TECHNICAL PAPERS
Jul 1, 1996

State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes

This article has a reply.
VIEW THE REPLY
Publication: Journal of Geotechnical Engineering
Volume 122, Issue 7

Abstract

In the past 25 years great strides have been made in the area of static stability and deformation analysis. The widespread availability of microcomputers has brought about considerable change in the computational aspects of slope stability analysis. Analyses can be done much more thoroughly, and, from the point of view of mechanics, more accurately than was possible without computers. Still, engineers performing slope stability analyses must have more than a computer program. They must have a thorough mastery of soil mechanics and soil strength, a solid understanding of the computer programs they use, and the ability and patience to test and judge the results of their analyses to avoid mistakes and misuse. Realistic analyses of deformations of slopes and embankments were not possible until about 25 years ago. They are possible now mainly because the finite-element method has been developed and adapted to these applications. The principal requirement for achieving reasonably accurate and useful results from these analyses is suitable representation of the stress-strain behavior of the soils involved. In the past 25 years the finite-element method has been used to analyze a large number of dams, as well as other embankments and slopes. The experience gained over this period of time provides a number of valuable lessons concerning the advantages and limitations of the finite-element method for use in practical engineering problems.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Adikari, G. S. N., Donald, I. B., and Parkin, A. K. (1982). “Analysis of the construction behavior of Dartmouth Dam.”Proc. 4th Int. Conf. on Numer. Meth. in Geotech. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 645–654.
2.
Adikari, G. S. N., and Parkin, A. K.(1981). “Effect of stress-strain laws on predictions of rockfill dam performance.”Proc. Symp. on Implementation of Comp. Procedures and Stress-Strain Laws in Geotech. Engrg., Acorn Press, Durham, N.C., 2, 373–386.
3.
Adikari, G. S. N., and Parkin, A. K.(1982). “Deformation behavior of Talbingo Dam.”Int. J. for Numer. and Analytical Meth. in Geomech., 6, 353–382.
4.
Alberro, J. (1972). “Stress-strain analysis of El Infiernillo dam.”Proc. Perf. of Earth and Earth-Supported Struct., ASCE, New York, Vol. I, 837–852.
5.
Alonso, E. E., Battle, F., and Lloret, A. (1988). “Consolidation analysis of partially saturated soils—application to earth dam construction.”Proc. Conf. Numer. Meth. in Geomech., ASCE, New York, 1303–1308.
6.
Anagnosti, P. (1969). “Three dimensional stability of fill dams.”Proc., 7th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands.
7.
Arai, K., and Tagyo, K.(1985). “Determination of non-circular slip surface giving the minimum factor of safety in slope stability analysis.”Soils and Found., Tokyo, 25(1), 43–51.
8.
Azzouz, A. S., and Baligh, M. M.(1978). “Discussion of `Three dimensional slope stability analysis method,' by H. J. Hovland.”J. Geotech. Engrg. Div., ASCE, 104(9), 1206–1208.
9.
Azzouz, A. S., and Baligh, M. M.(1983). “Loaded areas on cohesive slopes.”J. Geotech. Engrg. Div., ASCE, 109(5), 724–729.
10.
Azzouz, A. S., Baligh, M. M., and Ladd, C. C. (1981). “Three dimensional stability analysis of four embankment failures.”Proc., 10th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 3, 343–346.
11.
Baker, R.(1980). “Determination of critical slip surface in slope stability computations.”Int. J. for Numer. and Analytical Meth. in Geomech., 4, 333–359.
12.
Baker, R., and Frydman, S. (1983). “Upper bound limit analysis of soil with non-linear failure criterion.”Soils and Found., Tokyo, 23(4), 34– 42.
13.
Baker, R., and Garber, M. (1977). “Variational approach to slope stability.”Proc., 9th Int. Conf. on Soil Mech. and Found. Engrg., Japan Soc. for Soil Mech. and Found. Engrg., Tokyo, 2, 9–12.
14.
Baker, R. and Garber(1978). “Theoretical analysis of the stability of slopes.”Géotechnique, London, 28(4), 395–411.
15.
Baker, R., and Leshchinsky, D.(1987). “Stability analysis of conical heaps.”Soils and Found., 27(4), 99–110.
16.
Baligh, M. M., and Azzouz, A. S.(1975). “End effects on stability of cohesive slopes.”J. Geotech. Engrg. Div., ASCE, 101(11), 1105–1117.
17.
Baligh, M. M., Azzouz, A. S., and Ladd, C. C. (1977). “Line loads on cohesive slopes.”Proc., 9th Int. Conf. on Soil Mech. and Found. Engrg., Japan Soc. for Soil Mech. and Found. Engrg., Tokyo, 2, 13–17.
18.
Bishop, A. W.(1955). “The use of the slip circle in the stability analysis of slopes.”Géotechnique, London, 5(1), 7–17.
19.
Bishop, A. W., and Bjerrum, L. (1960). “The relevance of the triaxial test to the solution of stability problems.”Proc., ASCE Res. Conf. on Shear Strength of Cohesive Soils, ASCE, New York, N.Y., 437–501.
20.
Bonaparte, R., Holtz, R. D., and Giroud, J. P. (1987). “Soil reinforcement design using geotextiles and geogrids.”Geotextile testing and the design engineering, ASTM STP 952, ASTM, Philadelphia, Pa., 69–116.
21.
Borja, R. I., Hsieh, H. S., and Kavazanjian, E. (1990. “Double-yield-surface model. II: implementation and verification.”J. Geotech. Engrg., ASCE, 116(9), 1402–1421.
22.
Boscardin, M. D., Selig, E. T., Lin, R. S., and Yang, G. Y.(1990). “Hyperbolic parameters for compacted soils.”J. Geotech. Engrg., ASCE, 166(1), 88–104.
23.
Boughton, N. O.(1970). “Elastic analysis for behavior of rockfill.”J. Soil Mech. and Found. Div., ASCE, 96(5), 1715–1733.
24.
Boutrup, E., and Lovell, C. W.(1980). “Search technique in slope stability analysis.”Engrg. Geol., 16(1), 51–61.
25.
Brooker, E. W., and Ireland, H. O.(1965). “Earth pressures at rest related to stress history.”Can. Geotech. J., 2(1), 1–15.
26.
Castillo, E., and Luceno, A.(1982). “A critical analysis of some variational methods in slope stability analysis.”Int. J. for Numer. and Analytical Meth. in Geomech., 6, 195–209.
27.
Castillo, E., and Revilla, J. (1977). “The calculus of variations and the stability of slopes.”Proc., 9th Int. Conf. on Soil Mech. and Found. Engrg., Japan Soc. for Soil Mech. and Found. Engrg., Tokyo, 2, 25–30.
28.
Cathie, D. N., and Dungar, R.(1978). “Evaluation of finite element predictions for constructional behavior of a rockfill dam.”Proc. Instn. Civ. Engrs., Part 2, 65, 551–568.
29.
Cavounidis, S.(1987). “On the ratio of factors of safety in slope stability analysis.”Géotechnique, London, 37(2), 207–210.
30.
Cavounidis, S., and Hoeg, K.(1977). “Consolidation during construction of earth dams.”J. Geotech. Engrg. Div., ASCE, 103(10), 1055–1067.
31.
Cavounidis, S., and Vaziri, H. (1982). “Effect of plasticity on load transfer in zoned dams.”Proc. 4th Int. Conf. on Numer. Meth. in Geotech. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 663–669.
32.
Celestino, T. B., and Duncan, J. M. (1981). “Simplified search for non-circular slip surface.”Proc., 10th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 3, 391–394.
33.
Chang, C. S., and Duncan, J. M. (1977). “Analysis of consolidation of earth and rockfill dams.”Geotech. Engrg. Rep. No. TE 77-3, U.S. Army Engr. Wtwy. Experiment Stn., Vicksburg, Miss.
34.
Chang, C. Y., and Duncan, J. M.(1970). “Analysis of soil movement around a deep excavation.”J. Soil Mech. and Found. Div., ASCE, 96(5), 1655–1681.
35.
Chen, R. H., and Chameau, J. L. (1982). “Three dimensional slope stability analysis.”Proc., 4th Int. Conf. on Numer. Meth. in Geomech., A. A. Balkema, Rotterdam, The Netherlands, 2, 671–677.
36.
Chen, R. H., and Chameau, J. L.(1983). “Three-dimensional limit equilibrium analysis of slopes.”Géotechnique, London, 33(1), 31–40.
37.
Chen, W. F.(1970). “Discussion of `Circular and logarithmic spiral slip surfaces.' by Eric Spencer.”J. Soil Mech. and Found. Div., ASCE, 96(1), 324–326.
38.
Chen, W. F., and Giger, M. W.(1971). “Limit analysis of stability of slopes.”J. Soil Mech. and Found. Div., ASCE, 97(1), 19–26.
39.
Chen, W. F., and Snitbhan, N.(1975). “On slip surface and slope stability analysis.”Soils and Found., Tokyo, 15(3), 41–49.
40.
Chen, Z., and Morgenstern, N. R. (1983). “Extensions to the generalized method of slices for stability analysis.”Can. Geotech. J., 20(1), 104– 119.
41.
Chen, Z., and Shao, C.(1988). “Evaluation of minimum factor of safety in slope stability analysis.”Can. Geotech. J., 25(4), 735–748.
42.
Ching, R. K. H., and Fredlund, D. G.(1983). “Some difficulties associated with the limit equilibrium method of slices.”Can Geotech. J., 20(4), 661–672.
43.
Christie, I. E., and El Hadi, K. M.(1977). “Some aspects of the design of earth dams reinforced with fabric.”Int. Conf. on the Use of Fabrics in Geotechnics, Paris, 1, 99–103.
44.
Christopher, B. R. (1987). “Geogrid reinforced soil retaining wall to widen an earth dam and support high live loads.”Proc., Geosynthetics '87 Conf., New Orleans, 145–156.
45.
Christopher, B. R., and Holtz, R. D. (1984). Geotextile engineering manual, Fed. Hwy. Admin., Washington, D.C.
46.
Chugh, A. K.(1986). “Variable factor of safety in slope stability analysis.”Géotechnique, London, 36(1), 57–64.
47.
Clements, R. P.(1984). “Post-construction deformations of rockfill dams.”J. Geotech. Engrg., 110(7), 821–840.
48.
Clough, R. W., and Woodward, R. J.(1967). “Analysis of embankment stresses and deformations.”J. Soil Mech. and Found. Div., ASCE, 93(4), 529–549.
49.
Cole, B. R., and Cummins, P. J. (1981). “Behavior of Dartmouth Dam during construction.”Proc., 10th Int. Conf. on Soil Mech. and Found. Engrg., Stockholm, 1, 81–85.
50.
De Josselin De Jong, G. (1980). “Application of the calculus of variation to the vertical cut off in cohesive frictionless soil.”Géotechnique, London, 30(1),1–16.
51.
Dennhardt, M., and Forster, W. (1985). “Problems of three dimensional slope stability.”Proc., 11th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 2, 427–431.
52.
Dolezalova, M., and Leitner, F. (1981). “Prediction of Dalesice Dam performance.”Proc., 10th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 1, 111–114.
53.
Duncan, J. M., Buchignani, A. L., and De Wet, M. (1987). An engineering manual for slope stability studies, Virginia Tech, Blacksburg, Va.
54.
Duncan, J. M., Byrne, P. M., Wong, K. S., and Mabry, P. (1980). “Strength, stress-strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses.”Rep. No. UCB/GT/80-01, Univ. of Calif., Berkeley, Calif.
55.
Duncan, J. M., and Chang, C. Y.(1970). “Nonlinear analysis of stress and strain in soils.”J. Soil Mech. and Found. Div., ASCE, 96(5), 1629–1653.
56.
Duncan, J. M., and Dunlop, P.(1969). “Slopes in stiff fissured clays and shales.”J. Soil Mech. and Found. Div., ASCE, 94(2), 467–492.
57.
Duncan, J. M., Schaefer, V. R., Franks, L. W., and Collins, S. A. (1987). “Design and performance of a reinforced embankment for Mohicanville Dike No. 2 in Ohio.”Transp. Res. Rec. 1153, 15–25.
58.
Duncan, J. M., and Wright, S. G.(1980). “The accuracy of equilibrium methods of slope stability analysis.”Engrg. Geol., 16(1), 5–17.
59.
Dunlop, P., and Duncan, J. M. (1970). “Development of failure around excavated slopes.”J. Soil Mech. and Found. Div., ASCE, 96(2), 471– 494.
60.
Eisenstein, Z., and Law, S. T. C.(1977). “Analysis of consolidation behavior of Mica Dam.”J. Geotech. Engrg. Div., ASCE, 103(8), 879–894.
61.
Eisenstein, Z., and Law, S. T. C. (1979). “Influence of anisotropy on stresses and displacements in embankments.”Proc. 3rd Int. Conf. on Numer. Meth. in Geotech. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 709–715.
62.
Eisenstein, Z., Krishnayya, V. G., and Morgenstern, N. R., (1972). “An analysis of the cracking at Duncan dam.”Proc. Perf. of Earth and Earth-Supported Struct., ASCE, New York, Vol. I, 765–777.
63.
Eisenstein, Z., and Simmons, J. V. (1975). “Three-dimensional analysis of Mica Dam.”Proc. Int. Symp. Criteria and Assumptions for Numer. Anal. of Dams. Quadrant, Swansea, U.K., 1051–1070.
64.
Fellenius, W. (1927). Erdstatische Berechnungen mit Reibung und Kohasion, Ernst, Berlin (in German).
65.
Fowler, J. (1982). “Theoretical design considerations for fabric reinforced embankments.”Proc., 2nd Int. Conf. on Geotextiles, A. A. Balkema, Rotterdam, The Netherlands, 3, 665–670.
66.
Franks, L. W., Duncan, J. M., Collins, S. A., Fowler, J., Peters, J. F., and Schaefer, V. R. (1988). “Use of reinforcement at Mohicanville Dike No. 2.”Proc., 2nd Int. Conf. on Case Histories in Geotech. Engrg., Univ. of Missouri–Rolla, Rolla, Mo.
67.
Fredlund, D. G.(1980). “Discussion of `Remarks on the validity of stability analyses,' by F. Tavenas, B. Trak, and S. Leroueil.”Can. Geotech. J., 17(4), 641–642.
68.
Fredlund, D. G., and Krahn, J.(1977). “Comparison of slope stability methods of analysis.”Can. Geotech. J., 14(3), 429–439.
69.
Fredlund, D. G., Krahn, J., and Pufahl, D. E. (1981). “The relationship between limit equilibrium slope stability methods.”Proc., 10th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 3, 409–416.
70.
Garber, M., and Baker, R.(1979). “Extreme value problems of limiting equilibrium.”J. Geotech. Engrg. Div., ASCE, 105(10), 1155–1171.
71.
Gens, A., Hutchinson, J. N., and Cavounidis, S.(1988). “Three dimensional analyses of slides in cohesive soils.”Géotechnique, London, 38(1), 1–23.
72.
Giger, M. W., and Krizek, R. J.(1975). “Stability analysis of vertical cut with variable corner angle.”Soils and Found., 15(2), 63–71.
73.
Giger, M. W., and Krizek, R. J.(1976). “Stability of vertical corner cut with concentrated surcharge load.”J. Geotech. Engrg. Div., ASCE, 102(1), 31–40.
74.
Haliburton, T. A. (1981). “Use of engineering fabric in road and embankment construction.”Seminar on the Use of Synthetic Fabrics in Civ. Engrg., Toronto, 66–94.
75.
Haliburton, T. A., Anglin, C. C., and Lawmaster, J. D.(1978). “Testing of geotechnical fabric for use as reinforcement.”Geotech. Testing J., 1, 203–212.
76.
Hovland, H. J.(1977). “Three-dimensional slope stability analysis method.”J. Geotech. Engrg. Div., ASCE, 103(9), 971–986.
77.
Huang, Y. H., and Avery, C. M.(1976). “Stability of slopes by logarithmic spiral method.”J. Geotech. Engrg. Div., ASCE, 102(1), 41–49.
78.
Hungr, O.(1987). “An extension of Bishop's Simplified Method of slope stability analysis to three dimensions.”Géotechnique, London, 37(1), 113–117.
79.
Hutchinson, J. N., and Sarma, S. K.(1985). “Discussion of `Three-dimensional limit equilibrium analysis of slopes,' by R. H. Chen and J. L. Chameau.”Géotechnique, London, 35(2), 215–216.
80.
Ingold, T. S. (1982). Reinforced earth . Thomas Telford, Inc., London.
81.
Ingold, T. S.(1991). “Partial factor design of polymer reinforced soil walls.”Ground Engrg., 24(5), 34–38.
82.
Jaky, J. (1944). “The coefficient of earth pressure at rest.”J. for Soc. of Hungarian Arch. and Engrs., Budapest, Hungary, (Oct.), 355–358.
83.
Janbu, N. (1968). “Slope stability computations.”Soil Mech. and Found. Engrg. Rep., The Technical University of Norway, Trondheim, Norway.
84.
Jewell, R. A. (1985). “Limit equilibrium analysis of reinforced soil walls.”Proc., 11th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 3, 1705–1708.
85.
Justo, J. L., and Saura, J. (1983). “Three-dimensional analysis of Infiernillo dam during construction and filling of the reservoir.”Int. J. for Numer. and Anal. Meth. in Geomech. 7, 225–243.
86.
Khalid, S., Singh, B., Nayak, G. C., and Jain, O. P.(1990). “Nonlinear analysis of concrete face rockfill dam.”J. Geotech. Engrg., ASCE, 116(5), 822–837.
87.
Klym, T. W., Lee, C. F., and Debidin, F.(1977). “Heave measurements within a large excavation.”Proc. 9th Int. Conf. on Soil Mech. and Found. Engrg., 1, 103–108.
88.
Koga, K., Aramaki, G., and Valliappan, S. (1988). “Finite element analysis of grid reinforcement.”Proc. Int. Geotech. Symp. Theory and Practice of Earth Reinforcement, A. A. Balkema, Rotterdam, The Netherlands, 407–411.
89.
Kohgo, Y., and Yamashita, T. (1988). “Finite element analysis of fill type dams—Stability during construction by using the effective stress concept.”Proc. Conf. Numer. Meth. in Geomech., ASCE, New York, 1315–1322.
90.
Kulhawy, F. H., and Duncan, J. M.(1972). “Stresses and movements in Oroville dam.”J. Soil Mech. and Found. Div., ASCE, 98(7), 653–665.
91.
Ladd, C. C. (1991). “Stability evaluation during staged construction.” 22nd Terzaghi Lecture, J. Geotech. Engrg., ASCE, 117(4), 537–615.
92.
Ladd, C. C., and Foott, R.(1974). “New design procedure for stability of soft clays.”J. Geotech. Engrg. Div., ASCE, 100(7), 763–786.
93.
Lambe, T. W.(1973). “Predictions in soil engineering.”Géotechnique, London, 23(2), 149–202.
94.
Lefebvre, G., and Duncan, J. M. (1971). “Three dimensional finite element analyses of dams,”Contract Rep. s-71-6, U.S. Army Engr. Wtwys. Experiment St., Vicksburg, Miss.
95.
Lefebvre, G., Duncan, J. M., and Wilson, E. L.(1973). “Three-dimensional finite element analysis of dams.”J. Soil Mech. and Found. Div., ASCE, 99(7), 495–507.
96.
Leshchinsky, D.(1990). “Slope stability analysis: generalized approach.”J. Geotech. Engrg., ASCE, 116(5), 851–867.
97.
Leshchinsky, D., and Baker, R.(1986). “Three-dimensional slope stability: end effects.”Soils and Found., 26(4), 98–110.
98.
Leshchinsky, D., Baker, R., and Silver, M. L.(1985). “Three dimensional analysis of slope stability.”Int. J. for Numer. and Anal. Meth. in Geomech., 9(2), 199–223.
99.
Leshchinsky, D., and Huang, C.(1992). “Generalized three dimensional slope stability analysis.”J. Geotech. Engrg., ASCE, 118(11), 1748–1764.
100.
Leshchinsky, D., and Mullet, T. L.(1988). “Design charts for vertical cuts.”J. Geotech. Engrg., ASCE, 114(3), 337–344.
101.
Leshchinsky, D., and Mullet, T. L. (1988). “Stability of vertical corner cuts.”Proc., 6th Int. Conf. on Numer. Meth. in Geomech., A. A. Balkema, Rotterdam, The Netherlands, 2, 1249–1256.
102.
Li, G. C., and Desai, C. S.(1983). “Stress and seepage analysis of earth dams.”J. Geotech. Engrg., ASCE, 109(7), 946–960.
103.
Li, K. S., and White, W.(1987). “Rapid evaluation of the critical surface in slope stability problems.”Int. J. for Numer. and Anal. Meth. in Geomech., 11(5), 449–473.
104.
Lianshi, G., Jinsheng, Z. (1988). “The numerical analysis for the interaction of concrete core and rockfill shell of a dam and the prototype measurement and verification.”Proc. Conf. Numer. Meth. in Geomech., ASCE, New York, 1309–1314.
105.
Low, B. K.(1989). “Stability analysis of embankments on soft ground.”J. Geotech. Engrg., ASCE, 115(2), 211–227.
106.
Lowe, J.(1967). “Stability analysis of embankments.”J. Soil Mech. and Found. Div., ASCE, 93(4), 1–33.
107.
Lowe, J., and Karafiath, L. (1960). “Stability of earth dams upon drawdown.”Proc., 1st Pan-Am. Conf. on Soil Mech. and Found. Engrg., Mexico City, 2, 537–552.
108.
Luceno, A., and Castillo, E. (1980). “Evaluation of variational methods in slope analysis.”Proc., 1st Int. Symp. on Landslides, Meerut: Sarita Prakashan, New Delhi, 1, 255–258.
109.
Martin, H. L. (1978). “A three-dimensional deformation analysis of the Storvass Dam.”Int. J. for Numer. and Anal. Meth. in Geomech., 2, 3–17.
110.
Mayne, P. W., and Kulhawy, F. H. (1982). “K0-OCR relationships in soil.”J. Geotech. Engrg. Div., ASCE, 108(gt6), 851–872.
111.
Michalowski, R. L.(1989). “Three dimensional analysis of locally loaded slopes.”Géotechnique, London, 39(1), 27–38.
112.
Miki, H., Kutara, K., Minami, T., Nishimura, J., and Fukuda, N. (1988). “Experimental studies on the performance of a polymer grid reinforced embankment.”Proc. Int. Geotech. Symp. Theory and Practice of Earth Reinforcement, A. A. Balkema, Rotterdam, The Netherlands, 431–436.
113.
Mino, S., Noritake, K., and Innami, S. (1988). “Field monitoring procedure of cut slopes reinforced with steel bars.”Proc. Int. Geotech. Symp. Theory and Practice of Earth Reinforcement, A. A. Balkema, Rotterdam, The Netherlands, 322–327.
114.
Mitchell, J. K., and Villet, W. C. B. (1987). “Reinforcement of earth slopes and embankments.”NCHRP 290, Transp. Res. Board, Washington, D.C.
115.
Morgenstern, N. R., and Price, V. E.(1965). “The analysis of the stability of general slip surfaces.”Géotechnique, London, 15(1), 79–93.
116.
Mylleville, B. L. J., and Rowe, R. K. (1988). “Steel reinforced embankments on soft clay foundations.”Proc. Int. Geotech. Symp. Theory and Practice of Earth Reinforcement, A. A. Balkema, Rotterdam, The Netherlands, 437–422.
117.
Naylor, D. J. (1975). “Numerical models for clay cores.”Proc. Int. Symp. on Criteria and Assumptions for Numer. Anal. of Dams, Swansea, Quadrant, U.K., 489–514.
118.
Naylor, D. J., Maranha das Neves, E., Mattar, D. Jr., and Viega Pinto, A. A.(1986). “Prediction of construction performance of Beliche dam.”Géotechnique, London, 36(3), 359–376.
119.
Naylor, D. J., and Mattar, D. (1988). “Layered analysis of embankment dams.”Proc. Conf. Numer. Meth. in Geomech., ASCE, New York, 1199–1205.
120.
Naylor, D. J., Tong, S. L., and Shahkarami, A. A. (1989). “Numerical modeling of saturation shrinkage.”Proc. 3rd Int. Symp. on Numer. Models in Geomech., Niagara Falls, Canada, 636–648.
121.
Nguyen, V. U.(1985). “Determination of critical slope failure surface.”J. Geotech. Engrg., ASCE, 111(2), 238–250.
122.
Nobari, E. S., and Duncan, J. M. (1972). “Movements in dams due to reservoir filling.”ASCE Spec. Conf. on Perf. of Earth and Earth Supported Struct., ASCE, New York, 797–815.
123.
Ohta, H. (1991). “Performance of soft clay foundations under construction.”
124.
Palmerton, J. B. (1972). “Application of three-dimensional finite element analysis.”Proc. Symp. Applications of the Finite Element Method of Geotech. Engrg., U.S. Army Corps of Engrs., Wtwy. Experiment Stn., Vicksburg, Miss., 155–213.
125.
Pare, J. J., Verma, N. S., Kiel, H. M. S., and McConnell, A. D.(1984). “Stress-deformation predictions for the LG4 main dam.”Can. Geotech. J., 21(2), 213–222.
126.
Penman, A. D. M., Burland, J. B., and Charles, J. A.(1971). “Observed and Predicted deformations in a large embankment dam during construction.”Proc. Ins. Civ. Engrs., London, 49, 1–21.
127.
Penman, A., and Charles, A.(1973). “Construction deformations in rockfill dam.”J. Soil Mech. and Found. Div., ASCE, 99(2), 139–163.
128.
Penman, A. D. M., and Charles, J. A. (1985). “Behavior of rockfill dam with asphaltic membrane.”Proc. 11th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 4, 2011– 2014.
129.
Poulos, H. G., Booker, J. R., and Ring, G. J.(1972). “Simplified calculation of embankment deformations.”Soils and Found., Tokyo, 12(4), 1–17.
130.
Quigley, F. W., Duncan, J. M., Caronna, S., Moroux, P. J., and Chang, C. S. (1976). “Three dimensional finite element analyses of New Melones Dam.”Geotech. Engrg. Rep. No. TE-3, Univ. of California, Berkeley, Calif.
131.
Ramamurthy, T., Narayan, C. G. P. and Bhatkar, V. P. (1977). “Variational method for slope stability analysis.”Proc., 9th Int. Conf. on Soil Mech. and Found. Engrg., Japan Soc. for Soil Mech. and Found. Engrg., Tokyo, 3, 139–142.
132.
Raymond, G. P.(1972). “Prediction of undrained deformations and pore pressures in weak clay under two embankments.”Géotechnique, London, 22(3), 381–401.
133.
Resendiz, D., and Romo, M. P. (1972). “Analysis of embankment deformations.”Proc. Perf. of Earth and Earth-Supported Struct., ASCE, New York, Vol. I, 817–836.
134.
Revilla, J., and Castillo, E.(1977). “The calculus of variations applied to stability of slopes.”Géotechnique, London, 27(1), 1–11.
135.
Rossi, M. N., and Medeiros, L. V. (1985). “Analysis of movements of Foz do Areia rockfill dam.”Proc., 11th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 4, 2031– 2034.
136.
Rowe, R. K.(1984). “Reinforced embankments: Analysis and design.”J. Geotech. Engrg., ASCE, 110(2), 231–154.
137.
Rowe, R. K., and Mylleville, B. L. J.(1985). “An approximate method for estimating the stability of geotextile reinforced embankments.”Can. Geotech. J., 22(3), 392–398.
138.
Sarma, S. K.(1979). “Stability analysis of embankments and slopes.”J. Geotech. Engrg. Div., ASCE, 105(12), 1511–1524.
139.
Schaefer, V. R., and Duncan, J. M. (1988). “Finite element analyses of the St. Alban test embankments.”Proc., Symp. on Geosynthetics for Soil Improvement, ASCE, New York, 158–177.
140.
Seco E Pinto, P. S., and Marahna das Nevas, E.(1985). “Hydraulic fracturing in zoned earth and rockfill dams.”Proc. 11th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 4, 2025–2030.
141.
Seed, R. B., Mitchell, J. K., and Seed, H. B.(1990). “Kettlemen Hills waste landfill slope failure, II: stability analysis.”J. Geotech. Engrg., ASCE, 116(4), 669–690.
142.
Sekiguchi, H., and Shibata, T. (1979). “Undrained behavior of soft clay under embankment loading.”Proc. 3rd Int. Conf. on Numer. Meth. in Geotech. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 717–724.
143.
Sharma, H. D., Nayak, G. C., and Maheshwari, J. B. (1975). “Nonlinear analyses of high rockfill dam with vertical and inclined cores.”Proc. Int. Symp. on Criteria and Assumptions for Numer. Anal. of Dams, Quadrant, Swansea, U.K., 533–562.
144.
Sharma, H. D., Nayak, G. C., and Maheshwari, J. B. (1976). “Generalization of sequential nonlinear analysis: A study of rockfill dam with joint elements.”Proc. Conf. Numer. Meth. in Geomech., ASCE, New York, 662–685.
145.
Sharma, H. D., Nayak, G. C., and Maheshwari, J. B. (1977). “Nonlinear analysis of a high rockfill dam.”Proc. 9th Int. Conf. on Soil Mech. and Found. Engrg., Japan Soc. for Soil Mech. and Found. Engrg., 143–146.
146.
Sharma, H. D., Nayak, G. C., and Maheshwari, J. B., (1979). “Nonlinear analysis of a high rockfill dam with earth core.”Trans., 13th Int. Congr. on Large Dams, Int. Commission on Large Dams, Paris, 879–894.
147.
Shen, Z. J., and Zhang, W. M. (1988). “Analysis of effective stress and movement of Lubuge Dam.”Proc. Conf. Numer. Meth. in Geomech., ASCE, New York, 1419–1424.
148.
Shibata, T., Tominaga, M., and Matsuoka, H. (1976). “FE analysis of soil movements below a test embankment.”Proc. Conf. Numer. Meth. in Geomech., Blacksburg, Va., 599–611
149.
Siegel, R. A., Kovacs, W. D., and Lovell, C. W.(1981). “Random surface generation in stability analysis.”J. Geotech. Engrg., ASCE, 107(7), 996–1002.
150.
Simmons, H. V. (1974). “Three-dimensional analysis of Mica Dam,” MS thesis, Dept. of Civ. Engrg., Univ. of Alberta, Edmonton, Alberta.
151.
Skermer, N. A.(1973). “Finite element analysis of El Infiernillo dam.”Can. Geotech. J., 10(2), 129–144.
152.
Smith, I. M., and Hobbs, R.(1974). “Finite element analysis of centrifuged and built-up slopes.”Géotechnique, London, 24(4), 531–559.
153.
Smith, I. M., and Hobbs, R.(1976). “Biot analysis of consolidation beneath embankments.”Géotechnique, London, 26(1), 149–171.
154.
Snitbhan, N., and Chen, W. F., (1976). “Finite element analysis of large deformations in slopes.”Proc. Conf. Numer. Meth. in Geomech., Blacksburg, Va. 744–756.
155.
Spencer, E.(1967). “A method of analysis of the stability of embankments assuming parallel interslice forces.”Géotechnique, London, 17(1), 11–26.
156.
Spencer, E.(1969). “Circular and logarithmic spiral slip surfaces.”J. Soil Mech. and Found. Div., ASCE, 95(1), 227–234.
157.
Spencer, E.(1981). “Slip circles and critical shear planes.”J. Geotech. Engrg. Div., ASCE, 107(7), 929–942.
158.
Stille, H., Fredricksson, A., and Broms, B. B. (1976). “Analysis of a test embankment considering the anisotropy.”Proc. Conf. Numer. Meth. in Geomech., Blacksburg, Va., 611–622.
159.
Taki, M., Renge, S., Hachiman, T., Morioka, Y., Matsuda, H., and Natori, J. (1988). “Full scale testing and numerical analysis for polymer grid reinforced embankment.”Proc. Int. Geotech. Symp. Theory and Practice of Earth Reinforcement, A. A. Balkema, Rotterdam, The Netherlands, 479–484.
160.
Tanaka, T., and Nakano, R. (1976). “Finite element analysis of Miyama rockfill dam.”Proc. Conf. Numer. Meth. in Geomech., ASCE, New York, 650–661.
161.
Tavenas, F., Trak, B., and Leroueil, S.(1980). “Remarks on the validity of stability analyses.”Can. Geotech. J., 17(1), 61–73.
162.
Taylor, D. W. (1948). Fundamentals of soil mechanics, John Wiley and Sons, New York.
163.
Thamm, B. R. (1979). “Numerical analyses of embankments over soft subsoils.”Proc. 3rd Int. Conf. on Numer. Meth. in Geotech. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 725–731.
164.
Thoms, R. L., Pecquet, R. A., and Arman, A. (1976). “Numerical analyses of embankments over soft soils.”Proc. Conf. Numer. Meth. in Geomech., ASCE, New York, 623–638.
165.
U.S. Army Corps of Engineers (1970). “Engineering and design—stability of earth and rock fill dams.”Engr. Manual EM 1110-2-1902, Dept. of the Army, Corp of Engrs., Ofc. of the Chf. of Engrs.
166.
Ugai, K.(1985). “Three-dimensional stability analysis of vertical cohesive slopes.”Soils and Found., Tokyo, 25(3), 41–48.
167.
Ugai, K. (1988). “Three dimensional slope stability analysis by slice methods.”Proc., 6th Int. Conf. on Numer. Meth. in Geomech. A. A. Balkema, Rotterdam, The Netherlands, 2, 1369–1374.
168.
Viega Pinto, A., and Marahna das Nevas, E.(1985). “Prediction of Beliche Dam behavior during reservoir filling.”Proc. 11th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 4, 2021–2024.
169.
Verma, N. S., Pare, J. J., Boncompain, B., Garneau, R., and Rattue, A.(1985). “Behavior of the LG4 Main Dam.”Proc. 11th Int. Conf. on Soil Mech. and Found. Engrg., A. A. Balkema, Rotterdam, The Netherlands, 4, 2049–2054.
170.
Walker, W. L., and Duncan, J. M.(1984). “Lateral bulging of earth dams.”J. Geotech. Engrg., ASCE, 110(7), 923–937.
171.
Whitman, R. V., and Bailey, W. A., (1967). “Use of computers for slope stability analysis.”J. Soil Mech. and Found. Div., ASCE, 93(4), 475–498.
172.
Wright, S. G., and Duncan, J. M. (1991). “Limit equilibrium stability analyses for reinforced slopes.”TRB Paper No. 910441, Transp. Res. Board, Washington, D.C.
173.
Wright, S. G., Kulhawy, F. G., and Duncan, J. M.(1973). “Accuracy of equilibrium slope stability analysis.”J. Soil Mech. and Found. Div., ASCE, 99(10), 783–791.
174.
Wroth, C. P., and Simpson, B. (1972). “An induced failure at trial embankment: Part II finite element computations.”Proc. Perf. of Earth and Earth-Supported Struct, ASCE, New York, Vol. I, 65–79.
175.
Xing, Z.(1988). “Three dimensional stability analysis of concave slopes in plan view.”J. Geotech. Engrg., ASCE, 114(6), 658–671.
176.
Yuan, J. X., and Mao, Y. (1982). “Non-linear incremental analysis of an earth dam using modified secant modulus.”Proc. 4th Int. Conf. on Numer. Meth. in Geotech. Engrg., 731–734.
177.
Zangl, L. W. (1979). “Behavior of an asphalt concrete core during dam construction and reservoir filling.”Proc. 3rd Int. Conf. on Numer. Meth. in Geotech. Engrg., 733–746.

Information & Authors

Information

Published In

Go to Journal of Geotechnical Engineering
Journal of Geotechnical Engineering
Volume 122Issue 7July 1996
Pages: 577 - 596

History

Published online: Jul 1, 1996
Published in print: Jul 1996

Permissions

Request permissions for this article.

Authors

Affiliations

James Michael Duncan, Fellow, ASCE
University Distinguished Professor, Dept. of Civ. Engrg., Virginia Tech., Blacksburg, VA 24061.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share