150TH ANNIVERSARY PAPER
Oct 15, 2002

Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress

Publication: Journal of Engineering Mechanics
Volume 128, Issue 11

Abstract

Modeling of the evolution of distributed damage such as microcracking, void formation, and softening frictional slip necessitates strain-softening constitutive models. The nonlocal continuum concept has emerged as an effective means for regularizing the boundary value problems with strain softening, capturing the size effects and avoiding spurious localization that gives rise to pathological mesh sensitivity in numerical computations. A great variety of nonlocal models have appeared during the last two decades. This paper reviews the progress in the nonlocal models of integral type, and discusses their physical justifications, advantages, and numerical applications.

Get full access to this article

View all available purchase options and get full access to this article.

References

Aero, E. L., and Kuvshinskii, E. V.(1960). “Fundamental equations of the theory of elastic materials with rotationally interacting particles.” Fiz. Tverd. Tela (S.-Peterburg), 2, 1399–1409.
Armero, F. (1997). “Localized anisotropic damage of brittle materials.” Computational plasticity: Fundamentals and applications, D. R. J. Owen, E. Oñate, and E. Hinton, eds., International Center for Numerical Methods in Engineering, Barcelona, Spain, 635–640.
Armero, F., and Garikipati, K. (1995). “Recent advances in the analysis and numerical simulation of strain localization in inelastic solids.” Computational plasticity: Fundamentals and applications, D. R. J. Owen and E. Oñate, eds., International Center for Numerical Methods in Engineering, Barcelona, Spain, 547–561.
Barenblatt, G. I.(1962). “The mathematical theory of equilibrium of cracks in brittle fracture.” Adv. Appl. Mech., 7, 55–129.
Bažant, Z. P. (1971). “Micropolar medium as a model for buckling of grid frameworks. Developments in mechanics.” Proc., 12th Midwestern Mechanics Conference, Univ. of Notre Dame, 587–593.
Bažant, Z. P.(1976). “Instability, ductility, and size effect in strain-softening concrete.” J. Eng. Mech. Div., 102(2), 331–344.
Bažant, Z. P. (1982). “Crack band model for fracture of geomaterials.” Proc., 4th Int. Conf. on Numerical Methods in Geomechanics, Z. Eisenstein, ed., Univ. of Alberta, Edmonton, 3, 1137–1152.
Bažant, Z. P.(1984a). “Imbricate continuum and its variational derivation.” J. Eng. Mech., 110(12), 1693–1712.
Bažant, Z. P.(1984b). “Size effect in blunt fracture: Concrete, rock, and metal.” J. Eng. Mech., 110(4), 518–535.
Bažant, Z. P. (1985a). “Fracture in concrete and reinforced concrete.” Mechanics of geomaterials: Rocks, concretes, and soils, Z. P. Bažant, ed., Wiley, London, 259–303.
Bažant, Z. P. (1985b). “Mechanics of fracture and progressive cracking concrete structures.” Fracture mechanics of concrete: Structural application and numerical calculation, G. C. Sih and A. DiTommaso, eds., Martinus Nijhoff, Dordrecht, The Netherlands, 1, 1–94.
Bažant, Z. P.(1986). “Mechanics of distributed cracking.” Appl. Mech. Rev., 39, 675–705.
Bažant, Z. P.(1987). “Why continuum damage is nonlocal: Justification by quasiperiodic microcrack array.” Mech. Res. Commun., 14, 407–419.
Bažant, Z. P.(1991). “Why continuum damage is nonlocal: Micromechanics arguments.” J. Eng. Mech., 117(5), 1070–1087.
Bažant, Z. P.(1994). “Nonlocal damage theory based on micromechanics of crack interactions.” J. Eng. Mech., 120(3), 593–617.
Bažant, Z. P.(2001). “Concrete fracture models: Testing and practice.” Eng. Fract. Mech., 69, 165–206.
Bažant, Z. P.(2002a). “Reminiscences on four decades of struggle and progress in softening damage and size effect.” Concr. J. (Japan Concr. Inst.), 40, 16–28.
Bažant, Z. P. (2002b). Scaling of structural strength, Hermes-Penton, London.
Bažant, Z. P., and Belytschko, T. B.(1985). “Wave propagation in a strain-softening bar: Exact solution.” J. Eng. Mech., 111(3), 381–389.
Bažant, Z. P., Belytschko, T. B., and Chang, T.-P.(1984). “Continuum model for strain softening.” J. Eng. Mech., 110(12), 1666–1692.
Bažant, Z. P., Caner, F. C., Carol, I., Adley, M. D., and Akers, S.(2000). “Microplane model M4 for concrete: I. Formulation with work-conjugate deviatoric stress.” J. Eng. Mech., 126(9), 944–953.
Bažant, Z. P., and Cedolin, L.(1979). “Blunt crack band propagation in finite element analysis.” J. Eng. Mech., 105(2), 297–315.
Bažant, Z. P., and Cedolin, L. (1991). Stability of structures, Oxford University Press, New York, Chap. 10.
Bažant, Z. P., Červenka, J., and Wierer, M. (2001). “Equivalent localization element for crack band model and as alternative to elements with embedded discontinuities.” Fracture mechanics of concrete structures, R. de Borst et al., ed., Balkema, Lisse, The Netherlands, 765–772.
Bažant, Z. P., and Chang, T.-P.(1984). “Instability of nonlocal continuum and strain averaging.” J. Eng. Mech., 110(10), 1441–1450.
Bažant, Z. P., and Christensen, M.(1972a). “Analogy between micropolar continuum and grid frameworks under initial stress.” Int. J. Solids Struct., 8, 327–346.
Bažant, Z. P., and Christensen, M.(1972b). “Long-wave extensional buckling of large regular frames.” J. Struct. Div., ASCE, 98(10), 2269–2289.
Bažant, Z. P., and Jirásek, M.(1994). “Nonlocal model based on crack interactions: A localization study.” J. Eng. Mater. Technol., 116, 256–259.
Bažant, Z. P., and Li, Y.-N.(1995). “Stability of cohesive crack model.” J. Appl. Mech., 62, 959–969.
Bažant, Z. P., and Li, Y.-N.(1997). “Cohesive crack model with rate-dependent crack opening and viscoelasticity: I. Mathematical model and scaling.” Int. J. Fract. 86, 247–265.
Bažant, Z. P., and Lin, F.-B.(1988a). “Nonlocal smeared cracking model for concrete fracture.” J. Struct. Eng., 114(11), 2493–2510.
Bažant, Z. P., and Lin, F.-B.(1988b). “Nonlocal yield-limit degradation.” Int. J. Numer. Methods Eng., 26, 1805–1823.
Bažant, Z. P., and Novák, D.(2000a). “Energetic-statistical size effect in quasibrittle failure at crack initiation.” ACI Mater. J., 97, 381–392.
Bažant, Z. P., and Novák, D.(2000b). “Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect: I. Theory.” J. Eng. Mech., 126(2), 166–174.
Bažant, Z. P., and Novák, D.(2000c). “Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect: II. Application.” J. Eng. Mech., 126(2), 175–185.
Bažant, Z. P., and Oh, B.-H.(1983). “Crack band theory for fracture of concrete.” Mater. Struct., 16, 155–177.
Bažant, Z. P., and Ohtsubo, H.(1977). “Stability conditions for propagation of a system of cracks in a brittle solid.” Mech. Res. Commun., 4, 353–366.
Bažant, Z. P., and Ožbolt, J.(1990). “Nonlocal microplane model for fracture, damage, and size effect in structures.” J. Eng. Mech., 116(11), 2485–2505.
Bažant, Z. P., and Pfeiffer, P. A.(1987). “Determination of fracture energy from size effect and brittleness number.” ACI Mater. J., 84, 463–480.
Bažant, Z. P., and Pijaudier-Cabot, G.(1988). “Nonlocal continuum damage, localization instability and convergence.” J. Appl. Mech., 55, 287–293.
Bažant, Z. P., and Pijaudier-Cabot, G.(1989). “Measurement of characteristic length of nonlocal continuum.” J. Eng. Mech., 115(4), 755–767.
Bažant, Z. P., and Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle materials, CRC, Boca Raton, Fla.
Bažant, Z. P., Tabbara, M. R., Kazemi, M. T., and Pijaudier-Cabot, G.(1990). “Random particle model for fracture of aggregate or fiber composites.” J. Eng. Mech., 116(8), 1686–1705.
Bažant, Z. P., and Xi, Y.(1991). “Statistical size effect in quasibrittle structures: II. Nonlocal theory.” J. Eng. Mech., 117(11), 2623–2640.
Bažant, Z. P., Xiang, Y., Adley, M., Prat, P. C., and Akers, S. A.(1996). “Microplane model for concrete: II: Data delocalization and verification.” J. Eng. Mech., 122(3), 255–262.
Belytschko, T., Fish, J., and Engelmann, B. E.(1988). “A finite-element with embedded localization zones.” Comput. Methods Appl. Mech. Eng., 70, 59–89.
Benvenuti, E., Borino, G., and Tralli, A. (2000). “A thermodynamically consistent nonlocal formulation for elastodamaging materials: Theory and computations.” Proc., ECCOMAS 2000, Barcelona, Spain, CD-ROM.
Besdo, D.(1974). “Ein Beitrag zur nichtlinearen Theorie des Cosserat Kontinuums.” Acta Mech., 20, 105–131.
Borino, G., and Failla, B. (2000). “Thermodynamically consistent plasticity models with local and nonlocal internal variables.” Proc., European Congr. on Computational Methods in Applied Sciences and Engineering, ECCOMAS, Barcelona, Spain, CD-ROM.
Borino, G., Failla, B., and Parrinello, F. (2002). “A symmetric formulation for nonlocal damage models.” H. A. Mang, F. G. Rammerstorfer, and J. Eberhardsteiner, eds., Proc., 5th World Congress on Computational Mechanics (WCCM V), Vienna Univ. of Technology, Vienna, Austria, ISBN 3-9501554-0-6, 〈http://wccm.tuwien.ac.at〉.
Borino, G., Fuschi, P., and Polizzotto, C.(1999). “A thermodynamic approach to nonlocal plasticity and related variational approaches.” J. Appl. Mech., 66, 952–963.
Borino, G., and Polizzotto, C.(1999). “Comments on ‘Nonlocal bar revisited by Christer Nilsson’.” Int. J. Solids Struct., 36, 3085–3091.
Boudon-Cussac, D., Hild, F., and Pijaudier-Cabot, G.(1999). “Tensile damage in concrete: Analysis of experimental technique.” J. Eng. Mech., 125(8), 906–913.
Camacho, G. T., and Ortiz, M.(1996). “Computational modeling of impact damage in brittle materials.” Int. J. Solids Struct., 33, 2899–2938.
Cangemi, L., Cocu, M., and Raous, M. (1996). “Adhesion and friction model for the fiber/matrix interface of a composite.” Proc., 1996 Engineering Systems Design and Analysis Conf., 157–163.
Carmeliet, J.(1999). “Optimal estimation of gradient damage parameters from localization phenomena in quasibrittle materials.” Mech. Cohesive-Frict. Mater., 4, 1–16.
Carol, I., and Bažant, Z. P.(1997). “Damage and plasticity in microplane theory.” Int. J. Solids Struct., 34, 3807–3835.
Carol, I., and Prat, P. C. (1990). “A statically constrained microplane model for the smeared analysis of concrete cracking.” in Computer aided analysis and design of concrete structures, N. Bićanić and H. Mang, eds., Pineridge, Swansea, U.K., 919–930.
Cedolin, L., and Bažant, Z. P.(1980). “Effect of finite-element choice in blunt crack band analysis.” Comput. Methods Appl. Mech. Eng., 24, 305–316.
Červenka, J. (1994). “Discrete crack modeling in concrete structures.” PhD thesis, Univ. of Colorado, Boulder, Colo.
Červenka, J., Bažant, Z. P., and Wierer, M. (2002). “Equivalent localization element for crack band approach to mesh-size sensitivity in microplane model.” Int. J. Numer. Methods Eng., in press.
Chaboche, J. L., Girard, R., and Levasseur, P.(1997a). “On the interface debonding models.” Int. J. Damage Mech., 6, 220–257.
Chaboche, J. L., Girard, R., and Schaff, A.(1997b). “Numerical analysis of composite systems by using interphase/interface models.” Computational Mech., Berlin, 20, 3–11.
Chandrasekhar, S. (1950). Radiation transfer, Oxford University Press, London.
Comi, C.(2001). “A nonlocal model with tension and compression damage mechanisms.” Eur. J. Mech. A/Solids, 20, 1–22.
Comi, C., and Perego, U.(2001). “Numerical aspects of nonlocal damage analyses.” Rev. Europ. Elements Finis, 10, 227–242.
Cope, R. J., Rao, P. V., Clark, L. A., and Norris, P. (1980). “Modeling of reinforced concrete behavior for finite-element analysis of bridge slabs.” Numerical methods for nonlinear problems, Pineridge, Swansea, 1, 457–470.
Cordebois, J. P., and Sidoroff, F. (1979). “Anisotropie élastique induite par endommagement.” Comportement mécanique des solides anisotropes, No. 295, Colloques internationaux du CNRS, Editions du CNRS, Grenoble, France, 761–774.
Cosserat, E., and Cosserat, F. (1909). Théorie des corps déformables, Herrman, Paris.
Daux, C., Moës, N., Dolbow, J., Sukumar, N., and Belytschko, T.(2000). “Arbitrary branched and intersecting cracks with the extended finite-element method.” Int. J. Numer. Methods Eng., 48, 1741–1760.
de Borst, R. (1986). “Nonlinear analysis of frictional materials.” PhD thesis, Delft Univ. of Technology, Delft, The Netherlands.
Denarié, E., Saouma, V. E., Iocco, A., and Varelas, D.(2001). “Concrete fracture process zone characterization with fiber optics.” J. Eng. Mech., 127(5), 494–502.
di Prisco, M., and Mazars, J.(1996). “Crush–crack: A nonlocal damage model for concrete.” J. Mech. Cohesive Frict. Mater., 1, 321–347.
Dı´ez, P., Egozcue, J. J., and Huerta, A.(1998). “A posteriori error estimation for standard finite-element analysis.” Comput. Methods Appl. Mech. Eng., 163, 141–157.
Drugan, W. J., and Willis, J. R.(1996). “A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites.” J. Mech. Phys. Solids, 44, 497–524.
Duarte, C. A., and Oden, J. T.(1996). “H–p clouds—An h–p meshless method.” Numer. Methods Partial Diff. Eq., 12, 673–705.
Dugdale, D. S.(1960). “Yielding of steel sheets containing slits.” J. Mech. Phys. Solids, 8, 100–108.
Duhem, P.(1893). “Le potentiel thermodynamique et la pression hydrostatique.” Ann. Sci. Ec. Normale Super., 10, 183–230.
Dvorkin, E. N., Cuitiño, A. M., and Gioia, G.(1990). “Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions.” Comput. Methods Appl. Mech. Eng., 90, 829–844.
Edelen, D. G. B.(1969). “Protoelastic bodies with large deformation.” Arch. Ration. Mech. Anal., 34, 283–300.
Edelen, D. G. B., Green, A. E., and Laws, N.(1971). “Nonlocal continuum mechanics.” Arch. Ration. Mech. Anal., 43, 36–44.
Edelen, D. G. B., and Laws, N.(1971). “On the thermodynamics of systems with nonlocality.” Arch. Ration. Mech. Anal., 43, 24–35.
Engelen, R. A. B., Geers, M. G. D., and Baaijens, F. P. T. (2002). “Nonlocal implicit gradient-enhanced elastoplasticity for the modeling of softening behavior.” Int. J. Plast., in press.
Ericksen, J. L.(1960). “Anisotropic fluids.” Arch. Ration. Mech. Anal., 4, 231–237.
Eringen, A. C.(1964). “Simple microfluids.” Int. J. Eng. Sci., 2, 205–217.
Eringen, A. C.(1966a). “Linear theory of micropolar elasticity.” J. Math. Mech., 15, 909–924.
Eringen, A. C. (1966b). “Mechanics of micromorphic materials.” Proc., 11th Int. Congr. of Applied Mechanics, Springer, Berlin, 131–138.
Eringen, A. C.(1966c). “A unified theory of thermomechanical materials.” Int. J. Eng. Sci., 4, 179–202.
Eringen, A. C.(1972). “Linear theory of nonlocal elasticity and dispersion of plane waves.” Int. J. Eng. Sci., 10, 425–435.
Eringen, A. C.(1981). “On nonlocal plasticity.” Int. J. Eng. Sci., 19, 1461–1474.
Eringen, A. C.(1983). “Theories of nonlocal plasticity.” Int. J. Eng. Sci., 21, 741–751.
Eringen, A. C., and Ari, N.(1983). “Nonlocal stress field at a Griffith crack.” Cryst. Lattice Defects Amorphous Mater., 10, 33–38.
Eringen, A. C., and Edelen, D. G. B.(1972). “On nonlocal elasticity.” Int. J. Eng. Sci., 10, 233–248.
Eringen, A. C., and Kim, B. S.(1974). “Stress concentration at the tip of a crack.” Mech. Res. Commun., 1, 233–237.
Eringen, A. C., Speziale, C. G., and Kim, B. S.(1977). “Crack-tip problem in nonlocal elasticity.” J. Mech. Phys. Solids, 25, 339–355.
Eringen, A. C., and Suhubi, E. S.(1964). “Nonlinear theory of simple microelastic solids.” Int. J. Eng. Sci., 2, 189–203, 389–404.
Etse, G., and Willam, K. J.(1994). “Fracture-energy formulation for inelastic behavior of plain concrete.” J. Eng. Mech., 120(9), 1983–2011.
Fabrikant, V. I.(1990). “Complete solutions to some mixed boundary value problems in elasticity.” Adv. Appl. Mech., 27, 153–223.
Ferrara, L. (1998). “A contribution to the modeling of mixed-mode fracture and shear transfer in plain and reinforced concrete.” PhD thesis, Politecnico di Milano, Milano, Italy.
Fischer, R. A., and Tippett, L. H. C.(1928). “Limiting forms of the frequency distribution of the largest and smallest member of a sample.” Proc. Cambridge Philos. Soc., 24, 180–190.
Fish, J., and Yu, Q.(2001). “Multiscale damage modeling for composite materials: Theory and computational framework.” Int. J. Numer. Methods Eng., 52, 161–191.
Fleck, N. A., and Hutchinson, J. W.(1993). “A phenomenological theory for strain gradient effects in plasticity.” J. Mech. Phys. Solids, 41, 1825–1857.
Fleck, N. A., and Hutchinson, J. W.(2001). “A reformulation of strain gradient plasticity.” J. Mech. Phys. Solids, 49, 2245–2271.
Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W.(1994). “Strain gradient plasticity: Theory and experiment.” Acta Metall. Mater., 42, 475–487.
Gao, H., and Huang, Y.(2001). “Taylor-based nonlocal theory of plasticity.” Int. J. Solids Struct., 38, 2615–2637.
Gao, H., Huang, Y., Nix, W. D., and Hutchinson, J. W.(1999). “Mechanism-based strain gradient plasticity. I. Theory.” J. Mech. Phys. Solids, 47, 1239–1263.
Geers, M. G. D., de Borst, R., and Brekelmans, W. A. M.(1996a). “Computing strain fields from discrete displacement fields in 2D solids.” Int. J. Solids Struct., 33, 4293–4307.
Geers, M. G. D., Engelen, R. A. B., and Ubachs, R. J. M.(2001). “On the numerical modeling of ductile damage with an implicit gradient-enhanced formulation.” Rev. Euro. Eléments finis, 10, 173–191.
Geers, M. G. D., Peijs, T., Brekelmans, W. A. M., and de Borst, R.(1996b). “Experimental monitoring of strain localization and failure behavior of composite materials.” Compos. Sci. Technol., 56, 1283–1290.
Green, A. E.(1965). “Micromaterials and multipolar continuum mechanics.” Int. J. Eng. Sci., 3, 533–537.
Green, A. E., and Naghdi, P. M.(1965). “A general theory of an elastic–plastic continuum.” Arch. Ration. Mech. Anal., 18, 251–281.
Green, A. E., and Rivlin, R. S.(1964a). “Multipolar continuum mechanics.” Arch. Ration. Mech. Anal., 17, 113–147.
Green, A. E., and Rivlin, R. S.(1964b). “Simple force and stress multipoles.” Arch. Ration. Mech. Anal., 16, 325–353.
Grioli, G.(1960). “Elasticità asimmetrica.” Annali di matematica pura ed applicata, Ser. IV, 50, 389–417.
Günther, W.(1958). “Zur Statik und Kinematik des Cosseratschen Kontinuum.” Abh. Braunschweigischen Wissenschaftlichen Gesellschaft, 10, 195–213.
Gupta, A. K., and Akbar, H.(1984). “Cracking in reinforced concrete analysis.” J. Struct. Eng., 110(8), 1735–1746.
Hadamard, J. (1903). Leçons sur la propagation des ondes, Hermann, Paris.
Halphen, B., and Nguyen, Q. S.(1975). “Sur les matériaux standards généralisés.” J. Mec., 14, 39–63.
Hillerborg, A., Modéer, M., and Peterson, P. E.(1976). “Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements.” Cem. Concr. Res., 6, 773–782.
Hodgkin, A. L. (1964). The conduction of nervous impulse, Thomas, Springfield, Ill.
Hu, X. Z., and Wittmann, F. H.(2000). “Size effect on toughness induced by cracks close to free surface.” Eng. Fract. Mech., 65, 209–211.
Huang, Y., Gao, H., Nix, W. D., and Hutchinson, J. W.(2000). “Mechanism-based strain gradient plasticity. II. Analysis.” J. Mech. Phys. Solids, 48, 99–128.
Huerta, A., Dı´ez, P., Rodrı´guez-Ferran, A., and Pijaudier-Cabot, G. (1998). “Error estimation and finite-element analysis of softening solids.” Advances in adaptive computational methods in mechanics, P. Ladevèze and J. T. Oden, eds., Elsevier, Oxford, U.K., 333–348.
Huerta, A., and Pijaudier-Cabot, G.(1994). “Discretization influence on regularization by two localisation limiters.” J. Eng. Mech., 120(6), 1198–1218.
Irwin, G. R. (1958). “Fracture.” in Handbuch der Physik, S. Flügge, ed., Springer, Berlin, VI, 551–590.
Jirásek, M. (1998a). “Finite elements with embedded cracks.” LSC Internal Rep. No. 98/01, Swiss Federal Institute of Technology, Lausanne, Switzerland.
Jirásek, M.(1998b). “Nonlocal models for damage and fracture: Comparison of approaches.” Int. J. Solids Struct., 35, 4133–4145.
Jirásek, M. (1999). “Comments on microplane theory.” Mechanics of quasibrittle materials and structures, G. Pijaudier-Cabot, Z. Bittnar, and B. Gérard, eds., Hermès Science, Paris, 55–77.
Jirásek, M.(2000a). “Comparative study on finite elements with embedded cracks.” Comput. Methods Appl. Mech. Eng., 188, 307–330.
Jirásek, M. (2000b). “Conditions of uniqueness for finite elements with embedded cracks.” Proc., 6th Int. Conf. on Computational Plasticity, Barcelona. CD-ROM.
Jirásek, M., and Bažant, Z. P.(1994). “Localization analysis of nonlocal model based on crack interactions.” J. Eng. Mech., 120(7), 1521–1542.
Jirásek, M., and Bažant, Z. P.(1995). “Macroscopic fracture characteristics of random particle systems.” Int. J. Fract., 69, 201–228.
Jirásek, M., and Bažant, Z. P. (2001). Inelastic analysis of structures, Wiley, Chichester, U.K.
Jirásek, M., and Patzák, B. (2002). “Consistent tangent stiffness for nonlocal damage models.” Comput. Struct., in press.
Jirásek, M., and Rolshoven, S. (2002). “Comparison of integral-type nonlocal plasticity models for strain-softening materials.” Int. J. Eng. Sci., in press.
Jirásek, M., and Zimmermann, T. (1997). “Rotating crack model with transition to scalar damage: I. Local formulation, II. Nonlocal formulation and adaptivity.” LSC Internal Rep. No. 97/01, Swiss Federal Institute of Technology, Lausanne, Switzerland.
Jirásek, M., and Zimmermann, T.(1998a). “Analysis of rotating crack model.” J. Eng. Mech., 124(8), 842–851.
Jirásek, M., and Zimmermann, T.(1998b). “Rotating crack model with transition to scalar damage.” J. Eng. Mech., 124(3), 277–284.
Jirásek, M., and Zimmermann, T.(2001). “Embedded crack model: I. Basic formulation.” Int. J. Numer. Methods Eng., 50, 1269–1290.
Kachanov, M.(1985). “A simple technique of stress analysis in elastic solids with many cracks.” Int. J. Fract., 28, R11–R19.
Kachanov, M.(1987). “Elastic solids with many cracks: A simple method of analysis.” Int. J. Solids Struct., 23, 23–43.
Kang, H. D. (1997). “Triaxial constitutive model for plain and reinforced concrete behavior.” PhD thesis, Univ. of Colorado, Boulder, Colo.
Kennedy, T. C., and Nahan, M. F.(1996). “A simple nonlocal damage model for predicting failure of notched laminates.” Compos. Struct., 35, 229–236.
Kennedy, T. C., and Nahan, M. F.(1997). “A simple nonlocal damage model for predicting failure in a composite shell containing a crack.” Compos. Struct., 39, 85–91.
Klisinski, M., Runesson, K., and Sture, S.(1991). “Finite element with inner softening band.” J. Eng. Mech., 117(3), 575–587.
Koiter, W. T.(1964). “Couple stresses in the theory of elasticity.” Proc. K. Ned. Akad. Wet., Ser. B: Phys. Sci., 67, 17–44.
Kröner, E. (1966). “Continuum mechanics and range of atomic cohesion forces.” Proc., 1st Int. Conf. on Fracture, T. Yokobori, T. Kawasaki, and J. Swedlow, eds., Japanese Society for Strength and Fracture of Materials, Sendai, Japan, 27.
Kröner, E.(1967). “Elasticity theory of materials with long range cohesive forces.” Int. J. Solids Struct., 3, 731–742.
Kröner, E., and Datta, B. K.(1966). “Nichtlokale Elastostatik: Ableitung aus der Gittertheorie.” Z. Phys., 196, 203–211.
Krumhansl, J. A. (1965). “Generalized continuum field representation for lattice vibrations.” Lattice dynamics, R. F. Wallis, ed., Pergamon, London, 627–634.
Kunin, I. A.(1966a). “Model of elastic medium simple structure with spatial dispersion.” Prikl. Mat. Mekh., 30, 942 (in Russian).
Kunin, I. A.(1966b). “Theory of elasticity with spatial dispersion.” Prikl. Mat. Mekh., 30, 866 (in Russian).
Kunin, I. A. (1968). “The theory of elastic media with microstructure and the theory of dislocations.” Mechanics of generalized continua, E. Kröner, ed., Springer, Heidelberg, 321–329.
Labuz, J. F., Cattaneo, S., and Chen, L.-H.(2001). “Acoustic emission at failure in quasibrittle materials.” Constr. Build. Mater., 15, 225–233.
Ladevèze, P.(1992). “A damage computational method for composite structures.” Comput. Struct., 44, 79–87.
Ladevèze, P.(1995). “A damage computational method for composites: Basic aspects and micromechanical relations.” Computational Mech., Berlin, 17, 142–150.
Ladevèze, P., Allix, O., Deü, J.-F., and Léve⁁que, D.(2000). “A mesomodel for localization and damage computation in laminates.” Comput. Methods Appl. Mech. Eng., 183, 105–122.
Lakes, R. S.(1986). “Experimental microelasticity of two porous solids.” Int. J. Solids Struct., 22, 55–63.
Landis, E. N.(1999). “Micro–macro-fracture relationships and acoustic emissions in concrete.” Constr. Build. Mater., 13, 65–72.
Larsson, R., Runesson, K., and Sture, S.(1996). “Embedded localization band in undrained soil based on regularized strong discontinuity—Theory and FE analysis.” Int. J. Solids Struct., 33, 3081–3101.
Lemaitre, J., and Chaboche, J.-L. (1990). Mechanics of solid materials, Cambridge University Press, Cambridge, U.K.
Lippmann, H.(1969). “Eine Cosserat Theorie des plastischen Fließens,” Acta Mech., 8, 255–284.
Lotfi, H. R., and Shing, P. B.(1995). “Embedded representation of fracture in concrete with mixed finite elements.” Int. J. Numer. Methods Eng., 38, 1307–1325.
Luciano, R., and Willis, J. R.(2001). “Nonlocal constitutive response of a random laminate subjected to configuration-dependent body force.” J. Mech. Phys. Solids, 49, 431–444.
Ma, Q., and Clarke, D. R.(1995). “Size-dependent hardness in silver single crystals.” J. Mater. Res., 10, 853–863.
Mariotte, E. (1686). Traité du mouvement des eaux, M. de la Hire, ed., English translation by J. T. Desvaguliers, London (1718).
Mazars, J. (1984). “Application de la mécanique de l’endommagement au comportement nonlinéaire et à la rupture du béton de structure.” Thèse de Doctorat d’Etat, Univ. Paris VI, France.
Mazars, J., and Berthaud, Y.(1989). “Une technique expérimentale appliquée au béton pour créer un endommagement diffus et mettre en évidence son caractère unilateral.” Compt. Rendus Acad. Sci., Paris, 308, 579–584.
Mazars, J., Berthaud, Y., and Ramtani, S.(1990). “The unilateral behavior of damaged concrete.” Eng. Fract. Mech., 35, 629–635.
Melenk, J. M., and Babuška, I.(1996). “The partition of unity finite-element method: Basic theory and applications.” Comput. Methods Appl. Mech. Eng., 39, 289–314.
Mihashi, H., and Nomura, N.(1996). “Correlation between characteristics of fracture process zone and tension-softening properties of concrete.” Nucl. Eng. Des., 165, 359–376.
Mindlin, R. D.(1964). “Microstructure in linear elasticity.” Arch. Ration. Mech. Anal., 16, 51–78.
Mindlin, R. D.(1965). “Second gradient of strain and surface tension in linear elasticity.” Int. J. Solids Struct., 1, 417–438.
Mindlin, R. D., and Tiersten, H. F.(1962). “Effects of couple stresses in linear elasticity.” Arch. Ration. Mech. Anal., 11, 415–448.
Moës, N., and Belytschko, T.(2002). “Extended finite-element method for cohesive crack growth.” Eng. Fract. Mech., 69, 813–833.
Moës, N., Dolbow, J., and Belytschko, T.(1999). “A finite-element method for crack growth without remeshing.” Int. J. Numer. Methods Eng., 46, 131–150.
Morrison, J. L. M.(1939). “The yield of mild steel with particular reference to the effect of size of specimen.” Proc. Inst. Mech. Eng., 142, 193–223.
Naghdi, P. M., and Trapp, J. A.(1975). “The significance of formulating plasticity theory with reference to loading surfaces in strain space.” Int. J. Eng. Sci., 13, 785–797.
Needleman, A.(1987). “A continuum model for void nucleation by inclusion debonding.” J. Appl. Mech., 54, 525–531.
Needleman, A.(1988). “Material rate dependence and mesh sensitivity in localization problems.” Comput. Methods Appl. Mech. Eng., 67, 69–85.
Nilsson, C. (1994). “On nonlocal plasticity, strain softening, and localization.” Rep. No. TVSM-1007, Division of Structural Mechanics, Lund Institute of Technology, Lund, Sweden.
Nilsson, C.(1997). “Nonlocal strain softening bar revisited.” Int. J. Solids Struct., 34, 4399–4419.
Nilsson, C.(1999). “Author’s closure.” Int. J. Solids Struct., 36, 3093–3100.
Nix, W. D.(1989). “Mechanical properties of thin films.” Metall. Trans. A, 20A, 2217–2245.
Noll, W.(1972). “A new mathematical theory of simple materials.” Arch. Ration. Mech. Anal., 48, 1–50.
Nooru-Mohamed, M. B. (1992). “Mixed-mode fracture of concrete: An experimental approach.” PhD thesis, Delft Univ. of Technology, Delft, The Netherlands.
Ohlsson, U., and Olofsson, T.(1997). “Mixed-mode fracture and anchor bolts in concrete: Analysis with inner softening bands.” J. Eng. Mech., 123(10), 1027–1033.
Oliver, J.(1996). “Modeling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: Fundamentals. Part 2: Numerical simulation.” Int. J. Numer. Methods Eng., 39, 3575–3624.
Oliver, J., Cervera, M., and Manzoli, O. (1998). “On the use of strain-softening models for the simulation of strong discontinuities in solids.” Material instabilities in solids, R. de Borst and E. van der Giessen, eds., Wiley, Chichester, U.K., 107–123.
Olofsson, T., Klisinski, M., and Nedar, P. (1994). “Inner softening bands: A new approach to localization in finite elements.” Computational modeling of concrete structures, H. Mang, N. Bićanić, and R. de Borst, eds., Pineridge, Swansea, U.K., 373–382.
Ortiz, M.(1988). “Microcrack coalescence and macroscopic crack growth initiation in brittle solids.” Int. J. Solids Struct., 24, 231–250.
Ortiz, M., Leroy, Y., and Needleman, A.(1987). “A finite-element method for localized failure analysis.” Comput. Methods Appl. Mech. Eng., 61, 189–214.
Ortiz, M., and Pandolfi, A.(1999). “Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis.” Int. J. Numer. Methods Eng., 44, 1267–1282.
Oseen, C. W.(1933). “The theory of liquid crystals.” Trans. Faraday Soc., 29, 883–899.
Otsuka, K., and Date, H.(2000). “Fracture process zone in concrete tension specimen.” Eng. Fract. Mech., 65, 111–131.
Ožbolt, J., and Bažant, Z. P.(1996). “Numerical smeared fracture analysis: Nonlocal microcrack interaction approach.” Int. J. Numer. Methods Eng., 39, 635–661.
Pandolfi, A., Krysl, P., and Ortiz, M.(1999). “Finite-element simulation of ring expansion and fragmentation: The capturing of length and time scales through cohesive models of fracture.” Int. J. Fract., 95, 279–297.
Peerlings, R. H. J., de Borst, R., Brekelmans, W. A. M., and de Vree, J. H. P.(1996). “Gradient-enhanced damage for quasibrittle materials.” Int. J. Numer. Methods Eng., 39, 3391–3403.
Pietruszczak, S., and Mróz, Z.(1981). “Finite-element analysis of deformation of strain-softening materials.” Int. J. Numer. Methods Eng., 17, 327–334.
Pijaudier-Cabot, G., and Bažant, Z. P.(1987). “Nonlocal damage theory.” J. Eng. Mech., 113(10), 1512–1533.
Planas, J., and Elices, M.(1992). “Asymptotic analysis of a cohesive crack: 1. Theoretical background.” Int. J. Fract., 55, 153–177.
Planas, J., and Elices, M.(1993). “Asymptotic analysis of a cohesive crack: 2. Influence of the softening curve.” Int. J. Fract., 64, 221–237.
Planas, J., Elices, M., and Guinea, G. V.(1993). “Cohesive cracks versus nonlocal models: Closing the gap.” Int. J. Fract., 63, 173–187.
Planas, J., Guinea, G. V., and Elices, M. (1996). “Basic issues on nonlocal models: Uniaxial modeling.” Tech. Rep. No. 96-jp03, Departamento de Ciencia de Materiales, ETS de Ingenieros de Caminos, Univ. Politécnica de Madrid, Ciudad Univ. sn., 28040 Madrid, Spain.
Polizzotto, C.(2001). “Nonlocal elasticity and related variational principles.” Int. J. Solids Struct., 38, 7359–7380.
Polizzotto, C. (2002). “Remarks on some aspects of nonlocal theories in solid mechanics.” Proc., 6th National Congr. SIMAI, Chia Laguna, Italy, CD-ROM.
Polizzotto, C., Borino, G., and Fuschi, P.(1998). “A thermodynamic consistent formulation of nonlocal and gradient plasticity.” Mech. Res. Commun., 25, 75–82.
Poole, W. J., Ashby, M. F., and Fleck, N. A.(1996). “Microhardness of annealed and work-hardened copper polycrystals.” Scr. Mater., 34, 559–564.
Rajagopal, E. S.(1960). “The existence of interfacial couples in infinitesimal elasticity.” Ann. Phys. (Leipzig), 6, 192–201.
Rashid, Y. R.(1968). “Analysis of prestressed concrete pressure vessels.” Nucl. Eng. Des., 7, 334–344.
Rayleigh, O. M.(1918). “Notes on the theory of lubrication.” Philos. Mag., 35, 1–12.
Read, H. E., and Hegemier, G. A.(1984). “Strain softening of rock, soil, and concrete—A review article.” Mech. Mater., 3, 271–294.
Richards, C. W.(1958). “Effects of size on the yielding of mild steel beams.” Proc. Am. Soc. Test. Mater., 58, 955–970.
Rodrı´guez-Ferran, A., and Huerta, A.(2000). “Error estimation and adaptivity for nonlocal damage models.” Int. J. Solids Struct., 37, 7501–7528.
Rogula, D.(1965). “Influence of spatial acoustic dispersion on dynamical properties of dislocations. I.” Bull. Acad. Pol. Sci., Ser. Sci. Tech., 13, 337–343.
Rogula, D. (1982). “Introduction to nonlocal theory of material media.” Nonlocal theory of material media, CISM courses and lectures, D. Rogula, ed., Springer, Wien, 268, 125–222.
Rolshoven, S., and Jirásek, M. (2001). “On regularized plasticity models for strain-softening materials.” Fracture mechanics of concrete structures, R. de Borst, J. Mazars, G. Pijaudier-Cabot, and J. G. M. van Mier, eds., Balkema, Lisse, 617–624.
Rossi, P., and Wu, X.(1992). “Probabilistic model for material behavior analysis and appraisement of concrete structures.” Mag. Concrete Res., 44, 271–280.
Rots, J. G. (1988). “Computational modeling of concrete fracture.” PhD thesis, Delft Univ. of Technol., Delft, The Netherlands.
Sandler, I. S. (1984). “Strain-softening for static and dynamic problems.” Proc., Symp. on Constitutive Equations, ASME, Winter Annual Meeting, New Orleans, 217–231.
Saouridis, C. (1988). “Identification et numérisation objectives des comportements adoucissants: Une approche multiéchelle de l’endommagement du béton.” PhD thesis, Univ. Paris VI.
Saouridis, C., and Mazars, J.(1992). “Prediction of the failure and size effect in concrete via a biscale damage approach.” Eng. Comput., 9, 329–344.
Schlangen, E. (1993). “Experimental and numerical analysis of fracture processes in concrete.” PhD thesis, Delft Univ. of Technology, Delft, The Netherlands.
Schlangen, E., and van Mier, J. G. M.(1992). “Simple lattice model for numerical simulation of fracture of concrete materials and structures.” Mater. Struct., 25, 534–542.
Shi, G. H. (1991). “Manifold method of material analysis.” Trans., 9th Army Conf. on Applied Mathematics and Computing, Minneapolis, 57–76.
Simo, J. C., and Oliver, J. (1994). “A new approach to the analysis and simulation of strain softening in solids.” Fracture and damage in quasibrittle structures, Z. P. Bažant, Z. Bittnar, M. Jirásek, and J. Mazars, eds., E&FN Spon, London, 25–39.
Simo, J. C., Oliver, J., and Armero, F.(1993). “An analysis of strong discontinuities induced by strain softening in rate-independent inelastic solids.” Computational Mech., Berlin, 12, 277–296.
Sluys, L. J. (1997). “Discontinuous modeling of shear banding.” Computational plasticity: Fundamentals and applications, D. R. J. Owen, E. Oñate, and E. Hinton, eds., Int. Center for Numerical Methods in Eng., Barcelona, Spain, 735–744.
Stolken, J. S., and Evans, A. G.(1998). “A microbend test method for measuring the plasticity length scale.” Acta Mater., 46, 5109–5115.
Strömberg, L., and Ristinmaa, M.(1996). “FE formulation of a nonlocal plasticity theory.” Comput. Methods Appl. Mech. Eng., 136, 127–144.
Sukumar, N., Moës, N., Moran, B., and Belytschko, T.(2000). “Extended finite-element method for three-dimensional crack modeling.” Int. J. Numer. Methods Eng., 48, 1549–1570.
Svedberg, T. (1996). “A thermodynamically consistent theory of gradient-regularized plasticity coupled to damage.” Licentiate thesis, Chalmers Univ. of Technology.
Svedberg, T., and Runesson, K. (1998). “Thermodynamically consistent nonlocal and gradient formulations of plasticity.” Nonlocal aspects in solid mechanics, A. Brillard and J. F. Ganghoffer, eds., EUROMECH Colloquium 378, Mulhouse, France, 32–37.
Thomas, T. Y. (1961). Plastic flow and fracture of solids, Academic, New York.
Toupin, R. A.(1962). “Elastic materials with couple stresses.” Arch. Ration. Mech. Anal., 11, 385–414.
Toupin, R. A.(1964). “Theories of elasticity with couple stress.” Arch. Ration. Mech. Anal., 17, 85–112.
Truesdell, C., and Toupin, R. A. (1960). “Classical field theories of mechanics.” Handbuch der physik, Springer, Berlin, III, 1.
Tvergaard, V., and Hutchinson, J. W.(1992). “The relation between crack growth resistance and fracture process parameters in elastic–plastic solids.” J. Mech. Phys. Solids, 40, 1377–1397.
Tvergaard, V., and Hutchinson, J. W.(1993). “The influence of plasticity on mixed mode interface toughness.” J. Mech. Phys. Solids, 41, 1119–1135.
Valanis, K. C.(1990). “A theory of damage in brittle materials.” Eng. Fract. Mech., 36, 403–416.
Valanis, K. C.(1991). “A global damage theory and the hyperbolicity of the wave problem.” J. Appl. Mech., 58, 311–316.
van Gils, M. A. J. (1997). “Quasibrittle fracture of ceramics.” PhD thesis, Eindhoven Univ. of Technology, The Netherlands.
van Mier, J. G. M. (1997). Fracture processes of concrete, CRC, Boca Raton, Fla.
Vermeer, P. A., and Brinkgreve, R. B. J. (1994). “A new effective nonlocal strain measure for softening plasticity.” Localization and bifurcation theory for soils and rocks, R. Chambon, J. Desrues, and I. Vardoulakis, eds., Balkema, Rotterdam, The Netherlands, 89–100.
Voigt, W. (1887). “Theoretische Studien über die Elastizitätsverhältnisse der Krystalle.” Abh. Königlichen Gesellschaft Wiss. Göttingen.
Voigt, W.(1894). “Über Medien ohne innere Kräfte und eine durch sie gelieferte mechanische Deutung der Maxwell-Hertzschen Gleichungen.” Abh. Königlichen Gesellschaft Wiss. Göttingen, 40, 72–79.
Walsh, P. F.(1972). “Fracture of plain concrete.” Indian Concr. J., 46, 469–470 and 476.
Walsh, P. F.(1976). “Crack initiation in plain concrete.” Mag. Concrete Res., 28, 37–41.
Wei, Y., and Hutchinson, J. W.(1999). “Models of interface separation accompanied by plastic dissipation at multiple scales.” Int. J. Fract., 95, 1–17.
Weibull, W.(1939). “The phenomenon of rupture in solids.” Proc. R. Swedish Inst. Eng. Res. (Ing. Akad. Handl.), 153, 1–55.
Wells, G. N. (2001). “Discontinuous modeling of strain localization and failure.” PhD thesis, Delft Univ. of Technol., Delft, The Netherlands.
Willam, K., Bićanić, N., and Sture, S. (1986). “Composite fracture model for strain-softening and localized failure of concrete.” Computational modeling of reinforced concrete structures, E. Hinton and D. R. J. Owen, eds., Pineridge, Swansea, 122–153.
Xu, X.-P., and Needleman, A.(1994). “Numerical simulations of fast crack growth in brittle solids.” J. Mech. Phys. Solids, 42, 1397–1434.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 128Issue 11November 2002
Pages: 1119 - 1149

History

Received: Jun 21, 2002
Accepted: Jun 24, 2002
Published online: Oct 15, 2002
Published in print: Nov 2002

Permissions

Request permissions for this article.

Authors

Affiliations

Zdeněk P. Bažant
Walter P. Murphy Professor of Civil Engineering and Materials Science, Northwestern Univ., Evanston, IL 60208.
Milan Jirásek
Research Engineer, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share