Technical Papers
May 27, 2023

A Case Study of Magnetorheological Damper Models with Experimental Confirmation

Publication: Practice Periodical on Structural Design and Construction
Volume 28, Issue 3

Abstract

This study aims to review and evaluate the performance of nonparametric and parametric models of magnetorheological (MR) dampers, which are commonly used as structural control devices. To do so, a comprehensive experimental investigation was conducted to examine the behavior of MR dampers to ascertain the performance of the control device while mimicking the alignment when it is used as a structural control device. A total of 156 performance tests were performed, and the results were compared with an optimal numerical Bouc-Wen model. The parameters obtained from performance testing were employed to define the coefficient of determination (R2), which reflects the accuracy of the damper model in predicting the performance of the control device subjected to different external forces. The findings suggest that the parameters of the MR damper obtained from testing the device in a horizontal orientation that simulates its position in practical structural control applications can be reliably predicted by the modified Bouc-Wen model. This study provides useful information on the efficiency and accuracy of MR damper models that can be utilized in the realm of structural vibration control.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. The numerical model of the MR damper in SIMULINK is available and the code used in optimization of the control parameters is also available.

Acknowledgments

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

References

Ahmadian, M., and J. A. Norris. 2008. “Experimental analysis of magnetorheological dampers when subjected to impact and shock loading.” Commun. Nonlinear Sci. Numer. Simul. 13 (9): 1978–1985. https://doi.org/10.1016/J.CNSNS.2007.03.028.
Angulo, C., and L. Godo. 2007. “Neural network modeling of a magnetorheological damper.” Artif. Intell. Res. Develop. 163 (Dec): 351.
Arsava, K. S., and Y. Kim. 2015. “Modeling of magnetorheological dampers under various impact loads.” Shock Vib. 2015 (Mar): 905186. https://doi.org/10.1155/2015/905186.
Berasategui, J., M. J. Elejabarrieta, and M. M. Bou-Ali. 2014. “Characterization analysis of a MR damper.” Smart Mater. Struct. 23 (4): 045025. https://doi.org/10.1088/0964-1726/23/4/045025.
Bouc, R. 1967. “Forced vibration of mechanical systems with hysteresis.” In Proc., 4th Conf. on Nonlinear Oscillations. Berlin: Springer.
Case, D., B. Taheri, and E. Richer. 2014. “Dynamical modeling and experimental study of a small-scale magnetorheological damper.” IEEE/ASME Trans. Mechatron. 19 (3): 1015–1024. https://doi.org/10.1109/TMECH.2013.2265701.
Chae, Y., J. M. Ricles, and R. Sause. 2013. “Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part I: Passive mode.” Earthquake Eng. Struct. Dyn. 42 (5): 669–685. https://doi.org/10.1002/eqe.2237.
Chang, C. C., and P. Roschke. 1998. “Neural network modeling of a magnetorheological damper.” J. Intell. Mater. Syst. Struct. 9 (9): 755–764. https://doi.org/10.1177/1045389X9800900908.
Chang, C.-C., and L. Zhou. 2002. “Neural network emulation of inverse dynamics for a magnetorheological damper.” J. Struct. Eng. 128 (2): 231–239. https://doi.org/10.1061/(asce)0733-9445(2002)128:2(231.
Demetriou, D., N. Nikitas, and K. D. Tsavdaridis. 2016. “Performance of fixed-parameter control algorithms on high-rise structures equipped with semi-active tuned mass dampers.” Struct. Des. Tall Special Build. 25 (7): 340–354. https://doi.org/10.1002/tal.1261.
Dominguez, A., R. Sedaghati, and I. Stiharu. 2006. “A new dynamic hysteresis model for magnetorheological dampers.” Smart Mater. Struct. 15 (5): 1179. https://doi.org/10.1088/0964-1726/15/5/004.
Duan, Y. F., Y. Q. Ni, and J. M. Ko. 2005. “State-derivative feedback control of cable vibration using semiactive magnetorheological dampers.” Comput.-Aided Civ. Infrastruct. Eng. 20 (6): 431–449. https://doi.org/10.1111/j.1467-8667.2005.00396.x.
Ekkachai, K., K. Tungpimolrut, and I. Nilkhamhang. 2013. “Force control of a magnetorheological damper using an elementary hysteresis model-based feedforward neural network.” Smart Mater. Struct. 22 (11): 115030. https://doi.org/10.1088/0964-1726/22/11/115030.
Elmadany, M. M., and A. O. Qarmoush. 2010. Dynamic analysis of a slow-active suspension system based on a full car model, 39–53. London: SAGE.
Gamota, D. R., and F. E. Filisko. 1991. “Dynamic mechanical studies of electrorheological materials: Moderate frequencies.” Smart Mater. Struct. 22 (11): 115030. https://doi.org/10.1122/1.550221.
Imaduddin, F., S. A. Mazlan, Ubaidillah, M. H. Idris, and I. Bahiuddin. 2017. “Characterization and modeling of a new magnetorheological damper with meandering type valve using neuro-fuzzy.” J. King Saud Univ. Sci. 29 (4): 468–477. https://doi.org/10.1016/J.JKSUS.2017.08.012.
Jiang, Z., and R. E. Christenson. 2012. “A fully dynamic magneto-rheological fluid damper model.” Smart Mater. Struct. 21 (6): 065002. https://doi.org/10.1088/0964-1726/21/6/065002.
Kamath, G. M., and N. M. Wereley. 1997. “Nonlinear viscoelastic-plastic mechanisms-based model of an electrorheological damper.” J. Guidance Control Dyn. 20 (6): 1125–1132. https://doi.org/10.2514/2.4167.
Kim, H. S., and P. N. Roschke. 2006a. “Design of fuzzy logic controller for smart base isolation system using genetic algorithm.” Eng Struct. 28 (1): 84–96. https://doi.org/10.1016/j.engstruct.2005.07.006.
Kim, H. S., and P. N. Roschke. 2006b. “Fuzzy control of base-isolation system using multi-objective genetic algorithm.” Comput.-Aided Civ. Infrastruct. Eng. 21 (6): 436–449. https://doi.org/10.1111/j.1467-8667.2006.00448.x.
Kwok, N. M., Q. P. Ha, M. T. Nguyen, J. Li, and B. Samali. 2007. “Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA.” ISA Trans. 46 (2): 167–179. https://doi.org/10.1016/j.isatra.2006.08.005.
Kwok, N. M., Q. P. Ha, T. H. Nguyen, J. Li, and B. Samali. 2006. “A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization.” Sens. Actuators, A 132 (2): 441–451. https://doi.org/10.1016/j.sna.2006.03.015.
Lai, C. Y., and W. H. Liao. 2002. “Vibration control of a suspension system via a magnetorheological fluid damper.” J. Vib. Control 8 (4): 527–547. https://doi.org/10.1177/107754602023712.
Lee, D. Y., and N. M. Wereley. 1999. “Quasi-steady Herschel-Bulkley analysis of electro- and magneto-rheological flow mode dampers.” J. Intell. Mater. Syst. Struct. 10 (10): 761–769. https://doi.org/10.1106/E3LT-LYN6-KMT2-VJJD.
Li, C. 2000. “Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration.” Earthquake Eng. Struct. Dyn. 29 (9): 1405–1421. https://doi.org/10.1002/1096-9845(200009)29:9%3C1405::AID-EQE976%3E3.0.CO;2-4.
Li, W. H., G. Z. Yao, G. Chen, S. H. Yeo, and F. F. Yap. 2000. “Testing and steady state modeling of a linear MR damper under sinusoidal loading.” Smart Mater. Struct. 9 (1): 95. https://doi.org/10.1088/0964-1726/9/1/310.
Liu, J., W. Qu, N. Nikitas, and Z. Ji. 2018. “Research on extending the fatigue life of railway steel bridges by using intelligent control.” Constr. Build. Mater. 168 (Aug): 532–546. https://doi.org/10.1016/j.conbuildmat.2018.02.125.
Lozoya-Santos, J., R. Morales-Menendez, and R. Ramirez-Mendoza. 2009. “MR-damper based control system.” In Proc., Conf. IEEE Int. Conf. System Manual Cybern. New York: IEEE.
Metered, H., P. Bonello, and S. Oyadiji. 2009. Nonparametric identification modeling of magnetorheological damper using Chebyshev polynomials fits. Detroit, MI: SAE World Congress and Exhibition.
Metered, H., P. Bonello, and S. O. Oyadiji. 2010. “The experimental identification of magnetorheological dampers and evaluation of their controllers.” Mech. Syst. Signal Process. 24 (4): 976–994. https://doi.org/10.1016/j.ymssp.2009.09.005.
Nguyen, Q. H., S. B. Choi, Y. S. Lee, and M. S. Han. 2009. “An analytical method for optimal design of MR valve structures.” Smart Mater. Struct. 18 (9): 095032. https://doi.org/10.1088/0964-1726/18/9/095032.
Oberguggenberger, M., and W. Fellin. 2008. “Reliability bounds through random sets: Non-parametric methods and geotechnical applications.” Comput. Struct. 86 (10): 1093–1101. https://doi.org/10.1016/j.compstruc.2007.05.040.
Oh, J. S., J. W. Sohn, and S. B. Choi. 2022. “Applications of magnetorheological fluid actuator to multi-DOF systems: State-of-the-art from 2015 to 2021.” Actuators 11 (2): 44. https://doi.org/10.3390/ACT11020044.
Pang, H., F. Liu, and Z. Xu. 2018. “Variable universe fuzzy control for vehicle semi-active suspension system with MR damper combining fuzzy neural network and particle swarm optimization.” Neurocomputing 306 (Sep): 130–140. https://doi.org/10.1016/j.neucom.2018.04.055.
Rashid, M. M., N. A. Rahim, M. A. Hussain, and M. A. Rahman. 2011. “Analysis and experimental study of magnetorheological-based damper for semiactive suspension system using fuzzy hybrids.” IEEE Trans. Ind. Appl. 47 (2): 1051–1059. https://doi.org/10.1109/TIA.2010.2103292.
Rawoof, A., and A. Samad. 2018. “Arus MR Tech. A case of product innovation.” Accessed November 7, 2019. https://www.politesi.polimi.it/bitstream/10589/141327/1/2018_07_Abdul%20rawoof.pdf.
Ribeiro Almeida, L. P., H. M. Souza Santana, and F. C. da Rocha. 2020. “Analysis of high-order approximations by spectral interpolation applied to one-and two-dimensional finite element method.” J. Appl. Comput. Mech. 6 (1): 145–159. https://doi.org/10.22055/jacm.2019.28771.1511.
Rodríguez, A., N. Iwata, F. Ikhouane, and J. Rodellar. 2009. “Model identification of a large-scale magnetorheological fluid damper.” Smart Mater. Struct. 18 (1): 015010. https://doi.org/10.1088/0964-1726/18/1/015010.
Royston, P., and D. G. Altman. 1994. “Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling.” Appl Stat. 43 (3): 429–453. https://doi.org/10.2307/2986270.
Sapiński, B., and J. Filuś. 2003. “Analysis of parametric models of MR linear damper.” J. Theor. Appl. Mech. 41 (2): 3–240.
Schurter, K. C., and P. N. Roschke. 2000. “Fuzzy modeling of a magnetorheological damper using ANFIS.” IEEE Int. Conf. Fuzzy Syst. 1 (May): 122–127. https://doi.org/10.1109/FUZZY.2000.838645.
Song, X., M. Ahmadian, and S. C. Southward. 2005. “Modeling magnetorheological dampers with application of nonparametric approach.” J. Intell. Mater. Syst. Struct. 16 (5): 421–432. https://doi.org/10.1177/1045389X05051071.
Spencer, B. F., Jr., S. J. Dyke, A. Member, M. K. Sain, and J. D. Carlson. 1997. “Phenomenological model for magnetorheological dampers.” J. Eng. Mech. 123 (3): 230–238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230).
Stanway, R., N. D. Sims, and A. R. Johnson. 1999. Magneto-rheological fluids in squeeze-flow: Validation of quasi-steady mathematical models. New York: ASME.
Tan, P., S. J. Dyke, A. Richardson, and M. Abdullah. 2005. “Integrated device placement and control design in civil structures using genetic algorithms.” J. Struct. Eng. 131 (10): 1489–1496. https://doi.org/10.1061/(asce)0733-9445(2005)131:10(1489.
Tsang, H. H., R. K. L. Su, and A. M. Chandler. 2006. “Simplified inverse dynamics models for MR fluid dampers.” Eng. Struct. 28 (3): 327–341. https://doi.org/10.1016/j.engstruct.2005.06.013.
Tudón-Martínez, J. C., J. J. Lozoya-Santos, R. Morales-Menendez, and R. A. Ramirez-Mendoza. 2012. “An experimental artificial-neural-network-based modeling of magneto-rheological fluid dampers.” Smart Mater. Struct. 21 (8): 085007. https://doi.org/10.1088/0964-1726/21/8/085007.
Vickers, A. J. 2005. “Parametric versus non-parametric statistics in the analysis of randomized trials with non-normally distributed data.” BMC Med. Res. Methodol. 5 (1): 1–12. https://doi.org/10.1186/1471-2288-5-35.
Wang, E. R., X. Q. Ma, S. Rakhela, and C. Y. Su. 2003. “Modelling the hysteretic characteristics of a magnetorheological fluid damper.” Proc. Inst. Mech. Eng., Part D: J. Automob. Eng. 217 (7): 537–550. https://doi.org/10.1243/095440703322114924.
Wang, M., Z. Chen, and N. M. Wereley. 2019. “Magnetorheological damper design to improve vibration mitigation under a volume constraint.” Smart Mater. Struct. 28 (11): 114003. https://doi.org/10.1088/1361-665X/AB4704.
Wani, Z. R. 2023. “Model-based adaptive control system for magneto-rheological damper-controlled structures.” In Seismic evaluation, damage, and mitigation in structures, 381–398. Sawston, UK: Woodhead Publishing.
Wani, Z. R., and M. Tantray. 2021. “Study on integrated response-based adaptive strategies for control and placement optimization of multiple magneto-rheological dampers-controlled structure under seismic excitations.” J. Vib. Control 28 (13–14): 1712–1726. https://doi.org/10.1177/10775463211000483.
Wani, Z. R., M. Tantray, and E. N. Farsangi. 2021a. “Shaking table tests and numerical investigations of a novel response-based adaptive control strategy for multi-story structures with magnetorheological dampers.” J. Build. Eng. 2021 (1): 102685. https://doi.org/10.1016/j.jobe.2021.102685.
Wani, Z. R., M. Tantray, and E. Noroozinejad Farsangi. 2021b. “Investigation of proposed integrated control strategies based on performance and positioning of MR dampers on shaking table.” Smart Mater. Struct. 30 (11): 115009. https://doi.org/10.1088/1361-665X/AC26E6.
Wani, Z. R., M. Tantray, and E. Noroozinejad Farsangi. 2022a. “In-Plane measurements using a novel streamed digital image correlation for shake table test of steel structures controlled with MR dampers.” Eng. Struct. 256 (Aug): 113998. https://doi.org/10.1016/j.engstruct.2022.113998.
Wani, Z. R., M. Tantray, E. Noroozinejad Farsangi, N. Nikitas, M. Noori, B. Samali, and T. Y. Yang. 2022b. “A critical review on control strategies for structural vibration control.” Annu. Rev. Control 54 (Sep): 103–124. https://doi.org/10.1016/j.arcontrol.2022.09.002.
Wani, Z. R., M. Tantray, and J. I. Sheikh. 2021c. “Experimental and numerical studies on multiple response optimization-based control using iterative techniques for magnetorheological damper-controlled structure.” Struct. Des. Tall Special Build. 30 (13): e1884. https://doi.org/10.1002/tal.1884.
Wani, Z. R., and M. A. Tantray. 2020. “Parametric study of damping characteristics of magneto-rheological damper: Mathematical and experimental approach.” Pollack Period. Pollack 15 (3): 37–48. https://doi.org/10.1556/606.2020.15.3.4.
Wani, Z. R., M. A. Tantray, J. Iqbal, E. N. Farsangi, Z. R. Wani, M. A. Tantray, J. Iqbal, and E. N. Farsangi. 2021d. “Configuration assessment of MR dampers for structural control using performance-based passive control strategies.” Struct. Monit. Maint. 8 (4): 329. https://doi.org/10.12989/SMM.2021.8.4.329.
Wen, Y. K. 1976. “Method for random vibration of hysteretic systems.” ASCE J. Eng. Mech. Div. 102 (2): 249–263. https://doi.org/10.1061/JMCEA3.0002106.
Wereley, N. M., and L. Pang. 1998. “Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models.” Smart Mater. Struct. 7 (5): 32. https://doi.org/10.1088/0964-1726/7/5/015.
Wereley, N. M., L. Pang, and G. M. Kamath. 1998. “Idealized hysteresis modeling of electrorheological and magnetorheological dampers.” J. Intell. Mater. Syst. Struct. 9 (8): 642–649. https://doi.org/10.1177/1045389X9800900810.
Xu, H., C. D. Cantwell, C. Monteserin, C. Eskilsson, A. P. Engsig-Karup, and S. J. Sherwin. 2018. “Spectral/hp element methods: Recent developments, applications, and perspectives.” J. Hydrodyn. 30 (Feb): 1–22. https://doi.org/10.1007/s42241-018-0001-1.
Xu, W., C. Chen, T. Guo, and M. Chen. 2019. “Evaluation of frequency evaluation index based compensation for benchmark study in real-time hybrid simulation.” Mech. Syst. Signal Process. 130 (Apr): 649–663. https://doi.org/10.1016/j.ymssp.2019.05.039.
Yang, G., B. F. Spencer, J. D. Carlson, and M. K. Sain. 2002a. “Large-scale MR fluid dampers: Modeling and dynamic performance considerations.” Eng. Struct. 24 (3): 309–323. https://doi.org/10.1016/S0141-0296(01)00097-9.
Yang, G., B. F. Spencer, H. J. Jung, and J. D. Carlson. 2002b. “Phenomenological model of large-scale MR damper systems.” Adv. Build. Technol. 1 (Sep): 545–552. https://doi.org/10.1016/B978-008044100-9/50070-X.
Yang, G., B. F. Spencer, H.-J. Jung, and J. D. Carlson. 2004. “Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications.” J. Eng. Mech. 130 (9): 1107–1114. https://doi.org/10.1061/(asce)0733-9399(2004)130:9(1107.
Yang, M. G., C. Y. Li, and Z. Q. Chen. 2013. “A new simple non-linear hysteretic model for MR damper and verification of seismic response reduction experiment.” Eng. Struct. 52 (Jul): 434–445. https://doi.org/10.1016/j.engstruct.2013.03.006.
Ying, Z. G., W. Q. Zhu, and T. T. Soong. 2003. “A stochastic optimal semi-active control strategy for ER/MR dampers.” J. Sound Vib. 259 (1): 45–62. https://doi.org/10.1006/jsvi.2002.5136.
Yun, H. B., and S. F. Masri. 2009. “Stochastic change detection in uncertain nonlinear systems using reduced-order models: Classification.” Smart Mater. Struct. 18 (1): 015004. https://doi.org/10.1088/0964-1726/18/1/015004.
Zeinali, M., S. A. Mazlan, A. Y. Abd Fatah, and H. Zamzuri. 2013. “A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system.” Smart Mater. Struct. 22 (12): 125013. https://doi.org/10.1088/0964-1726/22/12/125013.
Zubair, R., T. Manzoor, and N. F. Ehsan. 2022. “Acceleration response-based adaptive strategy for vibration control and location optimization of magnetorheological dampers in multistoried structures.” Pract. Period. Struct. Des. Constr. 27 (1): 04021065. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000648.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 28Issue 3August 2023

History

Received: Nov 14, 2022
Accepted: Mar 10, 2023
Published online: May 27, 2023
Published in print: Aug 1, 2023
Discussion open until: Oct 27, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Manzoor Tantray [email protected]
Professor, Dept. of Civil Engineering, National Institute of Technology Srinagar, Jammu and Kashmir, Srinagar 190006, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share