TECHNICAL PAPERS
Jul 1, 1992

Yielding of Mexico City Clay and Other Natural Clays

Publication: Journal of Geotechnical Engineering
Volume 118, Issue 7

Abstract

Yielding is an important feature of the stress‐strain behavior of lightly overconsolidated clays. This paper describes tests on 36‐mm triaxial samples of natural Mexico City clay. The specimens are carefully trimmed, consolidated in increments along various stress paths to determine the yield‐point characteristic curve of Mexico City clay. Once yielding is clearly defined, the specimens are subjected to an undrained compression at a constant strain rate. The clay exhibits marked changes in stiffness when it yields, and, thus, a well‐defined yield envelope in stress space is obtained. This yield curve, together with other curves from the literature, gave information for natural clays with friction angles in normally consolidated range between 17.5° and 45°, allowing a generalization of the concept. The coefficient of earth pressure at rest in the normally consolidated range is also discussed. Data obtained on Mexico City clay show that the relationship proposed elsewhere is also valid for clays having a high friction angle.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Alemàn, J. D. (1989). “Comportamiento esfuerzo‐deformacion de la arcilla del Valle de Mexico, utilizando un enfoque basado en la teorìa del estado crìtico,” MS thesis, Universidad Nacional Autònoma de Mèxico, Mexico City, Mexico.
2.
Berre, T. (1972). “Sammenheng mellon tid, de formasjoner og spenninger for nor‐malkon solidarde marine leirer.” Proc. Nordic Conf. on Soil Mech., Trondheim, Norway.
3.
Bjerrum, L. (1967). “Engineering geology of Norwegian normally consolidated clays s related to settlements of buildings.” Gèotechnique, 17(2), 81–118.
4.
Bjerrum, L., and Lo, K. Y. (1963). “Effect of aging on the shear‐strength properties of a normally consolidated clay.” Gèotechnique, 13(2), 147–157.
5.
Brousseau, P. (1983). “Gènèralisation des ètats limites et de la destructuration des argiles naturelles,” MS thesis, Laval Univ., Quebec City, Quebec, Canada.
6.
Dìaz‐Rodrìguez, J. A. (1989). “Behavior of Mexico City clay subjected to undrained epeated loading.” Can. Geotech. J., 26(1), 159–162.
7.
Folkes, D. J., and Crooks, J. H. A. (1985). “Effective stress paths and yielding in soft clays below embankments.” Can. Geotech. J., 22(3), 357–374.
8.
Graham, J., Crooks, J. H. A., and Lau, S. L. K. (1988). “Yield envelopes: Identification and geometric properties.” Gèotechnique, 38(1), 125–134.
9.
Graham, J., Noonan, M. L., and Lew, K. V. (1983). “Yield states and stress‐strain relationships in a natural plastic clay.” Can. Geotech. J., 20(3), 502–516.
10.
Jaky, J. (1944). “The coefficient of earth pressure at rest.” J. Soc. Hungarian Arch. Engrs., Budapest, Hungary, 355–358.
11.
Korhonen, K. H., and Lojander, M. (1987). “Yielding of Perno clay.” Constitutive laws for engineering mats: Theory and applications, Elsevier, vol. 2, 1249–1255.
12.
La Rochelle, P., Sarrailh, J., Tavenas, F., Roy, M., and Leroueil, S. (1981). “Causes of sampling disturbance and design of a new sampler for sensitive soils.” Can. Geotech. J., 18(1), 52–66.
13.
Larsson, R. (1977). “Basic behaviour of Scandinavian soft clays.” Report No. 4, Swedish Geotech. Inst., Sweden.
14.
Leroueil, S., Tavenas, F., Brucy, F., La Rochelle, P., and Roy, M. (1979). “Behavior of destructured natural clays.” J. Geotech. Engrg. Div., ASCE, 105(6), 759–778.
15.
Leroueil, S., and Vaughan, P. R. (1990). “The general and congruent effects of structure in natural soils and weak rocks.” Gèotechnique, 40(3), 467–488.
16.
Leyte‐Guerrero, F. (1989). “Efecto de cargas ciclicas en la compresibilidad de arcillas del Valle de Mèxico,” MS thesis, Universidad Nacional Autònoma de Mèxico, Mexico City, Mexico.
17.
Lo, K. Y. (1962). “Shear strength properties of a sample of volcanic material of the valley of Mexico.” Gèotechnique, 12(4), 303–318.
18.
Lojander, M. (1988). The parameters of the mechanical model of anisotropic clay. Nordiska Geoteknikermote, Oslo, Norway.
19.
Magnan, J. P., Shahanguian, S., Josseaume, H. (1982). “Etude en laboratoire des ètats limites d'une argile molle organique.” Revue Francaise de Geotechnique, 20(1), 13–19.
21.
Marsal, R. J., and Mazari, M. (1959). The subsoil of Mexico City. Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
22.
Marsal, R. J., and Salazar‐Resines, J. (1960). “Pore pressure and volumetric measurements in shear tests.” Proc. ASCE Res. Conf. on Shear Strength of Cohesive Soils, ASCE, New York, N.Y., 965–983.
23.
Mayne, P. W., and Kulhawy, F. H. (1982). “Ko‐OCR relationships in soils.” J. Geotech. Engrg., ASCE, 108(11), 1219–1242.
24.
Mesri, G., Rokhsar, A., and Bohor, B. F. (1975). “Composition and compressibility of typical samples of Mexico City clay.” Gèotechnique, 25(3), 527–554.
25.
Mitchell, R. J. (1970). “On the yielding and mechanical strength of Leda clays.” Can. Geotech. J., 7(3), 297–312.
26.
Moulin, G. (1988). “Etat limite d'une argile naturelle—L'argile de Pornic.” PhD thesis, Ecole National Superieure de Mecanique, Nantes, France.
27.
Moulin, G. (1989). “Caractèrisation de l'etat limite de l'argile de Pornic.” Can. Geotech. J., 26(4), 705–717.
28.
Moya, J., and Rodriguez, J. (1987). “El subsuelo de Bogota y los problemas de cimentaciones.” Proc. 8th Panamerican Conf. on Soil Mech. and Found. Engrg., Universidad Nacional de Colombia, 197–264.
29.
Oka, F., Adachi, T., and Mimura, M. (1988). “Elasto‐viscoplastic constitutive models for clays.” Int. Conf. on Rheology and Soil Mech., Coventry, England, vol. 1,12–28.
30.
Roscoe, K. H., Schofield, A. N., and Wroth, C. P. (1958). “On the yielding of soils.” Gèotechnique, 8(1), 22–52.
31.
Tavenas, F., and Leroueil, S. (1977). “Effects of stresses and time on yielding of clays.” Proc. 9th Int. Conf. on Soil Mech. and Found. Engrg., Tokyo, Japan, vol. 1, 319–326.
32.
Tavenas, F., and Leroueil, S. (1979). “Clay behavior and the selection of design parameters.” Proc. 8th European Conf. on Soil Mech. and Found. Engrg., British Geotechnical Society, vol. 1, 281–291.
33.
Tavenas, F., and Leroueil, S. (1980). “The behaviour of embankments on clay foundations.” Can. Geotech. J., 17(2), 236–260.
34.
Tavenas, F., and Leroueil, S. (1981). “Creep and failure of slopes in clays.” Can. Geotech. J., 18(1), 106–120.
35.
Tavenas, F., and Leroueil, S. (1985). “Discussion on session 2B on laboratory testing.” Proc. 11th Int. Conf. on Soil Mech. and Found. Engrg., vol. 5, 2693–2694.
36.
Wong, P. K. K., and Mitchell, R. J. (1975). “Yielding and plastic flow of sensitive cemented clay.” Gèotechnique, 25(4), 763–782.
37.
Zeevaert, L. (1982). Foundation engineering for difficult subsoil conditions. 2nd Ed., Van Nostrand‐Reinhold Co., New York, N.Y.
38.
Zeevaert, L. (1988). Seismo‐geodynamics of the ground surface. Editora e Impresora International, Mexico City, Mexico.

Information & Authors

Information

Published In

Go to Journal of Geotechnical Engineering
Journal of Geotechnical Engineering
Volume 118Issue 7July 1992
Pages: 981 - 995

History

Published online: Jul 1, 1992
Published in print: Jul 1992

Permissions

Request permissions for this article.

Authors

Affiliations

J. A. Dìaz‐Rodrìguez, Member, ASCE
Prof, of Civ. Engrg., Universidad Nacional Autonoma de Mèxico, Apartado Postal 70‐165, 04510 Mèxico, D.F., Mèxico
S. Leroueil
Prof. of Civ. Engrg., Laval Univ., Facultè des Sciences et de Gènie, Dèpartement de Gènie Civil, Citè Universitè, Quebec, Canada, G1K 7P4
J. D. Alemàn
Geotech. Engr., Geotec, S. A., Londres 44, 0411 Mèxico, D.F., Mèxico

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share