TECHNICAL PAPERS
Oct 15, 2004

Near Field Characteristics of Landslide Generated Impulse Waves

Publication: Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 130, Issue 6

Abstract

Landslide generated impulse waves were investigated in a two-dimensional physical laboratory model based on the generalized Froude similarity. The recorded wave profiles were extremely unsteady and nonlinear. Four wave types were determined: weakly nonlinear oscillatory wave, non-linear transition wave, solitary-like wave and dissipative transient bore. Most of the generated impulse waves were located in the intermediate water depth wave regime. Nevertheless the propagation velocity of the leading wave crest closely followed the theoretical approximations for a solitary wave. Between 4 and 50% of the kinetic slide impact energy propagated outward in the impulse wave train. The applicability ranges of the classical nonlinear wave theories to landslide generated impulse waves were determined. The main wave characteristics were related to the landslide parameters driving the entire wave generation process. The slide Froude number was identified as the dominant parameter. The physical model results were compared to the giant rockslide generated impulse wave which struck the shores of the Lituya Bay, Alaska, in 1958.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Boussinesq, J. (1872). “Théorie des ondes et des remous que se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond.” J. Math. Pures Appl., 17, 55–108.
2.
Chappelear, J. E. (1962). “Shallow water waves.” J. Geophys. Res., 67, 4693–4704.
3.
Dean, R.G., and Dalrymple, R.A. (1991). “Water wave mechanics for engineers and scientists.” Advanced series on ocean engineering, Vol. 2, World Scientific, Singapore.
4.
Favre, H. (1935). Étude théorique et expérimentale des ondes de translation dans les canaux découverts, Dunod, Paris.
5.
Fenton, J. D. (1985). “A fifth-order Stokes theory for steady waves.” J. Waterw., Port, Coastal, Ocean Eng., 111(2), 216–234.
6.
Fritz, H.M. (2002a). “Initial phase of landslide generated impulse waves.” VAW Mitteilung 178, H.-E. Minor ed., Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Switzerland.
7.
Fritz, H.M. (2002b). “PIV applied to landslide generated impulse waves.” Laser techniques for fluid mechanics, R. J. Adrian et al., eds., Springer, New York, 305–320.
8.
Fritz, H.M., Hager, W.H., and Minor, H.-E. (2001). “Lituya Bay case:Rockslide impact and wave run-up.” Sci. Tsunami Hazards, 19(1), 3–22.
9.
Fritz, H. M., Hager, W. H., and Minor, H.-E. (2003a). “Landslide generated impulse waves, Part 1: Instantaneous flow fields.” Exp. Fluids, 35, 505–519.
10.
Fritz, H. M., Hager, W. H., and Minor, H.-E. (2003b). “Landslide generated impulse waves, Part 2: Hydrodynamic impact craters.” Exp. Fluids, 35, 520–532.
11.
Fritz, H.M., and Liu, P.C. (2002). “An application of wavelet transform analysis to landslide generated impulse waves.” Proc., 4th Int. Symp. on Ocean Wave Measurement and Analysis, San Francisco, 2001, B. L. Edge et al., eds., ASCE, Reston, Va., 2, 1477–1486.
12.
Fritz, H. M., and Moser, P. (2003). “Pneumatic landslide generator.”JSME Int. J., Ser. II, 4(1), 49–57.
13.
Gault, D.E., and Sonett, C.P. (1982). “Laboratory simulation of pelagic asteroidal impact: Atmospheric injection, benthic topography, and the surface wave radiation field.” Geological implications of impacts of large asteroids and comets on the earth, L. T. Silver and P. H. Schultz, Geological Society of America Special Paper, 190, 69–92.
14.
Hall, J. V. Jr., and Watts, G. M. (1953). “Laboratory investigation of the vertical rise of solitary waves on impermeable slopes.” Tech. Memo. 33, U.S. Army Corps of Engineers, Beach Erosion Board.
15.
Heinrich, P. (1992). “Nonlinear water waves generated by submarine and aerial landslides.” J. Waterw., Port, Coastal, Ocean Eng., 118(3), 249–266.
16.
Huber, A. (1980). “Schwallwellen in Seen als Folge von Bergstürzen.” VAW-Mitteilung 47, D. Vischer, ed., Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Switzerland (in German).
17.
Huber, A., and Hager, W.H. (1997). “Forecasting impulse waves in reservoirs.” Dix-neuvième Congrès des Grands Barrages C, 31, 993–1005. Florence, Italy, Commission Internationale des Grands Barrages, Paris.
18.
Jiang, L., and LeBlond, P. H. (1992). “The coupling of a submarine slide and the surface waves which it generates.” J. Geophys. Res., [Oceans], 97(8), 12731–12744.
19.
Jiang, L., and LeBlond, P. H. (1993). “Numerical modelling of an underwater Bingham plastic mudslide and the waves which it generates.” J. Geophys. Res., [Oceans], 98(6), 10303–10317.
20.
Johnson, W. L., and Bermel, K. J. (1949). “Impulsive waves in shallow water as generated by falling weights.” Trans., Am. Geophys. Union, 30(2), 223–230.
21.
Jordaan, J. M. (1969). “Simulation of waves by an underwater explosion.” J. Waterw. Harbors Div., Am. Soc. Civ. Eng., 95(W3), 355–377.
22.
Kamphuis, J.W., and Bowering, R.J. (1970). “Impulse waves generated by landslides.” Proc., 12th Coastal Engineering Conf., ASCE, Reston, Va., 1, 575–588.
23.
Keller, J. B. (1948). “The solitary wave and periodic waves in shallow water.” Commun. Pure Appl. Math., 1, 323–339.
24.
Keulegan, G. H. (1948). “Gradual damping of solitary waves.” J. Res. Natl. Bur. Stand., 40, 487–498.
25.
Keulegan, G. H., and Patterson, G. W. (1940). “Mathematical theory of irrotational translation waves.” J. Res. Natl. Bur. Stand., 24, 47–101.
26.
Korteweg, D. J., and de Vries, G. (1895). “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves.” Philos. Mag., 5(39), 422–443.
27.
Laitone, E. V. (1960). “The second approximation to cnoidal and solitary waves.” J. Fluid Mech., 9, 430–444.
28.
LeMéhauté, B. (1976). An introduction to hydrodynamics and water waves, Springer, New York.
29.
LeMéhauté, B., and Khangoankar, T. (1992). “Generation and propagation of explosion generated waves in shallow water.” Tech. Rep. DNA-TR-92-40, Defense Nuclear Agency, Washington, D.C.
30.
LeMéhauté, B., and Wang, S. (1995). “Water waves generated by underwater explosions.” Advanced series on ocean engineering, Vol. 10, World Scientific, Singapore.
31.
Lighthill, J. (1978). Waves in fluids, Cambridge University Press, Cambridge, U.K.
32.
Mader, C.L. (1999). “Modeling the 1958 Lituya Bay mega-tsunami.” Sci. Tsunami Hazards, 17(2), 57–67.
33.
Mader, C.L., and Gittings, M.L. (2002). “Modeling the 1958 Lituya Bay mega-tsunami, II.” Sci. Tsunami Hazards, 20(5), 241–250.
34.
McCowan, J. (1891). “On the solitary wave.” Philos. Mag. J. Sci. Ser. 5, 32, 45–58.
35.
McCowan, J. (1894). “On the highest wave of permanent type.” Philos. Mag. J. Sci. Ser. 5, 38, 351–358.
36.
Miche, R. (1944). “Mouvements ondulatoires de la mer en profondéur constante ou décroissante.” Ann. Ponts Chaussees, 114(2), 25–78.
37.
Michell, J.H. (1893). “On the highest waves in water.” Philos. Mag. J. Sci. Ser. 5, 36, 430–437.
38.
Miller, D. J. (1960). “Giant waves in Lituya Bay, Alaska.” Geological Survey Professional Paper 354-C, U.S. Government Printing Office, Washington, D.C.
39.
Müller, D. (1995). “Auflaufen und Überschwappen von Impulswellen an Talsperren.” VAW-Mitteilung 137, D. Vischer ed., Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Switzerland (in German).
40.
Müller, D., and Schurter, M. (1993). “Impulse waves generated by an artificially induced rockfall in a Swiss lake.” Proc., 25th IAHR Congress, Tokyo, Vol. 4, 209–216.
42.
Naheer, E. (1978). “Laboratory experiments with solitary wave.” J. Waterw., Port, Coastal, Ocean Div., Am. Soc. Civ. Eng., 104(4), 421–436.
43.
Noda, E. (1970). “Water waves generated by landslides.” J. Waterw., Port, Coastal, Ocean Div., Am. Soc. Civ. Eng., 96(4), 835–855.
44.
Rayleigh, L. (1876). “On Waves.” London, Edinburgh Dublin Philos. Mag. J. Sci., 1(4), 257–279.
45.
Russell, J.S. (1844). “Report on waves.” Rep., 14th Meeting of the British Association for the Advancement of U.K., Science, York, U.K., 14, 311–390.
46.
Rzadkiewicz, S. A., Mariotti, C., and Heinrich, P. (1997). “Numerical simulations of submarine landslides and their hydraulic effects.” J. Waterw., Port, Coastal, Ocean Eng., 123(4), 149–157.
47.
Savage, S. B. (1979). “Gravity flow of cohesionless granular materials in chutes and channels.” J. Fluid Mech., 92, 53–96.
48.
Skjelbreia, L., and Hendrickson, J.A. (1961). “Fifth order gravity wave theory.” Proc., 7th Conf. on Coastal Engineering, Engineering Foundation Council on Wave Research, University of California at Berkeley, Berkeley, Calif., 1, 184–196.
49.
Slingerland, R.L., and Voight, B. (1979). “Occurrences, properties and predictive models of landslide-generated impulse waves.” Rockslides avalanches 2, 317–397, B. Voight, ed., Elsevier, Amsterdam, The Netherlands.
50.
Slingerland, R. L., and Voight, B. (1982). “Evaluating hazard of landslide-induced water waves.” J. Waterw., Port, Coastal, Ocean Div., Am. Soc. Civ. Eng., 108(4), 504–512.
51.
Sorensen, R.M. (1993). Basic wave mechanics: For coastal and ocean engineers, Wiley, New York.
52.
Stokes, G. G. (1847). “On the theory of oscillatory waves.” Trans. Cambridge Philos. Soc., 8, 441–455.
53.
Ursell, F. (1953a). “The long wave paradox in the theory of gravity waves.” Proc. Cambridge Philos. Soc., 49, 685–694.
54.
Ursell, F. (1953b). “Mass transport in gravity waves.” Proc. Cambridge Philos. Soc., 49, 145–150.
55.
Vischer, D.L., and Hager, W.H. (1998). Dam hydraulics, Wiley, Chichester, U.K.
56.
Walder, J. S., Watts, P., Sorensen, O. E., and Janssen, K. (2003). “Water waves generated by subaerial mass flows.” J. Geophys. Res., [Solid Earth], 108(5), 2236–2254.
57.
Ward, S. N. (2001). “Landslide tsunami.” J. Geophys. Res., [Solid Earth], 106(B6), 11201–11215.
58.
Watts, P. (2000). “Tsunami features of solid block underwater landslides.” J. Waterw., Port, Coastal, Ocean Eng., 126(3), 144–152.
59.
Wehausen, J.V., and Laitone, E.V. (1960). “Surface waves.” Handbuch der Physik, S. Strömungsmechanik Flügge III, ed., Springer, Berlin, Vol. 9, 446–778.
60.
Whalin, R. W. (1965). “Water waves produced by explosions.” J. Geophys. Res., 70(22), 5541–5549.
61.
Wiegel, R. L. (1960). “A presentation of cnoidal wave theory for practical application.” J. Fluid Mech., 7, 273–286.
62.
Wiegel, R.L. (1964). Oceanographical engineering, Prentice-Hall, Englewood Cliffs, N.J.
63.
Wiegel, R. L., Noda, E. K., Kuba, E. M., Gee, D. M., and Tornberg, G. F. (1970). “Water waves generated by landslide in reservoirs.” J. Waterw. Harbors Div., Am. Soc. Civ. Eng., 96(2), 307–333.
64.
Williams, J.M. (1985). Tables of progressive gravity waves, Pitman, Boston.

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 130Issue 6November 2004
Pages: 287 - 302

History

Published online: Oct 15, 2004
Published in print: Nov 2004

Permissions

Request permissions for this article.

Authors

Affiliations

H. M. Fritz
PhD, Georgia Institute of Technology, 210 Technology Circle, Savannah, GA 31407; formerly, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland. E-mail: [email protected]
W. H. Hager
Professor, PhD, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland. E-mail: [email protected]
H.-E. Minor
Professor, PhD, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share