TECHNICAL PAPERS
Feb 1, 1995

Finite-Element Analysis of Wood Joints

Publication: Journal of Materials in Civil Engineering
Volume 7, Issue 1

Abstract

A finite-element program to evaluate the stresses found in finger-jointed lumber subjected to uniaxial tension has been developed and verified. This program exploits a unique contact element useful in modeling a thin, isotropic boundary (glueline) between two anisotropic adherents. A parameter study was conducted using the aforementioned model to evaluate the influences of certain key finger-joint properties on the stress distributions induced in the lumber. Three joint geometries (step, scarf, and finger), three combinations of adherents (isotropic materials on both sides, orthotropic materials on both sides, and an isotropic material on one side and an orthotropic material on the other), and two glueline thicknesses (0.01 and 0.001 times the joint length) were studied. Glueline thickness is directly related to glueline stiffness, which is known to influence the stresses in the glueline, and consequently, in the adherents. The results showed that maximum adherent stresses were developed at the interface with the glueline. For isotropic materials with constant ratios of the elastic parameters between adherent and adhesive (e.g., Eadherent /Eadhesive), stress distributions are identical, as expected. Stiff gluelines, relative to the adherent stiffness, tend to increase stress concentrations at the edges of all three types of joints. In step joints, the large fingertip width was the most influential factor in accounting for the high stress concentrations. In contrast to the step joint, stress concentrations in scarf joints were highly sensitive to differences in material properties between adherents. It was concluded in this study that the development of a finger-joint manufacturing process that produces fingertips of near-zero width is desirable.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Aicher, S. (1988). Untersuchungen zur rechnerischen optimierung von keilzinkenverbindungen im hinblick auf das tragverhalten . Institute für Holzphysik und Mechanische Technologie des Holzes, Hamburg, Germany (in German).
2.
Bender, D. A., Burk, A. G., Taylor, S. E., and Hooper, J. A.(1990). “Predicting localized MOE and tensile strength in solid and finger-jointed laminating lumber using longitudinal stress waves.”Forest Products J., 40(3), 45–47.
3.
Bier, H., and Barraclough, R. (1988). “A glue laminating plant with radio frequency high speed glue curing, and proof tested lamination stock.”Proc., Int. Conf. in Timber Engrg., Vol. 1, 869–877.
4.
Blömer, A. (1961). “Ein beitrag zur theorie und berechnung der geleimten verbindungen des ingenieur-holzbaues unter besonderer berücksichtigung der geschäftet und keilgezinkt geleimeten holzverbindungen.”Die Bautechnik, Berlin, Germany, Vol. 38, 325–350 (in German).
5.
Colling, F. (1990). “Biegefestigkeit von Brettschichtholzträgern in Abhängigkeit von den festigkeitsrelevanten Einflu;dsgrössen.”Holz als Roh- und Werkstoff, Munich, Germany, Vol. 48, 391–395 (in German).
6.
“DIN 68 140/Keilzinkenverbindung von Holz.” (1991). DK 674.028.11:694.2. Fachnormenausschuss Holz (FNHOLZ) im Deutschen Normenausschuss (DNA).
7.
Duchanois, G. (1984). “Mesure de la ténacité et étude du comportement mécanique des joints bois-colle,” Thèse de docteur-ingénieur, Institut National Polytechnique de Lorraine, Lorraine, France (in French).
8.
Egner, K. (1952). “Einige technologische fragen der leimung tragender holzbauteile.”Holzzentralblatt, Echterdingen, Germany, Vol. 78, 1415–1417 (in German).
9.
Egner, K., and Dorn, H. (1962). “Untersuchungenvon geleimten tragendenholzteilen nach längerer Gebrauchsdauer.”Berichte ais der bauforschung, Heft 25, Wilhelm Ernst u. Sohn.
10.
Ehlbeck, J., Colling, F., and Görlacher, R. (1985). “Einflu;ds keilgezinkter lamellen auf die biegefestigkeit von brettschichtholzträgern, Teil 2: eingangsdaten für das rechenmodell.”Holz als Roh- und Werkstuff, Munich, Germany, Vol. 43, 369–373.
11.
Erdogan, F., and Ratwani, M. (1971). “Stress distribution in bonded joints.”J. Composite Mat., Vol. 5, 378–393.
12.
Fisette, P. R., and Rice, W. W.(1988). “An analysis of structural finger-joints made from two north-eastern species.”Forest Products J., 38(9), 40–44.
13.
Haller, P. (1987). “Mesure de la ténacité du bois collé—modélisation de la ténacité par l'intermédiaire de la méthode des éléments finis et la mécanique de la rupture,” Thèse de docteur, Institut National Polytechnique de Lorraine, France (in French).
14.
Heimeshoff, B., and Glos, P. (1980). “Zugfestigkeit und biege-E-modul von fichten-brettlamellen.”Holz als Roh- und Werkstuff, Munich, Germany, Vol. 38, 51–59 (in German).
15.
Jauslin, C. (1993). “Tension behavior of fingerjoints in wood laminates,” PhD dissertation, Colorado State Univ., Ft. Collins, Colo.
16.
Koutsky, J. A., and Mijovic, J. S.(1979). “Effect of wood grain angle on fracture properties and fracture morphology of wood-epoxy joints.”Wood Sci., 11(3), 164–168.
17.
Koutsky, J. A., Ebewele, R., and River, B.(1979). “Tapered double cantilever beam farcture tests of phenolic-wood adhesive joints.”Wood and Fiber, 11(3), 197–213.
18.
Kutscha, N. P., and Caster, R. W.(1987). “Factors affecting the bond quality of hem-fir-finger-joints.”Forest Products J., 37(4), 43–48.
19.
Larsen, H. J. (1980). “Strength of glued laminated beams, Part 2.”Rep. 8004, Inst. of Build. Technol. and Struct. Engrg., Aalborg Univ., Aalborg, Denmark.
20.
Madsen, B., and Littleford, T. W.(1962). “Finger joints of structural usage.”Forest Products J., 12(2), 68–73.
21.
Milner, H. R., and Yeoh, E.(1991). “Finite element analysis of glued timber finger joints.”J. Struct. Engrg., ASCE, 117(3), 755–766.
22.
Moody, R. C. (1970). “Tensile strength of finger joints in pith associated and non-pith associated southern pine 2 by 6's.”FPL 138, USDA Forest Service, Madison, Wisc.
23.
Pellicane, P. J.(1992). “A finite element to model the glueline in articulated wood members.”Forest Products J., 42(1), 50–52.
24.
Pellicane, P. J.(1994). “Finite element analysis of finger joints in lumber with dissimilar laminates.”Forest Products J., 44(3), 17–22.
25.
Pellicane, P. J., Gutkowski, R. M., and Jauslin, C.(1994). “Effect of glueline voids on the tensile strength of finger-jointed wood.”Forest Products J., 44(6), 61–64.
26.
Pellicane, P. J., Gutkowski, R. M., and Jauslin, C. (1995). “Comparison of optically and mechanically measured deformations in a finger-jointed wood tension specimen.”J. Testing and Evaluation, JTEVA, 6(1).
27.
Pellicane, P. J., Stanfill-McMillan, K., and Tichy, R. J.(1987). “Effects of knots near the fingers of finger-jointed dimension lumber.”Forest Products J., 37(5), 13–16.
28.
Pizzi, A., and Cameron, F. A.(1984). “Fast-set adhesives for glulam.”Forest Products J., 34(9), 61–68.
29.
Qu, Z. and Fan, C. (1988). “Tensile strength of glued finger joints in timber stucture and recommendation for their series.”Proc., Int. Conf. on Timber Engrg., Vol. 1, 654–662.
30.
Radiovic, B., and Rohlfing, H. (1986). Untersuchungen über die festigkeit von keilzinkenverbindungen mit unterschiedlichem verschwächungsgrad . Vorschungsvorhaben I.4-34701, FMPA, Stuttgart, Germany.
31.
Samson, M.(1985). “Potential of finger-jointed lumber for machine stress-rated lumber grades.”Forest Products J., 35(7), 20–24.
32.
Selbo, M. L.(1963). “Tensile strength of finger joints.”Forest Products J., 13(9), 390–401.
33.
Shaler, S. M., Wright, B., and Manbeck, H. B.(1988). “Strength and durability of phenol-resorcinol joints of CCA-treated and untreated southern pine.”Forest Products J., 38(10), 59–63.
34.
Strickler, M. D.(1980). “Finger jointed dimension lumber—past, present and future.”Forest Products J., 30(9), 51–56.
35.
Susuki, S. I.(1990). “Stress analysis of cemented orthotropic lap joints.”J. Strain Anal., 25(1), 37–41.
36.
Takatani, M., and Sasaki, H. (1980). “Effect of glue-line flexibility on cleavage fracture toughness of wood-epoxy resin bond system.”Wood Res. Bull. No. 66, Wood Res. Inst., Kyoto Univ., Kyoto, Japan.
37.
Wassipaul, F. (1982). “Einflu;ds des pressdruckes auf die festigkeit der leimverbindung bei brettschichtträgern.”Ingenieurholzbau in Forschung und Praxis, H. Blumer, ed., Karlsruher Bruderverlag, Germany.
38.
Wernersson, H. P., and Gustafsson, J. (1988). “Strength and constitutive properties of adhesive joints.”Proc., Int. Conf. on Timber Engrg., Vol. 1, 673–682.
39.
White, M. S.(1977). “Influence of resin penetration on the fracture toughness of wood adhesive bonds.”Wood Sci., 12(3), 149–153.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 7Issue 1February 1995
Pages: 50 - 58

History

Published online: Feb 1, 1995
Published in print: Feb 1995

Permissions

Request permissions for this article.

Authors

Affiliations

Conrad Jauslin
Struct. Engr., Jauslin & Stebler Engrs., Inc., Muttenz, Switzerland.
Patrick J. Pellicane, Member, ASCE
Prof. of Wood Engrg., Dept. of Forest Sciences, Colorado State Univ., Fort Collins, CO 80523.
Richard M. Gutkowski, Member, ASCE
Prof. of Civ. Engrg., Dept. of Civ. Engrg., Colorado State Univ., Fort Collins, CO.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share