TECHNICAL PAPERS
Jul 1, 1997

Numerical Simulation of Submarine Landslides and Their Hydraulic Effects

Publication: Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 123, Issue 4

Abstract

The submarine flow slides and their hydraulic effects are studied by numerical means. These types of landslides are assumed to separate into a dense flow close to the bed and a turbulent dispersion above it. A two-dimensional fluid mechanics mixture model based on Navier-Stokes' equations has been developed to study water waves generated by these landslides. The dense part is considered as a viscoplastic fluid, whereas the dispersed part is modeled by an ideal fluid. The rheological parameters of the model comprise a diffusion coefficient, a Bingham yield stress, a viscosity coefficient, and friction on the slope. First, the numerical model is validated with an analytical solution for a viscous and a Bingham flow. Then, it has been tested for a rigid box sliding into water along an inclined plane. The results of this simulation have been compared with experiments conducted in a channel. Finally, laboratory experiments consisting in the slide of a gravel mass have been carried out. The results of these experiments have shown the importance of the sediment rheology and the diffusion. The model parameters are adjusted by trial and error to match the observed “landslide” flow.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Bagnold, R. A. (1954). “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear.”Proc., Royal Soc. London, U.K., 49–63.
2.
Beghin, P., and Olagne, X.(1991). “Experimental and theorical study of the dynamics of powder snow avalanches.”Cold Regions Sci. and Technol., 19, 317–326.
3.
Bird, R. B., Dai, G. C., and Yarusso, B. J.(1983). “The rheology and flow of viscoplastic materials.”Rev. of Chemical Engrg., 1(1), 1–70.
4.
Coussot, P. (1993). “Wall shear stress of channelized debris flows deduced from rheological measurements.”Proc., Pierre Beghin Int. Workshop on Rapid Gravitational Mass Movements, Cemagref, 59–66.
5.
Cundall, P. A. (1978). “BALL—A program to model granular media using the distinct element method.”Tech. Note, Advanced Technology Group, Dames & Moore, London, U.K.
6.
De Matoes, M. M. (1988). “Mobility of soil and rock avalanches,” PhD thesis, University of Alberta, Edmonton, Canada.
7.
Hakuno, M., and Uchida, Y.(1991). “Application of the distinct element method to the numerical analysis of debris flows.”Struct. Engrg./Earthquake Engrg., 8(2), 31–41.
8.
Harbitz, C., and Pedersen, G. (1992). “Model theory and analytical solutions for large water waves due to landslides.”Preprint Ser., No. 4, Dept. of Mathematics, University of Oslo, Oslo, Norway.
9.
Heezen, B. C., and Ewing, M.(1952). “Orléansville earthquake and turbidity currents.”Bull., Am. Assn. of Petr. Geologists, 39(12), 2505–2514.
10.
Heinrich, P.(1992). “Nonlinear water waves generated by submarine and aerial landslides.”J. Wtrwy., Port, Coast., and Oc. Engrg., ASCE, 118(3), 249–266.
11.
Ishii, M. (1975). Thermo-fluid dynamic theory of two-phase flow. Eyrolles editions, Paris.
12.
Jiang, L., and Leblond, P. H.(1992). “The coupling of a submarine slide and the surface waves which it generates.”J. Geophys. Res., 97(12), 731–744.
13.
Jiang, L., and Leblond, P. H.(1993). “Numerical modelling of an underwater Bingham plastic mudslide and the waves which it generates.”J. Geophys. Res., 98(10), 303–317.
14.
Johnson, A. M. (1970). “Physical process in geology.”Luternal Rep. 577, Freeman Cooper and Co., San Francisco, Calif.
15.
Kulikov, E. A., Rabinovich, A. B., Thomson, R. E., and Bornhold, B. D. (1996). “The landslide tsunami of November 3, 1994, Sjagway Harbor, Alaska.”J. Geophys. Res., 101(C3), 6609–6615.
16.
Liu, K. F., and Mei, C. C.(1989). “Slow spreading of a sheet of Bingham fluid on an inclined plane.”J. Fluid Mech., Cambridge, U.K., 207, 505–529.
17.
Lun, C. K. K., Savage, S. B., Jeffrey, D. J., and Chepurnity, N.(1984). “Kinetic theories for granular flow.”J. Fluid Mech., Cambridge, U.K., 140, 223–256.
18.
Morgenstern, N. R. (1967). “Submarine slumping and the initiation of turbidity currents.”Marine Geotechnique. University of Illinois Press, Urbana, Ill., 189–220.
19.
Murty, T. S. (1979). “Submarine slide-generated water waves in Kitimat Inlet, British Columbia.”J. Geophys. Res., 84(C12), 7777–7779.
20.
Naaim, M. (1991). “Modélisation numérique des effets hydrodynamiques provoqués par un Glissement Solide dans une retenue,” PhD thesis, Joseph Fourier University, Grenoble, France.
21.
Nielsen, P.(1995). “Suspended sediment concentration profiles.”Appl. Mech. Rev., 48(9), 564–569.
22.
Norem, H., Locat, J., and Schieldrop, B.(1990). “An approach to the physics and modelling of submarine flowslides.”Marine Geotechnol., 9, 93–111.
23.
Nott, P. R., and Brady, J. F.(1994). “Pressure-driven flow and suspensions: Simulation and theory.”J. Fluid Mech., 275, 157–199.
24.
O'Brien, J. S., and Julien, P. Y.(1988). “Laboratory analysis of mudflow properties.”J. Hydr. Engrg., ASCE, 114(8), 877–882.
25.
O'Brien, J. S., Julien, P. Y., and Fullerton, W. T.(1993). “Two-dimensional water flood and mudflow simulation.”J. Hydr. Engrg., ASCE, 119(2), 244–261.
26.
Raney, D. C., and Butler, H. L.(1976). “Landslide generated water wave model.”J. Hydr. Div., ASCE, 102(9), 1269–1279.
27.
Ravenne, C., and Beghin, P.(1983). “Apport des expériences en canal à l'interprétation sédimentologique des dépôts de cônes détritiques sous-marins.”Revue de l'Institut Français du Pétrole, Paris, France, 38(3), 279–297.
28.
Sampl, P. (1993). “Current status of the AVL avalanche simulation model—Numerical simulation of dry snow avalanches.”Proc., Pierre Beghin Int. Workshop on Rapid Gravitational Mass Movements, Cemagref, 269–275.
29.
Savage, S. B., and Hutter, K.(1989). “The motion of a finite mass of granular material down a rough incline.”J. Fluid Mech., 199, 177–215.
30.
Scheiwiller, T., Hutter, K., and Hermann, F. (1987). “Dynamics of powder snow avalanches.”Annales Geophysicae, 5B(6), 569–588.
31.
Sousa, J., and Voight, B.(1991). “Continuum simulation of flow failures.”Géotechnique, London, U.K., 41(4), 515–538.
32.
Striem, H. L., and Miloh, T. (1976). “Tsunamis causés par des glissements de terrain au large de la côte d'Israël.”Rev. Hyd. Int., Monaco LIII, 41–56.
33.
Torrey, M. D., Cloutman, L. D., Mjolness, R. C., and Hirt, C. W. (1985). “NASA-VOF2D: A computer program for incompressible flows with free surfaces.”Rep. LA-10612-MS, Los Alamos Nat. Lab., Los Alamos, N.M.
34.
Torrey, M. D., Mjolness, R. C., and Stein, L. R. (1987). “NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces.”Rep. LA-11009-MS, Los Alamos Nat. Lab., Los Alamos, N.M.
35.
Townson, J. M., and Kaya, Y.(1988). “Simulations of the waves in Lake Botnen by the Rissa landslide.”Proc., Instn. Civ. Engrs., 2(85), 145–160.
36.
Trunk, F. J., Dent, J. D., and Lang, T. E.(1986). “Computer modeling of large rock slides.”J. Geotech. Engrg., 112(3), 348–361.
37.
Welch, J. E., Harlow, F. H., Shannon, J. P., and Daly, B. J. (1965). “The MAC Method: A computing technique for solving viscous incompressible, transient fluid flow problems involving free surfaces.”Rep. LA-3425, Los Alamos Nat. Lab., Los Alamos, N.M.
38.
Wiegel, R. L.(1955). “Laboratory studies of gravity waves generated by the movement of a submerged body.”Trans., Am. Geophys. Union, Washington, D.C., 36, 759–774.

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 123Issue 4July 1997
Pages: 149 - 157

History

Published online: Jul 1, 1997
Published in print: Jul 1997

Permissions

Request permissions for this article.

Authors

Affiliations

S. Assier Rzadkiewicz
Dr., Laboratoire de Détection et de Géophysique, Commissariat à l'Energie Atomique B.P. 12, 91680 Bruyères-Le-Châtel, France.
C. Mariotti
Dr., Laboratoire de Détection et de Géophysique, Commissariat à l'Energie Atomique B.P. 12, 91680 Bruyères-Le-Châtel, France.
P. Heinrich
Dr., Laboratoire de Détection et de Géophysique, Commissariat à l'Energie Atomique B.P. 12, 91680 Bruyères-Le-Châtel, France.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share