TECHNICAL PAPERS
Jan 1, 2005

Composite Material Behavior Using a Homogenization Double Scale Method

Publication: Journal of Engineering Mechanics
Volume 131, Issue 1

Abstract

In this paper, we present a two-scale numerical method in which structures made up of composite materials are simulated. The method proposed lies within the context of homogenization theory and assumes the periodicity of the internal structure of the material. The problem is divided into two scales of different orders of magnitude: A macroscopic scale in which the body and structure of the composite material is simulated, and a microscopic scale in which an elemental volume called a “cell” simulates the material. In this work, the homogenized strain tensor is related to the transformation of the periodicity vectors. The problem of composite materials is posed as a coupled, two-scale problem, in which the constitutive equation of the composite material becomes the solution of the boundary-value problem in the cell domain. Solving various examples found in the bibliography on this subject demonstrates the validity of the method.

Get full access to this article

View all available purchase options and get full access to this article.

References

Anthoine, A. (1995). “Derivation of the in-plane characteristics of masonry through homogenization theory.” Int. J. Solids Struct., 32(2), 137–163.
Aravas. (1995).
Bensoussan, A., Lions, J. L., and Papanicolaou, G. (1978). Asymptotic analysis for periodic structures, North–Holland, Amsterdam.
Car, E., Zalamea, F., Oller, S., Miquel, J., and Oñate, E. (2002). “Numerical simulation of fiber reinforced composite materials: Two procedures.” Int. J. Solids Struct., 39(7), 1967–1986.
Crisfield, M. (1980). Numerical methods for nonlinear problem, Pineridge, Swansea, U.K.
Dennis, J. E., and More, J. J. (1977). “Quasi-Newton methods, motivation and theory.” SIAM Rev. 19(1), 46-89.
Devries. (1989).
Dumontet, H. (1986). “Boundary layer stresses in elastic composites.” Local effects in the analysis of structures, Elsevier, Amsterdam.
Duvaut, G. (1976). “Analyse fonctionnelle et mécanique des milieux continus.” Theoretical and applied mechanics, W. Roiter, ed., North–Holland, Amsterdam, The Netherlands, 119–132.
Dvorak, G. J., Bahei-El-Din, Y. A., and Wafa, A. M. (1994). “Implementation of the transformation field analysis for inelastic composite materials.” Comput. Mech., 14, 201–228.
Fish, J., and Markolefas, S. (1993). “Adaptive s-method for linear elastostatics.” Comput. Methods Appl. Mech. Eng., 104, 363–396.
Fish, and Shek. (1999).
Fish, J., and Wagiman, A. (1993). “Multiscale finite element method for a locally nonperiodic heterogeneous medium.” Comput. Mech., 12, 164–180.
Fish, J., Nayak, P., and Holmes, M. H. (1994). “Microscale reduction error indicators and estimators for a periodic heterogeneous medium.” Comput. Mech., 14, 323–338.
Fish, J., Shek, K., Pandheeradi, M., and Shephard, M. S. (1997). “Computational plasticity for composite structures based on mathematical homogenization: Theory and practice.” Comput. Methods Appl. Mech. Eng., 148, 53–73.
Geist, A., et al. (1994). Parallel virtual machine: A user’s guide and tutorial for networked parallel computing, Massachusetts Institute of Technology, Cambridge, Mass.
Ghosh, S., Lee, K., and Moorthy, S. (1996). “Two-scale analysis of heterogeneous elastic–plastic materials with asymptotic homogenization and Voronoi cell finite element model.” Comput. Methods Appl. Mech. Eng., 132, 63–116.
Jansson, S. (1992). “Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure.” Int. J. Solids Struct., 29 (17), 2181–2200.
Lee, K., Moorthy, S., and Ghosh, S. (1999). “Multiple scale computational model for damage in composite materials.” Comput. Methods Appl. Mech. Eng., 172, 175–201.
Lene, F. (1986). “Damage constitutive relations for composite materials.” Eng. Fract. Mech., 25, 713–728.
Lourenço, P. (1996). Computational strategies for masonry structures, Delft University Press.
Molins, C. (1996). Structural analysis of historical constructions, CIMNE, Barcelona.
Oliver, J., Cervera, M., Oller, S., and Lubliner, J. (1990). “Isotropic damage models and smeared crack analysis of concrete.” Proc., 2nd Int. Conf. on Analysis and Design of Concrete Structures, Vol. 2, 945–958.
Sanchez-Palencia, E. (1980). Vol. 127, “Nonhomogeneous media and vibration theory.” Lecture notes in physics, Springer, Berlin.
Sanchez-Palencia, E. (1987). “Boundary layers and edge effects in composites.” Homogenization techniques for composite media, Springer, Berlin, 121–192.
Simo, J. C. and Hughes, T. J. R. (1998). Computational inelasticity, Springer, New York.
Suquet, P. M. (1982). “Plasticité et homogénéisation.” PhD thesis, Univ. Pierre et Marie Curie, Paris 6.
Suquet, P. M. (1987). “Elements of homogenizations for inelastic solid mechanics.” Homogenization techniques for composite media, Springer, Berlin, 193–279.
Zalamea. (2002).
Zalamea, F. (2001). “Composite modeling by means of the homogenization theory.” PhD thesis, Technical Univ. of Catalonia, Spain (in Spanish).
Zalamea, F., Miquel Canet, J. and Oller, S. (1998). “Treatment of composite materials based on the homogenization method.” Proc., 4th World Congress on Computational Mechanics, E. Oñate, S. Idelsohn, and E. Dvorkin, eds., CD-ROM, CIMNE, Barcelona.
Zalamea, F., Miquel Canet, J., and Oller, S. (1999a). “Teoría de homogeneización para el análisis de materiales compuestos con estructura interna periódica.” Proc., 4th Conf. on Numerical Methods in Engineering, R. Abascal, J. Dominguez, and G. Bugeda, eds., SEMNI CD-ROM.
Zalamea, F., Miquel, J., and Oller, S. (1999b). “Un mätodo en doble escala para la simulación de materiales compuestos.” 3rd Natl. Conf. on Composite Materials, “MATCOMP 99,” A. Corz and J. M. Pintado, eds., Materiales Compuestos 99—AEMAC, 381–393.
Zalamea, F., Miquel, J., and Oller, S. (2000). “A double-scale method for simulating of periodic composite materials.” European Congress on Computational Methods in Applied Sciences and Engineering, ECOMAS 2000—COMPLAS VI, E. Oñate and R. Owen, eds., CD-ROM, CIMNE, Barcelona.
Zienkiewicz, O., and Taylor, R. (1991). The finite element method, Vols. I and II, McGraw-Hill, London.
Zijl, et al. (1997).

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 131Issue 1January 2005
Pages: 65 - 79

History

Received: Oct 29, 2002
Accepted: Jul 20, 2004
Published online: Jan 1, 2005
Published in print: Jan 2005

Permissions

Request permissions for this article.

Notes

Note. Associate Editor: Henry K. Stolarski

Authors

Affiliations

Departamento de Resistencia de Materiales y Estructuras en la Ingeniería, Univ. Politécnica de Cataluña. Jordi Girona 1-3, Módulo C1, Campus Norte UPC, 08034 Barcelona, Spain (corresponding author). E-mail: [email protected]
J. Miquel Canet [email protected]
Departamento de Resistencia de Materiales y Estructuras en la Ingeniería, Univ. Politécnica de Cataluña. Jordi Girona 1-3, Módulo C1, Campus Norte UPC, 08034 Barcelona, Spain. E-mail: [email protected]
Departamento de Resistencia de Materiales y Estructuras en la Ingeniería, Univ. Politécnica de Cataluña. Jordi Girona 1-3, Módulo C1, Campus Norte UPC, 08034 Barcelona, Spain. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share