TECHNICAL PAPERS
Feb 1, 2008

Indoor Air Particulate Filtration onto Activated Carbon Fiber Media

Publication: Journal of Environmental Engineering
Volume 134, Issue 2

Abstract

Due to their bad effects on human health and comfort, removing particles and volatile organic compounds from indoor air has become an issue of major interest. In this study, the potential use of five media for particle removal was investigated: a felt, a cloth, and a knitted fabric made entirely of activated carbon fibers, and two prototype nonwovens made of different proportions of activated carbon and glass fibers. Dynamic filtration measurements were performed in experimental conditions as representative as possible of indoor air, with alumina particles (modal diameter: 0.37μm ), at an inlet concentration of 2,500particlescm3 and for two different frontal velocities of air: 0.37 and 0.50ms1 . Although this medium was not designed for filtration, felt exhibited a high initial filtration efficiency (74%) for a low pressure drop (less than 210Pa ). Similarly, associating several layers of woven/knitted media in series led to high performances, as it reduced preferential paths for the airflow. Finally, prototype nonwovens appeared more efficient than activated carbon felt, but exhibited higher pressure drops.

Get full access to this article

View all available purchase options and get full access to this article.

References

AFNOR European Norm. (1993). “Filtres à air de ventilation générale pour l’élimination des particules—Exigence, essais, marquage.” NF EN 779, AFNOR/CEN.
Agranovski, I. E., Moustafa, S., and Braddock, D. (2005). “Performance of activated carbon loaded fibrous filters on simultaneous removal of particulate and gaseous pollutants.” Environ. Technol., 26, 757–766.
Bénesse, M., Le Coq, L., and Solliec, C. (2004). “Study of particles capture mechanisms in woven activated carbon filters: Image analysis.” Proc., World Filtration Congress, New Orleans.
Bénesse, M., Le Coq, L., and Solliec, C. (2006). “Collection efficiency of a woven filter made of multifiber yarn: Experimental characterization during loading and clean filter modeling based on a two-tier single fiber approach.” J. Aerosol Sci., 37, 974–989.
Brasquet, C., Rousseau, B., Estrade-Szwarckopf, H., and Le Cloirec, P. (2000). “Observation of activated carbon fibres with SEM and AFM correlation with adsorption data in aqueous solution.” Carbon, 38(3), 407–422.
Bräunling, V. (2004). “New filtration concepts for cabin air filters.” Proc., 4th Int. Conf. on Filtration in Transportation, Stuttgart, Germany, ⟨http://www.micronair.com/download/pdf-filtration.pdf⟩ (Nov. 23, 2005).
Brightman, H. S., and Moss, N. (2001). “Sick building syndrome studies and the compilation of normative and comparative values.” Indoor air quality handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, eds., McGraw-Hill, New York, 3.1–3.32.
Brown, R. C. (1993). Air filtration—An integrated approach to the theory and applications of fibrous filters, Pergamon Press, Oxford, U.K.
Carman, P. C. (1961). L’écoulement des gaz à travers les milieux poreux, Institut National des Sciences et Techniques Nucléaires—Presses universitaires de France, Paris.
Chan, C. C., Spengler, J. D., Ozkaynak, H., and Lefkopoulou, M. (1991). “Commuters exposures to VOCs in Boston, Massachusetts.” J. Air Waste Manage. Assoc., 41, 1594–1600.
Chao, C. Y., and Chan, G. Y. (2001). “Quantification of indoor VOCs in twenty mechanically ventilated buildings of Honk Kong.” Atmos. Environ., 35(34), 5895–5913.
Davies, C. N. (1973). Air filtration, Academic Press, London.
Dickenson, T. C. (1997). Filters and filtration handbook, 4th Ed., Elsevier Science Ltd., Oxford, U.K.
Farah, R., and Hutter, R. (1992). “Automotive interior odor and particulate filtration.” Proc., International Nonwovens Conference and Exposition IDEA92, Washington, D.C., 261–266.
Goodings, A. C. (1964). “Air flow through textile fabrics.” Text. Res. J., 34(8), 713–724.
Gupta, A., Novick, V. J., Biswas, P., and Monson, P. R. (1993). “Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate (HEPA) filters.” Aerosol Sci. Technol., 19, 94–107.
Hagège, R. (1993). “Fibres à usage techniques—Fibres, fils et tissus textiles.” Technique de l’Ingénieur, Traité Plastiques et Composites, A3980.
Hayashi, T., Lee, T. G., Hazelwood, M., Hedrick, E., and Biswas, P. (2000). “Characterization of activated carbon filters for pressure drop, submicrometer particulate collection and mercury capture.” J. Air Waste Manage. Assoc., 50, 922–929.
Huang, P. H., Peng, C. C., Su, C. I., and Wang, C. H. (2004). “A new filter media of nonwoven composite with activated carbon fibers.” J. Adv. Mater., 36(2), 35–38.
Japuntich, D. A., Stenhouse, J. I. T., and Liu, B. Y. H. (1997). “Effective pore diameter and monodisperse particle clogging of fibrous filters.” J. Aerosol Sci., 28(1), 147–148.
Jones, A. P. (1999). “Indoor air quality and health.” Atmos. Environ., 33(28), 4535–4564.
Le Cloirec, P. (1998). “Le transfert gaz-solide: L’adsorption.” Les composes organiques volatils dans l’environment, Le Cloirec, ed., Tec & Doc, Lavoisier, Paris, 435–489.
Le Coq, L., Solliec, C., and Le Cloirec, P. (2000). “Characterisation of structural parameters of textile filters for air and water treatments.” Proc., Advances in Filtration and Separation Technology Congress, American Filtration Society, Myrtle Beach, S.C.
Lorimier, C., Subrenat, A., Le Coq, L., and Le Cloirec, P. (2005a). “Adsorption of toluene onto activated carbon fibre cloths and felts: Applications to indoor air treatment.” Environ. Technol., 26, 1217–1230.
Lorimier, C., Subrenat, A., Le Coq, L., and Le Cloirec, P. (2005b). “Combined filtration VOCs/particles on innovative fibrous media.” Proc., Filtech 05, Frankfurt, Germany, Vol. 2, G-session.
Miguel, A. F. (2003). “Effect of air humidity on the evolution of permeability and performance of a fibrous filter during loading with hygroscopic and non-hygroscopic particles.” J. Aerosol Sci., 34(6), 783–799.
Mølhave, L. (2001). “Sensory irritation in humans caused by volatile organic compounds (VOCs) as indoor pollutants: A summary of 12 exposure experiments.” Indoor air quality handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, eds., McGraw-Hill, New York, 25.1–25.28.
Morawska, L., He, C., Hitchins, J., Gilbert, D., and Parappukkaran, S. (2001). “The relationship between indoor and outdoor airborne particles in the residential environment.” Atmos. Environ., 35(20), 3463–3473.
Mosqueron, L., and Nedellec, V. (2001). “Inventaire des données françaises sur la qualité de l’air à l’intériéur des bâtiments.” Rapport du Centre Scientifique et Technique du Bâtiment (CSTB, in Nantes, France) No. DDD/SB-2002-23, ⟨http://www.air-interieur.org/documents/fichiers/B63_1.pdf⟩ (Nov. 23, 2005).
Ormstad, H. (2000). “Suspended particulate matter in indoor air: Adjuvants and allergen carriers.” Toxicology, 152(1–3), 53–68.
Paulapuro, H. (2000). “Papermaking Part 1: Stock preparation and wet end.” Papermaking science and technology, Fapet Oy, Helsinki, Finland.
Perry, R. H., Green, D. W., and Maloney, J. O. (1984). Perry’s chemical engineers’ handbook, 6th Ed., McGraw-Hill, New York.
Pitz, M., Kreyling, W. G., Holscher, B., Cyrys, J., Wichmann, H. E., and Heinrich, J. (2001). “Change in the ambient particle size distribution in East Germany between 1993 and 1999.” Atmos. Environ., 35(25), 4357–4399.
Pope, C. A., III, Bates, D. V., and Raizenne, M. E. (1995). “Health effects of particulate air pollution: Time for reassessment.” Environ. Health Perspect., 103(5), 472–480.
Ptak, T. J. (1998). “Recent developments in testing the efficiency of automotive cabin air filters.” SAE Trans., 107(6), 1405–1414.
Rainard, L. W. (1947). “Air permeability of fabrics, II.” Text. Res. J., 17, 167–170.
Rault, J. Y. (1991). La filtration de l’air, Les Editions parisiennes, Chaud-Froid Plomberie, Paris.
Reinhardt, R. (1996). “Experience—Driven cabin air filter development.” Proc., Filtration ’96, Baltimore, Md., ⟨http://www.micronair.com/download/driven.pdf⟩ (Nov. 23, 2005).
Rembor, H. J., and Kasper, G. (1998). “Fibrous filters—Measurements of spatial distribution of deposited particle mass, pressure drop and filtration efficiency.” Proc., World Congress on Particle Technology 3, Brighton, U.K.
Ruthven, D. M. (1984). Principles of adsorption and adsorption processes, Wiley, New York.
Ruuskanen, J., et al. (2001). “Concentrations of ultrafine, fine and PM2.5 particles in three European cities.” Atmos. Environ., 35(21), 3729–3738.
Spurny, K. R. (1979). “Developments in carbon fibre filters.” Proc., 2nd World Filtration Congress, Filtration Society, ed., London, 249–256.
Spurny, K. R. (1991). “Combined aerosol and vapour separation.” Proc., 8ème journée d’études sur les aérosols, Paris, 111–116.
Spurny, K. R. (1998). “Carbon fiber filters with aerosol separation and gas adsorption properties.” Advances in aerosol filtration, K. R. Spurny, ed., CRC Press LLC-Lewis Publishers, Boca Raton, Fla., 407–414.
Squinazi, F. (2002). “La pollution de l’air à l’intérieur des bâtiments (allergènes exclus).” Rev. Fr. Allergol, 42(3), 248–255.
Thomas, D., Penicot, P., Contal, P., Leclerc, D., and Vendel, J. (2001). “Clogging of fibrous filters by solid aerosol particles. Experimental and modeling study.” Chem. Eng. Sci., 56, 3549–3561.
Tu, K. W., and Knutson, E. O. (1988). “Indoor outdoor aerosol measurements for two residential buildings in New Jersey.” Aerosol Sci. Technol., 9, 71–82.
Tuch, T., et al. (2000). “Comparison of two particle-size spectrometers for ambient aerosol measurement.” Atmos. Environ., 34(1), 139–149.
Underhill, D. (2001). “Removal of gases and vapor.” Indoor air quality handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, eds., McGraw-Hill, New York, 10.1–10.19.
Wallace, L. (1996). “Indoor particles: A review.” J. Air Waste Manage. Assoc., 46(2), 98–126.
Wallace, L. A. (2001). “Assessing human exposure to volatile organic compounds.” Indoor air quality handbook, J. D. Spengler, J. M. Samet, and J. F. McCarthy, eds., McGraw-Hill, New York, 33.1–33.35.
Wallace, L. A., Emmerich, S. J., and Howard-Reed, C. (2004). “Source strengths of ultrafine and fine particles due to cooking with gas stove.” Environ. Sci. Technol., 38(8), 2304–2311.
Walsh, D. C. (1996). “Recent advances in the understanding of fibrous filter behavior under solid particle load.” Filtr. Sep., 33(6), 501–506.
Yang, Z. Z., Lin, J. H., Tsai, I. S., and Kuo, T. Y. (2004). “Combining activated carbon fabric and polypropylene nonwoven electret.” J. Adv. Mater., 36(2), 3–9.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 134Issue 2February 2008
Pages: 126 - 137

History

Received: Aug 10, 2006
Accepted: Apr 4, 2007
Published online: Feb 1, 2008
Published in print: Feb 2008

Permissions

Request permissions for this article.

Authors

Affiliations

Céline Lorimier, Ph.D. celine̱[email protected]
Ecole des Mines de Nantes, GEPEA UMR CNRS 6144, 4 rue A. Kastler, BP 20 722, 44 307 Nantes cedex 3, France. E-mail: celine̱[email protected]
Laurence Le Coq [email protected]
Assistant Professor, Ecole des Mines de Nantes, GEPEA UMR CNRS 6144, 4 rue A. Kastler, BP 20 722, 44 307 Nantes cedex 3, France. E-mail: [email protected]
Albert Subrenat [email protected]
Assistant Professor, Ecole des Mines de Nantes, GEPEA UMR CNRS 6144, 4 rue A. Kastler, BP 20 722, 44 307 Nantes cedex 3, France. E-mail: [email protected]
Pierre Le Cloirec [email protected]
Professor, Ecole de Chimie de Rennes, UMR CNRS 6226 Sciences Chimiques de Rennes, campus de Beaulieu, Avenue du général Leclerc, 35700 Rennes, France. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share