April 2013
Pages: 459 - 490

History

Received: Aug 7, 2012
Accepted: Dec 12, 2012
Published online: Mar 15, 2013
Published in print: Apr 1, 2013

Permissions

Request permissions for this article.

Authors

Affiliations

Ajay K. Misra [email protected]
Chief, Structures and Materials Division, National Aeronautics and Space Administration Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135. E-mail: [email protected]
Leslie A. Greenbauer-Seng [email protected]
Deputy Chief, Structures and Materials Division, National Aeronautics and Space Administration Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135 (corresponding author). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share