Technical Papers
Mar 15, 2013

Research on High-Temperature Aerospace Materials at NASA Glenn Research Center

Publication: Journal of Aerospace Engineering
Volume 26, Issue 2

Abstract

Within the Structures and Materials Division at the National Aeronautics and Space Administration Glenn Research Center (GRC), research is being conducted to develop durable high-temperature materials for the most challenging aerospace applications. Research is advancing material and coating technologies for applications including turbine engine hot section components, rocket engine combustion chamber liners, high-temperature components of advanced space power systems, and atmospheric reentry vehicle surfaces. As part of the volume of papers recognizing 70 years of research at the GRC, this paper summarizes key research contributions that GRC has made to the field of high-temperature aerospace materials.

Get full access to this article

View all available purchase options and get full access to this article.

References

Bansal, N. P. (2005). “SiC fiber-reinforced celsian composites.” Chapter 10, Handbook of ceramic composites, N. Bansal, ed., Kluwer Academic Publishers, Boston, 227–249.
Barrett, C. A., and Evans, E. B. (1973). “Cyclic oxidation evaluation—Approaching application conditions.” TM-X-68252, NASA, Washington, DC.
Bhatt, R. T. (2005). “Silicon carbide fiber-reinforced silicon nitride composites.” Chapter 8, Handbook of ceramic composites, N. Bansal, ed., Kluwer Academic Publishers, Boston, 149–171.
Bhatt, R. T., and Hull, D. R. (1998). “Strength-degrading mechanisms for chemically-vapor-deposited SCS-6 silicon carbide fibers in an argon environment.” J. Am. Ceram. Soc., 81(4), 957–964.
Brewer, D. (1999). “HSR/EPM combustor materials development program.” Mater. Sci. Eng. A, 261(1–2), 284–291.
Chan, J., Wood, J. G., and Schreiber, J. G. (2007). “Development of advanced stirling radioisotope generator for space exploration.” Proc., Space Technology and Applications Int. Forum (NASA/TM—2007-214806), American Institute of Physics Press, College Park, MD, 615–623.
Chulya, A., Gyekenyesi, J. P., and Bhatt, R. T. (1993). “Mechanical behavior of fiber-reinforced SiC/RBSN ceramic matrix composites: Theory and experiment.” J. Eng. Gas Turbines Power, 115(1), 91–102.
Copland, E. H., and Jacobson, N. S. (2010). “Measuring thermodynamic properties of metals and alloys with Knudsen effusion mass spectrometry.” TP-2010-216795, NASA, Cleveland.
Corman, G. S., and Luthra, K. L. (2005). “Silicon melt infiltrated ceramic composites (HyperComp).” Chapter 6, Handbook of ceramic composites, N. Bansal, ed., Kluwer Academic Publishers, Boston, 99–116.
DiCarlo, J. A. (1977). “Time-temperature-stress dependence of boron fiber deformation.” STP-617, ASTM, Philadelphia, 443–465.
DiCarlo, J. A. (1986). “Creep of chemically vapor deposited SiC fibers.” J. Mater. Sci., 21(1), 217–224.
DiCarlo, J. A. (1997). “Property goals and test methods for high temperature ceramic fiber reinforcement.” Ceram. Int., 23(4), 283–289.
DiCarlo, J. A. (2011). “Physics-based design tools for lightweight ceramic composite turbine components with durable microstructures.” Proc., NASA Fundamental Aeronautics Annual Meeting, NASA, Washington, DC.
DiCarlo, J. A. (2013). “Advances in SiC/SiC composites for aero-propulsion applications.” Ceramic matrix composites: Materials, modeling, technology, and applications, N. Bansal and J. Lamon, eds., Wiley, New York.
DiCarlo, J. A., Bhatt, R. T., Morscher, G. N., and Yun, H. M. (2006). “Processing-related issues for the design and lifing of SiC/SiC hot-section components.” Proc., CMC Workshop, Turbine Engine Technology Symp., NASA Center for AeroSpace Information, Hanover, MD.
DiCarlo, J. A., and Van Roode, M. (2006). “Ceramic composite development for gas turbine engine hot section components.” GT2006-90151, ASME, New York, 221–231.
DiCarlo, J. A., and Wagner, T. C. (1980). “Oxidation-induced contraction and strengthening of boron fibers.” Ceram. Eng. Sci. Proc., 2(7/8), 872–893.
DiCarlo, J. A., and Yun, H. M. (1999). “Factors controlling stress-rupture of fiber-reinforced ceramic composites.” Proc., 12th Int. Conf. on Composite Materials, Woodhead, Cambridge, U.K.
DiCarlo, J. A., and Yun, H. M. (2000). “Fiber test development for ceramic composite thermomechanical properties.” ASTM STP-1392, ASTM, West Conshohocken, PA, 134–147.
DiCarlo, J. A., Yun, H. M., Morscher, G. N., and Bhatt, R. T. (2005). “SiC/SiC composites for 1200°C and above.” Handbook of ceramic composites (NASA/TM—2004-213048), N. Bansal, ed., Kluwer Academic Publishers, Boston, 77–98.
Dutta, S. (1988). “High strength silicon carbides by hot isostatic pressing.” TM-101400, NASA, Cleveland.
Ellis, D. L. (2005). “ GRCop-84: A high-temperature copper alloy for high-heat-flux applications.” TM-2005-213566, NASA, Washington, DC.
Fox, D. S., Miller, R. A., Zhu, D., Perez, M., Cuy, M. D., and Robinson, R. C. (2011). “Mach 0.3 burner rig facility at the NASA Glenn Materials Research Laboratory.” TM-2011-216986, NASA, Cleveland.
Gabb, T. P., Garg, A., Ellis, D. L., and O’Connor, K. M. (2004a). TM-2004-213066, NASA, Washington, DC.
Gabb, T. P., Telesman, J., Kantzos, P. T., Smith, J. W., and Browning, P. F. (2004b). Proc., 10th Int. Symp. on Superalloys. K. A. Green, et al., eds., The Metallurgical Society, Warrendale, PA, 269.
Gayda, J., Gabb, T. P., and Kantzos, P. T. (2004). Proc., 10th Int. Symp. on Superalloys. K. A. Green, et al., eds., The Metallurgical Society, Warrendale, PA, 323.
Gayda, J., Gabb, T. P., and Telesman, J. (2007). “Notch fatigue strength of a PM disk superalloy.” TM-2007-215046, NASA, Cleveland.
Gayda, J., and Kantzos, P. T. (2004). “High temperature burst testing of a superalloy disk with a dual grain structure.” TM-2004-212884, NASA, Washington, DC.
Grisaffe, S. (1970). “Protective coatings for superalloys.” SP-227, NASA, Washington, DC, 305–316.
Hilmas, G. E., Holmes, J. W., Bhatt, R. T., and DiCarlo, J. A. (1993). “Tensile creep behavior and damage accumulation in SiC-fiber/RBSN matrix composite. Advances in ceramic matrix composites I.” Ceram. Trans., 38, 291–304.
Jacobson, N. S. (1993). “Corrosion of silicon-based ceramics in combustion environments.” J. Am. Ceram. Soc., 76(1), 3–28.
Jacobson, N. S., and Myers, D. L. (2011). “Active oxidation of SiC.” Oxid. Met., 75(1–2), 1–25.
Jacobson, N. S., Roth, D., Rauser, R., Cawley, J., and Curry, D. (2008). “Oxidation through coating cracks of SiC-protected carbon/carbon.” Surf. Coat. Tech., 203(3–4), 372–383.
Jacobson, N. S., Smialek, J. L., and Fox, D. S. (1990). “Molten salt corrosion of SiC and Si3N4.” Handbook of ceramics and composites, N. S. Cheremisinoff, ed., Marcel Dekker, New York, 99–136.
Jacobson, N. S., Stearns, C. A., and Smialek, J. L. (1985). “Burner rig corrosion of SiC at 1000°C.” TM-87061, NASA, Cleveland.
Jaskowiak, M. H., Eldridge, J. I., Setlock, J. A., and Gyekenyesi, J. Z. (1997). “Mechanical Behavior of Sapphire Reinforced Alumina Matrix Composites at Elevated Temperatures,” Ceramic, Metal and Carbon Composites, Materials and Structures, NASA Center for AeroSpace Information, Hanover, MD.
Kantzos, P., Bonacuse, P. J., Telesman, J., Gabb, T. P., Barrie, R., and Banik, A. (2004). “Effect of powder cleanliness on the fatigue behavior of powder metallurgy ni-disk alloy udimet 720.” Proc., 10th Int. Symp. on Superalloys. K. A. Green, et al., eds., The Metallurgical Society, Warrendale, PA, 409.
Lai, G. Y. (2007). High temperature corrosion and materials applications, American Society for Metals, International, Metals Park, OH, 249–255.
Lee, K. N. (2000a). “Current status of environmental barrier coatings for Si-based ceramics.” Surf. Coat. Tech., 133–134, 1–7.
Lee, K. N. (2000b). “Key durability issues with mullite-based environmental barrier coatings for Si-base ceramics.” Trans. ASME, 122(2), 236.
Lee, K. N., et al. (2003). “Upper temperature limit of environmental barrier coatings based on mullite and BSAS.” J. Am. Ceram. Soc., 86(8), 1299–1306.
Lee, K. N., Fox, D. S., and Bansal, N. P. (2005). “Rare Earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics.” J. Eur. Ceram. Soc., 25(10), 1705–1715.
Lee, K. N., Fox, D. S., Robinson, R. C., and Bansal, N. P. (2001). “Environmental barrier coatings for silicon-based ceramics.” High temperature ceramic matrix composites, W. Krenkel, R. Naslain and H. Schneider, eds., Wiley, New York, 224–229.
Lee, K. N., Jacobson, N. S., and Miller, R. A. (1994). “Refractory oxide coatings on SiC ceramics.” TM-10667, NASA, Washington, DC.
Lee, K. N., Miller, R. A., and Jacobson, N. S. (1995). “New generation of plasma-sprayed mullite coatings on silicon carbide.” J. Am. Ceram. Soc., 78(3), 705–710.
Liebert, C. H., Jacobs, R. E., Stecura, S., and Morse, C. R. (1976). “Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation.” TM-X-3410, NASA, Washington, DC.
Lipowitz, J., Rabe, J. A., Zangvil, A., and Xu, Y. (1997). “Structure and properties of Sylramic™ silicon carbide fiber—A polycrystalline, stoichiometric β–SiC composition.” Ceram. Eng. Sci., 18(3), 147–157.
Lowell, C. E., Barrett, C. A., Palmer, R. W., Auping, J. V., and Probst, H. B. (1991). “COSP: A computer model of cyclic oxidation.” Oxid. Met., 36(1–2), 81–112.
Mieskowski, D. M., and Sanders, W. A. (1989). “Hot isostatic pressing of silicon nitride with boron nitride, boron carbide, and carbon additions.” J. Am. Ceram. Soc., 72(5), 840–843.
Miller, R. A. (1984). “Oxidation-based model for thermal barrier coating life.” J. Am. Ceram. Soc., 67(8), 517–521.
Miller, R. A. (1987). “Current status of thermal barrier coatings—An overview.” Surf. Coat. Tech., 30(1), 1–11.
Miller, R. A. (1988). “Life modeling of thermal barrier coatings for aircraft gas turbine engines.” TM-100283, NASA, Cleveland.
Miller, R. A., and Lowell, C. E. (1983). “Failure mechanisms of thermal barrier coatings exposed to elevated temperatures.” Thin Solid Films, 95(3), 265–273.
Misra, A. K. (2010). “NASA Glenn Ceramics Branch web site.” 〈http://www.grc.nasa.gov/WWW/StructuresMaterials/Ceramics/index.html〉 (Dec. 6, 2012).
Morscher, G. N., and DiCarlo, J. A. (1992). “A simple test for thermomechanical evaluation of ceramic fibers.” J. Am. Ceram. Soc., 75(1), 136–140.
Nathal, M. V. (2008). “NASA and superalloys: A customer, a participant, and a referee.” TM-2008-215205, NASA, Cleveland.
Nathal, M. V., Whittenberger, J. D., Hebsur, M. G., Kantzos, P., and Krause, D. L. (2004). Proc., 10th Int. Symp. on Superalloys, K. A. Green, et al., eds., The Metallurgical Society, Warrendale, PA, 431.
Opila, E. J., and Serra, J. L. (2011). “Oxidation of carbon fiber-reinforced silicon carbide matrix composites at reduced oxygen partial pressures.” J. Am. Ceram. Soc., 94(7), 2185–2192.
Opila, E. J., Smialek, J. L., Robinson, R. C., Fox, D. S., and Jacobson, N. S. (1999). “SiC recession caused by SiO2 scale volatility under combustion conditions: II. Thermodynamics and gaseous-diffusion model.” J. Am. Ceram. Soc., 82(7), 1826–1834.
Raj, S. V., Barrett, C., Karthikeyan, J., and Garlick, R. (2007). “Comparison of the cyclic oxidation behavior of cold sprayed CuCrAl-coated and uncoated GRCop-84 substrates for space launch vehicles.” Surf. Coat. Tech., 201(16–17), 7222–7234.
Raj, S. V., and Palczer, A. (2010). “Thermal expansion of vacuum plasma sprayed coatings.” Mater. Sci. Eng. A, 527(7–8), 2129–2135.
Raj, S. V., Pawlik, R., and Loewenthal, W. (2009). “Young’s moduli of cold and vacuum plasma sprayed metallic coatings.” Mater. Sci. Eng. A, 513–514, 59–63.
Robinson, R. C. (1997). “SiC recession due to SiO2 scale volatility under combustor conditions.” CR-202331, NASA, Cleveland.
Robinson, R. C., and Smialek, J. L. (1999). “SiC recession caused by SiO2 scale volatility under combustion conditions: I. Experimental results and empirical model.” J. Am. Ceram. Soc., 82(7), 1817–1825.
Rybicki, G. C., and Smialek, J. L. (1989). “Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl + Zr.” Oxid. Met., 31(3–4), 275–304.
Sayir, A., and Farmer, S. C. (1995). “Directionally solidified mullite fibers. Ceramic matrix composites: Advanced high-temperature structural materials.” Proc., Materials Research Society, R. A. Lowden, ed., Materials Research Society, Pittsburgh, 11–21.
Schreiber, J. G., and Thieme, L. G. (2008). “GRC supporting technology for NASA's advanced stirling radioisotope generator (ASRG).” Proc., Space Technology and Applications Int. Forum, M. S. El-Genk, ed., American Institute of Physics Press, College Park, MD.
Shaw, N. J., et al. (1987). “Materials for engine applications above 3000 F—An overview.” TM-100169, NASA, Cleveland.
Singerman, S. A., and Jackson, J. J. (1996). Superalloys 1996, R. D. Kissenger, et al., eds., Vol. 579, The Metallurgical Society, Warrendale, PA.
Singh, M. (1997). “A reaction forming method of joining silicon carbide-based ceramics.” Scr. Mater., 37(8), 1151–1154.
Singh, M., and Behrendt, D. R. (1994). “Microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics.” Mater. Sci. Eng. A, 187(2), 183–187.
Smialek, J. L. (1998). “Oxidation resistance and critical sulfur content of single crystal superalloys.” Trans. ASME, 120(2), 370–374.
Smialek, J. L. (2000). “Maintaining adhesion of protective Al2O3 scales.” JOM, 52(1), 22–25.
Smialek, J. L. (2001). “Advances in the oxidation resistance of high-temperature turbine materials.” Surf. Interface Anal., 31(7), 582–592.
Smialek, J. L. (2006). “Moisture-induced delayed spallation and interfacial hydrogen embrittlement of alumina scales.” JOM, 58(1), 29–35.
Smialek, J. L., and Auping, J. V. (2002). “COSP for Windows—Strategies for rapid analyses of cyclic-oxidation behavior.” Oxid. Met., 57(5–6), 559–581.
Smialek, J. L., Barrett, C. A., and Schaeffer, J. C. (1997). “Design for oxidation resistance.” ASM handbook materials selection and design, American Society for Metals, International, Metals Park, OH, 589–602.
Smialek, J. L., Nesbitt, J. A., Barrett, C. A., and Lowell, C. E. (2000). “Cyclic oxidation testing and modeling: A NASA Lewis perspective.” TM-2000-209769, NASA, Washington, DC.
Smialek, J. L., Robinson, R. C., Opila, E. J., Fox, D. S., and Jacobson, N. S. (1999). “SiC and Si3N4 recession due to SiO2 scale volatility under combustor conditions.” Adv. Composite Mater., 8(1), 33–45.
Stearns, C. A., Deadmore, D. L., and Barrett, C. A. (1987). “Effect of alloy composition on the sodium-sulfate induced hot corrosion attack of cast nickel-base superalloys at 900°C.” Alternate alloying for environmental resistance, The Metallurgical Society, Warrendale, PA, 131–143.
Stearns, C. A., Kohl, F. J., Fryburg, G. C., and Miller, R. A. (1977a). “A high pressure modulated molecular beam mass spectrometric sampling system.” TM-73720, NASA, Cleveland.
Stearns, C. A., Miller, R. A., Kohl, F. J., and Fryburg, G. C. (1977b). “Gaseous sodium sulfate formation in flames and flowing gas environments.” TM-X-73600, NASA, Washington, DC.
Stecura, S. (1976). “Two-layer thermal barrier coating for turbine airfoils—Furnace and burner rig test results.” TM-X-3425, NASA, Washington, DC.
Stecura, S. (1985). “Optimization of the NiCrAl-Y/ZrO2-Y2O3 thermal barrier system.” TM-86905, NASA, Cleveland.
Sutliff, D. L., and Jones, M. G. (2008). “Foam-metal liner attenuation of low-speed fan noise.” Proc., 14th AIAA Aeroacoustics Conf., American Institute of Aeronautics and Astronautics, Reston, VA.
Telesman, J., Kantzos, P., Gayda, J., Bonacuse, P. J., and Prescenzi, A. (2004). “Microstructural variables controlling time-dependent crack growth in a P/M superalloy.” Proc., 10th Int. Symp. on Superalloys, K. A. Green, et al., eds., The Metallurgical Society, Warrendale, PA, 215.
Walston, S., Cetel, A., MacKay, R. A., O’Hara, K., Duhl, D., and Dreshfield, R. (2004). “Joint development of a fourth generation single crystal superalloy.” Proc., 10th Int. Symp. on Superalloys, K. A. Green, et al., eds., The Metallurgical Society, Warrendale, PA, 15.
Wong, W. A., Anderson, D. J., Tuttle, K. L., and Tew, R. C. (2006). “Status of NASA's advanced radioisotope power conversion technology research and development.” Proc., Space Technology and Applications Int. Forum, M. S. El-Genk, ed., Vol. 813, American Institute of Physics Press, College Park, MD, 340.
Yun, H. M., Wheeler, D., Chen, Y., and DiCarlo, J. A. (2005). “Thermo-mechanical properties of super sylramic SiC fibers.” Ceram. Eng. Sci., 26(2), 59–65.
Zhu, D., Chen, Y. L., and Miller, R. A. (2004a). “Defect clustering and nanophase structure characterization of multicomponent rare Earth-oxide-doped zirconia-yttria thermal barrier coatings.” TM-2004-212480, NASA, Washington, DC.
Zhu, D., Choi, S. R., Eldridge, J. I., Lee, K. N., and Miller, R. A. (2003). “Surface cracking and interface reaction associated delamination failure of thermal and environmental barrier coatings.” TM-2003-212318, NASA, Washington, DC.
Zhu, D., Fox, D. S., Bansal, N. P., and Miller, R. A. (2004b). “Advanced oxide material systems for 1650 C thermal/environmental barrier coating applications.” TM-2004-213219, NASA, Washington, DC.
Zhu, D., Lee, K., and Miller, R. A. (2002). “Thermal gradient cyclic behavior of thermal and environmental barrier coating systems on SiC/SiC ceramic matrix composites.” GT2002-30632, ASME, New York.
Zhu, D., and Miller, R. A. (1997). “Determination of creep behavior of thermal barrier coatings under laser imposed temperature and stress gradients.” TM-113169, NASA, Cleveland.
Zhu, D., and Miller, R. A. (1998). “Sintering and creep behavior of plasma-sprayed zirconia and hafnia based thermal barrier coatings.” TM-1998-208406, NASA, Washington, DC.
Zhu, D., and Miller, R. A. (2000a). “Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions.” J. Therm. Spray Technol., 9(2), 175–180.
Zhu, D., and Miller, R. A. (2000b). “Thermophysical and thermomechanical properties of thermal barrier coating systems.” TM-2000-210237, NASA, Cleveland.
Zhu, D., and Miller, R. A. (2004a). “Development of advanced low conductivity thermal barrier coatings.” Int. J. Appl. Ceram. Technol., 1(1), 86–94.
Zhu, D., and Miller, R. A. (2004b). “Thermal and environmental barrier coatings for advanced propulsion engine systems.” TM-2004-213129, NASA, Washington, DC.
Zhu, D., and Miller, R. A. (2005). “Thermal conductivity of advanced ceramic thermal barrier coatings determined by a steady-state laser heat-flux approach.” Thermal conductivity 27/thermal expansion 15, H. Wang and W. Porter, eds., DEStech Publications, Lancaster, PA, 291–303.
Zhu, D., Miller, R. A., and Fox, D. S. (2007). “Thermal and environmental barrier coating development for advanced propulsion engine systems.” 2007-2130 (NASA/TM-2008-215040), American Institute of Aeronautics and Astronautics, Reston, VA.
Zhu, D., Miller, R. A., and Kuczmarski, M. A. (2010). “Development and life prediction of erosion resistant turbine low conductivity thermal barrier coatings.” TM-2010-215669, NASA, Cleveland.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 26Issue 2April 2013
Pages: 500 - 514

History

Received: Dec 5, 2012
Accepted: Dec 11, 2012
Published online: Mar 15, 2013
Published in print: Apr 1, 2013

Permissions

Request permissions for this article.

Authors

Affiliations

Joyce A. Dever [email protected]
Chief, Durability and Protective Coatings Branch, National Aeronautics and Space Administration Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135 (corresponding author). E-mail: [email protected]
Michael V. Nathal [email protected]
Chief, Advanced Metallics Branch, National Aeronautics and Space Administration Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135. E-mail: [email protected]
James A. DiCarlo [email protected]
Senior Technologist, Structures and Materials Division, National Aeronautics and Space Administration Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share