Abstract

The use of social media in crisis informatics has become increasingly popular across a range of disciplines. Leveraging natural language processing (NLP) techniques enables the analysis of textual data in novel ways and facilitates the use of social media data in disaster management. Analyzing text from social media with NLP can enhance situational awareness, accelerate information dissemination, and monitor affected communities, which is crucial for government agencies and emergency decision makers. However, a comprehensive literature review of NLP and social media data in disaster management is lacking, which presents an obstacle to rapid development in this field. To address this gap, this project surveys 324 related articles published between 2011 and 2022 and investigates the current trends and state-of-the-art NLP applications for using social media data in managing natural disasters. The bibliometric analysis reveals that existing literature focused more on earthquakes, floods, and hurricanes, concentrating on during-event periods, with Twitter (now referred to as X) as the most cited information source. Moreover, our systematic analysis identifies common NLP methodologies and identifies five major applications in current research. Finally, this study provides important insights and potential directions for future research in social media, NLP, and disaster management.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This material is based upon work supported, in part, by the National Science Foundation under Grant No.1928434 and University of Maryland, College Park, research funding (start-up).

References

Aggarwal, C. C., and C. Zhai. 2012. “A survey of text classification algorithms.” In Mining text data, 163–222. Boston: Springer.
Aguilar, G., S. Maharjan, A. P. López-Monroy, and T. Solorio. 2019. “A multi-task approach for named entity recognition in social media data.” Preprint, submitted June 10, 2019. http://arxiv.org/abs/1906.04135.
Ahmad, K., K. Pogorelov, M. Riegler, O. Ostroukhova, P. Halvorsen, N. Conci, and R. Dahyot. 2019. “Automatic detection of passable roads after floods in remote sensed and social media data.” Signal Process. Image Commun. 74 (May): 110–118. https://doi.org/10.1016/j.image.2019.02.002.
Aji, A. F., G. I. Winata, F. Koto, S. Cahyawijaya, A. Romadhony, R. Mahendra, K. Kurniawan, D. Moeljadi, R. E. Prasojo, and T. Baldwin. 2022. “One country, 700+ languages: NLP challenges for underrepresented languages and dialects in Indonesia.” Preprint, submitted March 24, 2022. http://arxiv.org/abs/2203.13357.
Alam, F., S. Joty, and M. Imran. 2018. “Graph based semi-supervised learning with convolution neural networks to classify crisis related tweets.” In Proc., Int. AAAI Conf. on Web and Social Media. Washington, DC: Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/icwsm.v12i1.15047.
Ao, J., P. Zhang, and Y. Cao. 2014. “Estimating the locations of emergency events from Twitter streams.” Procedia Comput. Sci. 31 (Jan): 731–739. https://doi.org/10.1016/j.procs.2014.05.321.
Assery, N., X. Yuan, X. Qu, S. Almalki, and K. Roy. 2020. “Identifying panic triggers from disaster-related tweets.” In Proc., 2020 IEEE Int. Conf. on Parallel and Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), 827–836. New York: IEEE. https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00129.
Asudani, D. S., N. K. Nagwani, and P. Singh. 2023. “Impact of word embedding models on text analytics in deep learning environment: A review.” Artif. Intell. Rev. 56 (9): 10345–10425. https://doi.org/10.1007/s10462-023-10419-1.
Atkinson, G. M., and D. J. Wald. 2007. “‘Did you feel it?’ Intensity data: A surprisingly good measure of earthquake ground motion.” Seismol. Res. Lett. 78 (3): 362–368. https://doi.org/10.1785/gssrl.78.3.362.
Auxilia, R., and M. Gandhi. 2016. “Earthquake reporting system development by tweet analysis with approach earthquake alarm systems.” Eur. J. Appl. Sci. 8 (3): 176–180. https://doi.org/10.5829/idosi.ejas.2016.8.3.23003.
Babvey, P., G. Gongora-Svartzman, C. Lipizzi, and J. E. Ramirez-Marquez. 2021. “Content-based user classifier to uncover information exchange in disaster-motivated networks.” PLoS One 16 (11): e0259342. https://doi.org/10.1371/journal.pone.0259342.
Baek, S., H. Jeong, and K. Kobayashi. 2013. “Disaster anxiety measurement and corpus-based content analysis of crisis communication.” In Proc., 2013 IEEE Int. Conf. on Systems, Man, and Cybernetics, 1789–1794. New York: IEEE. https://doi.org/10.1109/SMC.2013.309.
Bai, H., H. Yu, G. Yu, and X. Huang. 2022. “A novel emergency situation awareness machine learning approach to assess flood disaster risk based on Chinese Weibo.” Neural Comput. Appl. 34 (11): 8431–8446. https://doi.org/10.1007/s00521-020-05487-1.
Barberá, P., and G. Rivero. 2015. “Understanding the political representativeness of Twitter users.” Soc. Sci. Comput. Rev. 33 (6): 712–729. https://doi.org/10.1177/0894439314558836.
Basnyat, B., A. Anam, N. Singh, A. Gangopadhyay, and N. Roy. 2017. “Analyzing social media texts and images to assess the impact of flash floods in cities.” In Proc., 2017 IEEE International Conference on Smart Computing (SMARTCOMP), 1–6. New York: IEEE. https://doi.org/10.1109/SMARTCOMP.2017.7946987.
Beigi, G., X. Hu, R. Maciejewski, and H. Liu. 2016. “An overview of sentiment analysis in social media and its applications in disaster relief.” In Vol. 639 of Sentiment analysis and ontology engineering, edited by W. Pedrycz and S.-M. Chen, 313–340. Cham, Switzerland: Springer.
Bhangale, U., S. Durbha, A. Potnis, and R. Shinde. 2019. “Rapid earthquake damage detection using deep learning from VHR remote sensing images.” In Proc., IGARSS 2019-2019 IEEE Int. Geoscience and Remote Sensing Symp., 2654–2657. New York: IEEE. https://doi.org/10.1109/IGARSS.2019.8898147.
Blei, D. M., A. Y. Ng, and M. I. Jordan. 2003. “Latent Dirichlet allocation.” J. Mach. Learn. Res. 3 (Jan): 993–1022.
Boiy, E., and M.-F. Moens. 2009. “A machine learning approach to sentiment analysis in multilingual Web texts.” Inf. Retr. 12 (5): 526–558. https://doi.org/10.1007/s10791-008-9070-z.
Bradley, B. 2009. “User manual for SLAT: Seismic loss assessment tool version 1.14.” Accessed August 1, 2023. https://ir.canterbury.ac.nz/server/api/core/bitstreams/a111c08a-d07e-4569-bb2b-a4bd10b7f519/content.
Brengarth, L. B., and E. Mujkic. 2016. “WEB 2.0: How social media applications leverage nonprofit responses during a wildfire crisis.” Comput. Human Behav. 54 (Jan): 589–596. https://doi.org/10.1016/j.chb.2015.07.010.
Caragea, C., A. Silvescu, and A. H. Tapia. 2016. “Identifying informative messages in disaster events using convolutional neural networks.” Proc., ISCRAM 2016 Conf. Rio de Janeiro, Brazil: ISCRAM.
Chan, J. Y.-L., K. T. Bea, S. M. H. Leow, S. W. Phoong, and W. K. Cheng. 2023. “State of the art: A review of sentiment analysis based on sequential transfer learning.” Artif. Intell. Rev. 56 (1): 749–780. https://doi.org/10.1007/s10462-022-10183-8.
Chang, Y., S. Wilkinson, D. Brunsdon, E. Seville, and R. Potangaroa. 2011. “An integrated approach: Managing resources for post-disaster reconstruction.” Disasters 35 (4): 739–765. https://doi.org/10.1111/j.1467-7717.2011.01240.x.
Chen, Z., and S. Lim. 2021. “Social media data-based typhoon disaster assessment.” Int. J. Disaster Risk Reduct. 64 (Oct): 102482. https://doi.org/10.1016/j.ijdrr.2021.102482.
Cheng, C., T. Zhang, K. Su, P. Gao, and S. Shen. 2019. “Assessing the intensity of the population affected by a complex natural disaster using social media data.” ISPRS Int. J. Geo-Inf. 8 (8): 358. https://doi.org/10.3390/ijgi8080358.
Churchill, R., and L. Singh. 2022. “The evolution of topic modeling.” ACM Comput. Surv. 54 (10): 1–35. https://doi.org/10.1145/3507900.
Costa-Jussà, M. R., J. Cross, O. Çelebi, M. Elbayad, K. Heafield, K. Heffernan, E. Kalbassi, J. Lam, D. Licht, and J. Maillard. 2022. “No language left behind: Scaling human-centered machine translation.” Preprint, submitted July 11, 2022. http://arxiv.org/abs/2207.04672.
David, J., V. Quitoriano, C. Bruce, M. Hopper, and J. W. Dewey. 2012. “USGS ‘Did You Feel It?’ Internet-based macroseismic intensity maps.” Ann. Geophys. 54 (6). https://doi.org/10.4401/ag-5354.
Deng, Q., G. Cai, H. Zhang, Y. Liu, L. Huang, and F. Sun. 2018. “Enhancing situation awareness of public safety events by visualizing topic evolution using social media.” In Proc., 19th Annual Int. Conf. on Digital Government Research: Governance in the Data Age, 1–10. New York: Association for Computing Machinery. https://doi.org/10.1145/3209281.3209378.
Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2018. “Bert: Pre-training of deep bidirectional transformers for language understanding.” Preprint, submitted October 11, 2018. https://arxiv.org/abs/1810.04805.
Dixon, S. 2022. “Twitter: Number of worldwide users 2019-2024.” Accessed August 1, 2023. https://www.statista.com/statistics/303681/twitter-users-worldwide/.
Dong, H., M. Halem, and S. Zhou. 2013. “Social media data analytics applied to hurricane sandy.” In Proc., 2013 Int. Conf. on Social Computing, 963–966. New York: IEEE. https://doi.org/10.1109/SocialCom.2013.152.
Dunkel, A., G. Andrienko, N. Andrienko, D. Burghardt, E. Hauthal, and R. Purves. 2019. “A conceptual framework for studying collective reactions to events in location-based social media.” Int. J. Geogr. Inf. Sci. 33 (4): 780–804. https://doi.org/10.1080/13658816.2018.1546390.
Dwarakanath, L., A. Kamsin, R. A. Rasheed, A. Anandhan, and L. Shuib. 2021. “Automated machine learning approaches for emergency response and coordination via social media in the aftermath of a disaster: A review.” IEEE Access 9 (Apr): 68917–68931. https://doi.org/10.1109/ACCESS.2021.3074819.
Eligüzel, N., C. Çetinkaya, and T. Dereli. 2020. “Comparison of different machine learning techniques on location extraction by utilizing geo-tagged tweets: A case study.” Adv. Eng. Inf. 46 (Oct): 101151. https://doi.org/10.1016/j.aei.2020.101151.
Erdelj, M., M. Król, and E. Natalizio. 2017. “Wireless sensor networks and multi-UAV systems for natural disaster management.” Comput. Netw. 124 (Sep): 72–86. https://doi.org/10.1016/j.comnet.2017.05.021.
Fan, C., M. Esparza, J. Dargin, F. Wu, B. Oztekin, and A. Mostafavi. 2020a. “Spatial biases in crowdsourced data: Social media content attention concentrates on populous areas in disasters.” Comput. Environ. Urban Syst. 83 (Sep): 101514. https://doi.org/10.1016/j.compenvurbsys.2020.101514.
Fan, C., and A. Mostafavi. 2019. “A graph-based method for social sensing of infrastructure disruptions in disasters.” Comput.-Aided Civ. Infrastruct. Eng. 34 (12): 1055–1070. https://doi.org/10.1111/mice.12457.
Fan, C., F. Wu, and A. Mostafavi. 2020b. “A hybrid machine learning pipeline for automated mapping of events and locations from social media in disasters.” IEEE Access 8 (Jan): 10478–10490. https://doi.org/10.1109/ACCESS.2020.2965550.
Fang, J., J. Hu, X. Shi, and L. Zhao. 2019. “Assessing disaster impacts and response using social media data in China: A case study of 2016 Wuhan rainstorm.” Int. J. Disaster Risk Reduct. 34 (Mar): 275–282. https://doi.org/10.1016/j.ijdrr.2018.11.027.
FEMA. 2004. “Using HAZUS-MH for risk assessment.” Accessed August 1, 2023. https://www.fema.gov/pdf/plan/prevent/hazus/fema433_cvr-intro.pdf.
FEMA. 2022. “Emergency management in the United States.” Accessed August 1, 2023. https://training.fema.gov/emiweb/downloads/is111_unit%204.pdf.
FEMA. 2023. “Natural Hazards | National Risk Index.” Accessed August 1, 2023. https://hazards.fema.gov/nri/natural-hazards.
Forati, A. M., and R. Ghose. 2022. “Examining community vulnerabilities through multi-scale geospatial analysis of social media activity during hurricane Irma.” Int. J. Disaster Risk Reduct. 68 (Jan): 102701. https://doi.org/10.1016/j.ijdrr.2021.102701.
Fu, P., B. Jing, T. Chen, J. Yang, and G. Cong. 2020. “Modeling network public opinion propagation with the consideration of individual emotions.” Int. J. Environ. Res. Public Health 17 (18): 6681. https://doi.org/10.3390/ijerph17186681.
Gelernter, J., and S. Balaji. 2013. “An algorithm for local geoparsing of microtext.” GeoInformatica 17 (4): 635–667. https://doi.org/10.1007/s10707-012-0173-8.
Grajdura, S., X. Qian, and D. Niemeier. 2021. “Awareness, departure, and preparation time in no-notice wildfire evacuations.” Saf. Sci. 139 (Jul): 105258. https://doi.org/10.1016/j.ssci.2021.105258.
Grootendorst, M. 2022. “BERTopic: Neural topic modeling with a class-based TF-IDF procedure.” Preprint, submitted March 11, 2022. http://arxiv.org/abs/2203.05794.
Gruebner, O., S. R. Lowe, M. Sykora, K. Shankardass, S. V. Subramanian, and S. Galea. 2017. “A novel surveillance approach for disaster mental health.” PLoS One 12 (7): e0181233. https://doi.org/10.1371/journal.pone.0181233.
Guan, X., and C. Chen. 2014. “Using social media data to understand and assess disasters.” Nat. Hazards 74 (2): 837–850. https://doi.org/10.1007/s11069-014-1217-1.
Hamoui, B., M. Mars, and K. Almotairi. 2020. FloDusTA: Saudi tweets dataset for flood, dust storm, and traffic accident events. Marseille, France: European Language Resources Association.
Hashimoto, T., D. Shepard, T. Kuboyama, and K. Shin. 2016b. “Topic extraction method from millions of tweets based on fast feature selection technique CWC.” In Proc., 2016 IEEE 16th Int. Conf. on Data Mining Workshops (ICDMW), 724–731. New York: IEEE. https://doi.org/10.1109/ICDMW.2016.0107.
Hashimoto, T., Y. Shirota, and B. Chakraborty. 2016a. “Developing a framework for an advisory message board for female victims after disasters: A case study after east Japan great earthquake.” Digital Scholarship Humanities 31 (4): 711–724. https://doi.org/10.1093/llc/fqv017.
Hernandez-Suarez, A., G. Sanchez-Perez, K. Toscano-Medina, H. Perez-Meana, J. Portillo-Portillo, V. Sanchez, and L. J. García Villalba. 2019. “Using twitter data to monitor natural disaster social dynamics: A recurrent neural network approach with word embeddings and kernel density estimation.” Sensors 19 (7): 1746. https://doi.org/10.3390/s19071746.
Hong, L., G. Convertino, and E. Chi. 2021. “Language matters in Twitter: A large scale study.” In Vol. 5 of Proc., Int. AAAI Conf. on Web and Social Media, 518–521. Washington, DC: Association for the Advancement of Artificial Intelligence Press. https://doi.org/10.1609/icwsm.v5i1.14184.
Houston, J. B., et al. 2015. “Social media and disasters: A functional framework for social media use in disaster planning, response, and research.” Disasters 39 (1): 1–22. https://doi.org/10.1111/disa.12092.
Hu, T., and R. Smith. 2018. “The impact of Hurricane Maria on the vegetation of Dominica and Puerto Rico using multispectral remote sensing.” Remote Sens. 10 (6): 827. https://doi.org/10.3390/rs10060827.
Huang, J.-S., and Y.-N. Lien. 2012. “Challenges of emergency communication network for disaster response.” In Proc., 2012 IEEE Int. Conf. on Communication Systems (ICCS), 528–532. New York: IEEE. https://doi.org/10.1109/ICCS.2012.6406204.
Huang, Q., G. Cao, and C. Wang. 2014. “From where do tweets originate? A GIS approach for user location inference.” In Proc., 7th ACM SIGSPATIAL Int. Workshop on Location-Based Social Networks, 1–8. New York: Association for Computing Machinery. https://doi.org/10.1145/2755492.2755494.
Huang, Q., and Y. Xiao. 2015. “Geographic situational awareness: Mining tweets for disaster preparedness, emergency response, impact, and recovery.” ISPRS Int. J. Geo-Inf. 4 (3): 1549–1568. https://doi.org/10.3390/ijgi4031549.
Hutto, C., and E. Gilbert. 2014. “VADER: A parsimonious rule-based model for sentiment analysis of social media text.” In Vol. 8 of Proc., Int. AAAI Conf. on Web and Social Media, 216–225. Washington, DC: Association for the Advancement of Artificial Intelligence Press. https://doi.org/10.1609/icwsm.v8i1.14550.
Imran, M., S. Elbassuoni, C. Castillo, F. Diaz, and P. Meier. 2013. “Practical extraction of disaster-relevant information from social media.” In Proc., 22nd Int. Conf. on World Wide Web, 1021–1024. New York: Association for Computing Machinery. https://doi.org/10.1145/2487788.2488109.
Imran, M., F. Ofli, D. Caragea, and A. Torralba. 2020. “Using AI and social media multimodal content for disaster response and management: Opportunities, challenges, and future directions.” Inf. Process. Manage. 57 (5): 102261. https://doi.org/10.1016/j.ipm.2020.102261.
Janiesch, C., P. Zschech, and K. Heinrich. 2021. “Machine learning and deep learning.” Electron. Mark. 31 (3): 685–695. https://doi.org/10.1007/s12525-021-00475-2.
Ji, J., Y. Zhu, and N. Chao. 2023. “A comparison of misinformation feature effectiveness across issues and time on Chinese social media.” Inf. Process. Manage. 60 (2): 103210. https://doi.org/10.1016/j.ipm.2022.103210.
Kabir, M. Y., and S. Madria. 2019. “A deep learning approach for tweet classification and rescue scheduling for effective disaster management.” Preprint, submitted August 5, 2019. http://arxiv.org/abs/1908.01456.
Kammerbauer, M., and C. Wamsler. 2017. “Social inequality and marginalization in post-disaster recovery: Challenging the consensus?” Int. J. Disaster Risk Reduct. 24 (Sep): 411–418. https://doi.org/10.1016/j.ijdrr.2017.06.019.
Kannan, S., S. Karuppusamy, A. Nedunchezhian, P. Venkateshan, P. Wang, N. Bojja, and A. Kejariwal. 2016. “Big data analytics for social media.” Chap. 3 in Big data, edited by R. Buyya, R. N. Calheiros, and A. V. Dastjerdi, 63–94. Cambridge, MA: Morgan Kaufmann.
Kanth, A. K., P. Chitra, and G. G. Sowmya. 2022. “Deep learning-based assessment of flood severity using social media streams.” Stochastic Environ. Res. Risk Assess. 36 (2): 473–493. https://doi.org/10.1007/s00477-021-02161-3.
Karmegam, D., and B. Mappillairaju. 2020. “Spatio-temporal distribution of negative emotions on Twitter during floods in Chennai, India, in 2015: A post hoc analysis.” Int. J. Health Geogr. 19 (1): 19. https://doi.org/10.1186/s12942-020-00214-4.
Kennedy, A., and D. Inkpen. 2006. “Sentiment classification of movie reviews using contextual valence shifters.” Comput. Intell. 22 (2): 110–125. https://doi.org/10.1111/j.1467-8640.2006.00277.x.
Khan, Q., E. Kalbus, N. Zaki, and M. M. Mohamed. 2022. “Utilization of social media in floods assessment using data mining techniques.” PLoS One 17 (4): e0267079. https://doi.org/10.1371/journal.pone.0267079.
Khyani, D., B. S. Siddhartha, N. M. Niveditha, and B. M. Divya. 2021. “An interpretation of lemmatization and stemming in natural language processing.” J. Univ. Shanghai Sci. Technol. 22 (10): 350–357.
Kim, J., and M. Hastak. 2018. “Social network analysis: Characteristics of online social networks after a disaster.” Int. J. Inf. Manage. 38 (1): 86–96. https://doi.org/10.1016/j.ijinfomgt.2017.08.003.
Kowsari, K., K. J. Meimandi, M. Heidarysafa, S. Mendu, L. E. Barnes, and D. E. Brown. 2019. “Text classification algorithms: A survey.” Information 10 (4): 150. https://doi.org/10.3390/info10040150.
Kryvasheyeu, Y., H. Chen, N. Obradovich, E. Moro, P. Van Hentenryck, J. Fowler, and M. Cebrian. 2016. “Rapid assessment of disaster damage using social media activity.” Sci. Adv. 2 (3): e1500779. https://doi.org/10.1126/sciadv.1500779.
Kumar, A., and J. P. Singh. 2019. “Location reference identification from tweets during emergencies: A deep learning approach.” Int. J. Disaster Risk Reduct. 33 (Feb): 365–375. https://doi.org/10.1016/j.ijdrr.2018.10.021.
Lauriola, I., A. Lavelli, and F. Aiolli. 2022. “An introduction to deep learning in natural language processing: Models, techniques, and tools.” Neurocomputing 470 (Jan): 443–456. https://doi.org/10.1016/j.neucom.2021.05.103.
Li, H., D. Caragea, C. Caragea, and N. Herndon. 2018a. “Disaster response aided by tweet classification with a domain adaptation approach.” J. Contingencies Crisis Manage. 26 (1): 16–27. https://doi.org/10.1111/1468-5973.12194.
Li, L., M. Bensi, Q. Cui, G. B. Baecher, and Y. Huang. 2021a. “Social media crowdsourcing for rapid damage assessment following a sudden-onset natural hazard event.” Int. J. Inf. Manage. 60 (Oct): 102378. https://doi.org/10.1016/j.ijinfomgt.2021.102378.
Li, L., Z. Ma, M. Bensi, and G. B. Baecher. 2023a. “Social media crowdsourcing for earthquake damage assessment.” In Geo-Risk 2023, 161–170. Reston, VA: ASCE.
Li, L., Z. Ma, and T. Cao. 2020. “Leveraging social media data to study the community resilience of New York City to 2019 power outage.” Int. J. Disaster Risk Reduct. 51 (Dec): 101776. https://doi.org/10.1016/j.ijdrr.2020.101776.
Li, L., Z. Ma, and T. Cao. 2021b. “Data-driven investigations of using social media to aid evacuations amid western United States wildfire season.” Fire Saf. J. 126 (Dec): 103480. https://doi.org/10.1016/j.firesaf.2021.103480.
Li, L., Y. Wang, and Q. Cui. 2023b “Exploring the potential of social media data to support the investigation of a man-made disaster: What caused the Notre Dame fire.” J. Manage. Eng. 39 (5): 04023028. https://doi.org/10.1061/JMENEA.MEENG-5386.
Li, Z., C. Wang, C. T. Emrich, and D. Guo. 2018b. “A novel approach to leveraging social media for rapid flood mapping: A case study of the 2015 South Carolina floods.” Cartogr. Geogr. Inf. Sci. 45 (2): 97–110. https://doi.org/10.1080/15230406.2016.1271356.
Ligutom, C., J. V. Orio, D. A. Marie Ramacho, C. Montenegro, R. E. Roxas, and N. Oco. 2016. “Using topic modelling to make sense of typhoon-related tweets.” In Proc., 2016 Int. Conf. on Asian Language Processing (IALP), 362–365. New York: IEEE. https://doi.org/10.1109/IALP.2016.7876006.
Lin, L., L. Di, E. G. Yu, L. Kang, R. Shrestha, M. S. Rahman, J. Tang, M. Deng, Z. Sun, C. Zhang, and L. Hu. 2016. “A review of remote sensing in flood assessment.” In Proc., 5th Int. Conf. on Agro-Geoinformatics (Agro-Geoinformatics), 1–4. New York: IEEE. https://doi.org/10.1109/Agro-Geoinformatics.2016.7577655.
Liu, B. F., J. D. Fraustino, and Y. Jin. 2016. “Social media use during disasters: How information form and source influence intended behavioral responses.” Commun. Res. 43 (5): 626–646. https://doi.org/10.1177/0093650214565917.
Liu, T., X. Liu, Y. Li, S. Liu, and C. Cao. 2021. “Evolving trends and research hotspots in disaster epidemiology from 1985 to 2020: A bibliometric analysis.” Front Public Health 9 (Aug): 720787. https://doi.org/10.3389/fpubh.2021.720787.
Lopez-Fuentes, L., A. Farasin, M. Zaffaroni, H. Skinnemoen, and P. Garza. 2020. “Deep learning models for road passability detection during flood events using social media data.” Appl. Sci. 10 (24): 8783. https://doi.org/10.3390/app10248783.
Lue, E., J. P. Wilson, and A. Curtis. 2014. “Conducting disaster damage assessments with spatial video, experts, and citizens.” Appl. Geogr. 52 (Aug): 46–54. https://doi.org/10.1016/j.apgeog.2014.04.014.
Luna, S., and M. J. Pennock. 2018. “Social media applications and emergency management: A literature review and research agenda.” Int. J. Disaster Risk Reduct. 28 (Jun): 565–577. https://doi.org/10.1016/j.ijdrr.2018.01.006.
Ma, K., Y. Tan, Z. Xie, Q. Qiu, and S. Chen. 2022. “Chinese toponym recognition with variant neural structures from social media messages based on BERT methods.” J. Geogr. Syst. 24 (2): 143–169. https://doi.org/10.1007/s10109-022-00375-9.
Ma, Z., L. Li, L. Hemphill, G. B. Baecher, and Y. Yuan. 2024. “Investigating disaster response for resilient communities through social media data and the Susceptible-Infected-Recovered (SIR) model: A case study of 2020 western U.S. wildfire season.” Sustainable Cities Soc. 106 (Jul): 105362. https://doi.org/10.1016/j.scs.2024.105362.
Madichetty, S., S. Muthukumarasamy, and P. Jayadev. 2021. “Multi-modal classification of Twitter data during disasters for humanitarian response.” J. Ambient Intell. Hum. Comput. 12 (11): 10223–10237. https://doi.org/10.1007/s12652-020-02791-5.
Mandel, B., A. Culotta, J. Boulahanis, D. Stark, B. Lewis, and J. Rodrigue. 2012. “A demographic analysis of online sentiment during Hurricane Irene.” In Proc., 2nd Workshop on Language in Social Media, 27–36. Stroudsburg, PA: Association for Computational Linguistics. https://aclanthology.org/W12-2104.
Martín, Y., Z. Li, and S. L. Cutter. 2017. “Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew.” PLoS One 12 (7): e0181701. https://doi.org/10.1371/journal.pone.0181701.
Mellon, J., and C. Prosser. 2017. “Twitter and Facebook are not representative of the general population: Political attitudes and demographics of British social media users.” Res. Politics 4 (3): 205316801772000. https://doi.org/10.1177/2053168017720008.
Mendon, S., P. Dutta, A. Behl, and S. Lessmann. 2021. “A hybrid approach of machine learning and lexicons to sentiment analysis: Enhanced insights from Twitter data of natural disasters.” Inf. Syst. Front. 23 (5): 1145–1168. https://doi.org/10.1007/s10796-021-10107-x.
Mondal, T., P. Pramanik, I. Bhattacharya, N. Boral, and S. Ghosh. 2018. “Analysis and early detection of rumors in a post disaster scenario.” Inf. Syst. Front. 20 (5): 961–979. https://doi.org/10.1007/s10796-018-9837-8.
Murphy, R. R., E. Steimle, M. Hall, M. Lindemuth, D. Trejo, S. Hurlebaus, Z. Medina-Cetina, and D. Slocum. 2009. “Robot-assisted bridge inspection after Hurricane Ike.” In Proc., IEEE Int. Workshop on Safety, Security & Rescue Robotics (SSRR 2009), 1–5. New York: IEEE. https://doi.org/10.1109/SSRR.2009.5424144.
Murphy, T., and M. E. Jennex. 2006. “Knowledge management, emergency response, and Hurricane Katrina.” Int. J. Knowledge Manage. 2 (4): 52.
Murshed, B. A. H., S. Mallappa, O. A. M. Ghaleb, and H. D. E. Al-ariki. 2021. “Efficient Twitter data cleansing model for data analysis of the pandemic tweets.” In Emerging technologies during the era of COVID-19 pandemic, edited by I. Arpaci, M. Al-Emran, M. A. Al-Sharafi, and G. Marques, 93–114. New York: Springer. https://doi.org/10.1007/978-3-030-67716-9_7.
Nalluru, G., R. Pandey, and H. Purohit. 2019. “Classifying relevant social media posts during disasters using ensemble of domain-agnostic and domain-specific word embeddings.” Preprint, submitted November 12, 2019. http://arxiv.org/abs/1911.05165.
Namihira, Y., N. Segawa, Y. Ikegami, K. Kawai, T. Kawabe, and S. Tsuruta. 2013. “High precision credibility analysis of information on Twitter.” In Proc., 2013 Int. Conf. on Signal-Image Technology & Internet-Based Systems, 909–915. New York: IEEE. https://doi.org/10.1109/SITIS.2013.148.
National Hurricane Center. 2021. “Saffir-Simpson hurricane wind scale.” Accessed August 1, 2023. https://www.nhc.noaa.gov/aboutsshws.php.
NCEI (National Centers for Environmental Information). 2022. “Billion-dollar weather and climate disasters.” Accessed August 1, 2023. https://www.ncei.noaa.gov/access/billions/summary-stats.
Ngamassi, L., H. Shahriari, T. Ramakrishnan, and S. Rahman. 2022. “Text mining Hurricane Harvey tweet data: Lessons learned and policy recommendations.” Int. J. Disaster Risk Reduct. 70 (Feb): 102753. https://doi.org/10.1016/j.ijdrr.2021.102753.
Nucifora, F. C., Jr., I. Subbarao, and E. B. Hsu. 2012. “Changing the paradigm: A novel framework for the study of resilience.” Int. J. Emergency Mental Health 14 (2): 73–76.
Odabas, M. 2022. “10 facts about Americans and Twitter.” Accessed August 1, 2023. https://www.pewresearch.org/fact-tank/2022/05/05/10-facts-about-americans-and-twitter/.
Ogie, R. I., S. James, A. Moore, T. Dilworth, M. Amirghasemi, and J. Whittaker. 2022. “Social media use in disaster recovery: A systematic literature review.” Int. J. Disaster Risk Reduct. 70 (Feb): 102783. https://doi.org/10.1016/j.ijdrr.2022.102783.
Özkula, S. M. 2020. “The issue of ‘context’: Data, culture, and commercial context in social media ethics.” J. Empirical Res. Human Res. Ethics 15 (1–2): 77–86. https://doi.org/10.1177/1556264619874646.
Pang, B., L. Lee, and S. Vaithyanathan. 2002. “Thumbs up? Sentiment classification using machine learning techniques.” Preprint, submitted May 28, 2002. http://arxiv.org/abs/0205070.
Paradkar, A. S., C. Zhang, F. Yuan, and A. Mostafavi. 2022. “Examining the consistency between geo-coordinates and content-mentioned locations in tweets for disaster situational awareness: A Hurricane Harvey study.” Int. J. Disaster Risk Reduct. 73 (Apr): 102878. https://doi.org/10.1016/j.ijdrr.2022.102878.
Patton, D. U., W. R. Frey, K. A. McGregor, F.-T. Lee, K. McKeown, and E. Moss. 2020. “Contextual analysis of social media: The promise and challenge of eliciting context in social media posts with natural language processing.” In Proc., AAAI/ACM Conf. on AI, Ethics, and Society, 337–342. Washington, DC: Association for the Advancement of Artificial Intelligence. https://doi.org/10.1145/3375627.3375841.
Pennington, J., R. Socher, and C. D. Manning. 2014. “Glove: Global vectors for word representation.” In Proc., 2014 Conf. on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. Doha, Qatar: Association for Computational Linguistics.
Pfefferbaum, R., B. Pfefferbaum, R. Horn, R. Klomp, F. Norris, and D. Reissman. 2013. “The communities advancing resilience toolkit (CART): An intervention to build community resilience to disasters.” J. Public Health Manage. Pract. 19 (3): 250–258. https://doi.org/10.1097/PHH.0b013e318268aed8.
Piryani, R., B. Piryani, V. K. Singh, and D. Pinto. 2020. “Sentiment analysis in Nepali: Exploring machine learning and lexicon-based approaches.” J. Intell. Fuzzy Syst. 39 (2): 2201–2212. https://doi.org/10.3233/JIFS-179884.
Prakoso, D. W., A. Abdi, and C. Amrit. 2021. “Short text similarity measurement methods: A review.” Soft Comput. 25 (6): 4699–4723. https://doi.org/10.1007/s00500-020-05479-2.
Ptaszynski, M., F. Masui, Y. Fukushima, Y. Oikawa, H. Hayakawa, Y. Miyamori, K. Takahashi, and S. Kawajiri. 2021. “Deep learning for information triage on Twitter.” Appl. Sci. 11 (14): 6340. https://doi.org/10.3390/app11146340.
Putra, P. K., D. B. Sencaki, G. P. Dinanta, F. Alhasanah, and R. Ramadhan. 2020. “Flood monitoring with information extraction approach from social media data.” In Proc., IEEE Asia-Pacific Conf. on Geoscience, Electronics and Remote Sensing Technology (AGERS), 113–119. Jakarta, Indonesia: Badan Pengkajian dan Penerapan Teknologi. https://doi.org/10.1109/AGERS51788.2020.9452770.
Radford, A., K. Narasimhan, T. Salimans, and I. Sutskever. 2018. “Improving language understanding by generative pre-training.” OpenAI. Accessed June 11, 2018. https://openai.com/index/language-unsupervised/.
Rahmadan, M. C., A. N. Hidayanto, D. S. Ekasari, and B. Purwandari. 2020. “Sentiment analysis and topic modelling using the LDA method related to the flood disaster in Jakarta on Twitter.” In Proc., Int. Conf. on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 126–130. New York: IEEE. https://doi.org/10.1109/ICIMCIS51567.2020.9354320.
Rajdev, M., and K. Lee. 2015. “Fake and spam messages: Detecting misinformation during natural disasters on social media.” In Vol. 1 of Proc., IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent Agent Technology (WI-IAT), 17–20. New York: IEEE. https://doi.org/10.1109/WI-IAT.2015.102.
Reuter, C., and M.-A. Kaufhold. 2018. “Fifteen years of social media in emergencies: A retrospective review and future directions for crisis informatics.” J. Contingencies Crisis Manage. 26 (1): 41–57. https://doi.org/10.1111/1468-5973.12196.
Reynard, D., and M. Shirgaokar. 2019. “Harnessing the power of machine learning: Can Twitter data be useful in guiding resource allocation decisions during a natural disaster?” Transp. Res. Part D Transp. Environ. 77 (Dec): 449–463. https://doi.org/10.1016/j.trd.2019.03.002.
Rodríguez, P., M. A. Bautista, J. Gonzàlez, and S. Escalera. 2018. “Beyond one-hot encoding: Lower dimensional target embedding.” Image Vis. Comput. 75 (Jul): 21–31. https://doi.org/10.1016/j.imavis.2018.04.004.
Roeslin, S., Q. T. M. Ma, and H. J. García. 2018. “Damage assessment on buildings following the 19th September 2017 Puebla, Mexico earthquake.” Front. Built Environ. 4 (Dec): 72. https://doi.org/10.3389/fbuil.2018.00072.
Rouhanizadeh, B., S. Kermanshachi, and T. J. Nipa. 2020. “Exploratory analysis of barriers to effective post-disaster recovery.” Int. J. Disaster Risk Reduct. 50 (Nov): 101735. https://doi.org/10.1016/j.ijdrr.2020.101735.
Roy, K. C., S. Hasan, A. M. Sadri, and M. Cebrian. 2020. “Understanding the efficiency of social media based crisis communication during Hurricane Sandy.” Int. J. Inf. Manage. 52 (Jun): 102060. https://doi.org/10.1016/j.ijinfomgt.2019.102060.
Roy, P. K., A. Kumar, J. P. Singh, Y. K. Dwivedi, N. P. Rana, and R. Raman. 2021. “Disaster related social media content processing for sustainable cities.” Sustainable Cities Soc. 75 (Dec): 103363. https://doi.org/10.1016/j.scs.2021.103363.
Ruby, D. 2023. “58+ Twitter statistics for marketers in 2023 (Users & Trends).” Accessed August 1, 2023. https://www.demandsage.com/twitter-statistics/.
Sachdeva, S., S. McCaffrey, and D. Locke. 2017. “Social media approaches to modeling wildfire smoke dispersion: Spatiotemporal and social scientific investigations.” Inf. Commun. Soc. 20 (8): 1146–1161. https://doi.org/10.1080/1369118X.2016.1218528.
Sadri, A. M., S. Hasan, S. V. Ukkusuri, and M. Cebrian. 2017. “Understanding information spreading in social media during hurricane sandy: User activity and network properties.” ArXiv. Accessed June 9, 2017. https://www.semanticscholar.org/paper/Understanding-Information-Spreading-in-Social-Media-Sadri-Hasan/217fdbc7a0d1b133bb439740bbee9ca7bad504ed.
Sarica, S., and J. Luo. 2021. “Stopwords in technical language processing.” PLOS One 16 (8): e0254937. https://doi.org/10.1371/journal.pone.0254937.
Sarkar, D. 2019. Text analytics with python: A practitioner’s guide to natural language processing. Bangalore: Apress. https://doi.org/10.1007/978-1-4842-4354-1.
Sarker, I. H. 2021. “Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions.” SN Comput. Sci. 2 (6): 420. https://doi.org/10.1007/s42979-021-00815-1.
Schulz, A., H. Paulheim, and I. Schweizer. 2013. A fine-grained sentiment analysis approach for detecting crisis related microposts. Brussels, Belgium: ISCRAM Digital Library.
Singh, D., S. Shams, J. Kim, S. Park, and S. Yang. 2020. “Fighting for information credibility: An end-to-end framework to identify fake news during natural disasters.” In Proc.,17th Int. Conf. on Information Systems for Crisis Response and Management, 90–99. Brussels, Belgium: ISCRAM Digital Library.
Singh, J. P., Y. K. Dwivedi, N. P. Rana, A. Kumar, and K. K. Kapoor. 2019. “Event classification and location prediction from tweets during disasters.” Ann. Oper. Res. 283 (1–2): 737–757. https://doi.org/10.1007/s10479-017-2522-3.
Sit, M. A., C. Koylu, and I. Demir. 2019. “Identifying disaster-related tweets and their semantic, spatial and temporal context using deep learning, natural language processing and spatial analysis: A case study of Hurricane Irma.” Int. J. Digital Earth 12 (11): 1205–1229. https://doi.org/10.1080/17538947.2018.1563219.
Song, D., X. Tan, B. Wang, L. Zhang, X. Shan, and J. Cui. 2020. “Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery.” Int. J. Remote Sens. 41 (3): 1040–1066. https://doi.org/10.1080/01431161.2019.1655175.
Sparck Jones, K. 1972. “A statistical interpretation of term specificity and its application in retrieval.” J. Doc. 28 (1): 11–21. https://doi.org/10.1108/eb026526.
Spruce, M., R. Arthur, and H. T. P. Williams. 2020. “Using social media to measure impacts of named storm events in the United Kingdom and Ireland.” Meteorol. Appl. 27 (1): e1887. https://doi.org/10.1002/met.1887.
Stieglitz, S., M. Mirbabaie, B. Ross, and C. Neuberger. 2018. “Social media analytics—Challenges in topic discovery, data collection, and data preparation.” Int. J. Inf. Manage. 39 (Apr): 156–168. https://doi.org/10.1016/j.ijinfomgt.2017.12.002.
Stone, H., V. Putrino, and D. D’Ayala. 2018. “Earthquake damage data collection using omnidirectional imagery.” Front. Built Environ. 4 (Sep): 51. https://doi.org/10.3389/fbuil.2018.00051.
Stowe, K., J. Anderson, M. Palmer, L. Palen, and K. Anderson. 2018a. “Improving classification of Twitter behavior during hurricane events.” In Proc., 6th Int. Workshop on Natural Language Processing for Social Media, 67–75. Geneva: IW3C2. https://doi.org/10.18653/v1/W18-3512.
Stowe, K., M. Palmer, J. Anderson, M. Kogan, L. Palen, K. M. Anderson, R. Morss, J. Demuth, and H. Lazrus. 2018b. “Developing and evaluating annotation procedures for Twitter data during hazard events.” In Proc., Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018), 133–143. Geneva: IW3C2.
Sufri, S., F. Dwirahmadi, D. Phung, and S. Rutherford. 2020. “A systematic review of community engagement (CE) in disaster early warning systems (EWSs).” Progress Disaster Sci. 5 (Jan): 100058. https://doi.org/10.1016/j.pdisas.2019.100058.
Sun, S., C. Luo, and J. Chen. 2017. “A review of natural language processing techniques for opinion mining systems.” Inf. Fusion 36 (Jul): 10–25. https://doi.org/10.1016/j.inffus.2016.10.004.
Sunilkumar, P., and A. P. Shaji. 2019. “A survey on semantic similarity.” In Proc., Int. Conf. on Advances in Computing, Communication and Control (ICAC3), 1–8. New York: IEEE. https://doi.org/10.1109/ICAC347590.2019.9036843.
Thelwall, M., K. Buckley, G. Paltoglou, D. Cai, and A. Kappas. 2010. “Sentiment strength detection in short informal text.” J. Am. Soc. Inform. Sci. Technol. 61: 2544–2558. https://doi.org/10.1002/asi.21416.
Turney, P. D. 2002. “Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews.” Preprint, submitted December 11, 2002. http://arxiv.org/abs/0212032.
Unankard, S., X. Li, and M. A. Sharaf. 2015. “Emerging event detection in social networks with location sensitivity.” World Wide Web 18 (5): 1393–1417. https://doi.org/10.1007/s11280-014-0291-3.
USGS. 1989. “The modified Mercalli intensity scale | U.S. Geological Survey.” Accessed August 1, 2023. https://www.usgs.gov/programs/earthquake-hazards/modified-mercalli-intensity-scale.
Van Quan, N., H.-J. Yang, K. Kim, and A.-R. Oh. 2017. “Real-time earthquake detection using convolutional neural network and social data.” In Proc., IEEE 3rd Int. Conf. on Multimedia Big Data (BigMM), 154–157. New York: IEEE. https://doi.org/10.1109/BigMM.2017.58.
Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. 2023. “Attention is all you need.” Preprint, submitted June 12, 2017. https://doi.org/10.48550/arXiv.1706.03762.
Vayansky, I., S. A. P. Kumar, and Z. Li. 2019. “An evaluation of geotagged Twitter data during Hurricane Irma using sentiment analysis and topic modeling for disaster resilience.” In Proc., 2019 IEEE Int. Symp. on Technology and Society (ISTAS), 1–6. New York: IEEE. https://doi.org/10.1109/ISTAS48451.2019.8937859.
Venzke, E. 2023. Global volcanism program, 2024. Washington, DC: Smithsonian Institution. https://doi.org/10.5479/si.GVP.VOTW5-2024.5.2.
Vision of Humanity. 2022. “Increase in natural disasters on a global scale by ten times.” Accessed August 1, 2023. https://www.visionofhumanity.org/global-number-of-natural-disasters-increases-ten-times/.
Wahid, J. A., L. Shi, Y. Gao, B. Yang, L. Wei, Y. Tao, S. Hussain, M. Ayoub, and I. Yagoub. 2022. “Topic2Labels: A framework to annotate and classify the social media data through LDA topics and deep learning models for crisis response.” Expert Syst. Appl. 195 (Jun): 116562. https://doi.org/10.1016/j.eswa.2022.116562.
Wang, J., Y. Hu, and K. Joseph. 2020. “NeuroTPR: A neuro-net toponym recognition model for extracting locations from social media messages.” Trans. GIS 24 (3): 719–735. https://doi.org/10.1111/tgis.12627.
Wang, K., N. S. N. Lam, L. Zou, and V. Mihunov. 2021. “Twitter use in Hurricane Isaac and its implications for disaster resilience.” ISPRS Int. J. Geo-Inf. 10 (3): 116. https://doi.org/10.3390/ijgi10030116.
Wang, S., Z. Li, Y. Wang, and Q. Zhang. 2019. “Machine learning methods to predict social media disaster rumor refuters.” Int. J. Environ. Res. Public Health 16 (8): 1452. https://doi.org/10.3390/ijerph16081452.
Wang, W., J. J. Qu, X. Hao, Y. Liu, and J. A. Stanturf. 2010. “Post-hurricane forest damage assessment using satellite remote sensing.” Agric. For. Meteorol. 150 (1): 122–132. https://doi.org/10.1016/j.agrformet.2009.09.009.
Wu, D., and Y. Cui. 2018. “Disaster early warning and damage assessment analysis using social media data and geo-location information.” Decis. Support Syst. 111: 48–59. https://doi.org/10.1016/j.dss.2018.04.005.
Xing, Z., X. Su, J. Liu, W. Su, and X. Zhang. 2019. “Spatiotemporal change analysis of earthquake emergency information based on microblog data: A case study of the ‘8.8’ Jiuzhaigou earthquake.” ISPRS Int. J. Geo-Inf. 8 (8): 359. https://doi.org/10.3390/ijgi8080359.
Xing, Z., X. Zhang, X. Zan, C. Xiao, B. Li, K. Han, Z. Liu, and J. Liu. 2021. “Crowdsourced social media and mobile phone signaling data for disaster impact assessment: A case study of the 8.8 Jiuzhaigou earthquake.” Int. J. Disaster Risk Reduct. 58: 102200. https://doi.org/10.1016/j.ijdrr.2021.102200.
Xiong, J., Y. Hswen, and J. A. Naslund. 2020. “Digital surveillance for monitoring environmental health threats: A case study capturing public opinion from twitter about the 2019 Chennai water crisis.” Int. J. Environ. Res. Public Health 17 (14): 5077. https://doi.org/10.3390/ijerph17145077.
Xu, L., and A. Ma. 2021. “Coarse-to-fine waterlogging probability assessment based on remote sensing image and social media data.” Geo-Spatial Inf. Sci. 24 (2): 279–301. https://doi.org/10.1080/10095020.2020.1812445.
Yan, Y., J. Chen, and Z. Wang. 2020. “Mining public sentiments and perspectives from geotagged social media data for appraising the post-earthquake recovery of tourism destinations.” Appl. Geogr. 123 (Oct): 102306. https://doi.org/10.1016/j.apgeog.2020.102306.
Yang, J., M. Yu, H. Qin, M. Lu, and C. Yang. 2019. “A Twitter data credibility framework—Hurricane Harvey as a use case.” ISPRS Int. J. Geo-Inf. 8 (3): 111. https://doi.org/10.3390/ijgi8030111.
Yao, F., and Y. Wang. 2020. “Domain-specific sentiment analysis for tweets during hurricanes (DSSA-H): A domain-adversarial neural-network-based approach.” Comput. Environ. Urban Syst. 83: 101522. https://doi.org/10.1016/j.compenvurbsys.2020.101522.
Young, J. C., R. Arthur, M. Spruce, and H. T. P. Williams. 2021. “Social sensing of heatwaves.” Sensors 21 (11): 3717. https://doi.org/10.3390/s21113717.
Yuan, F., M. Li, R. Liu, W. Zhai, and B. Qi. 2021. “Social media for enhanced understanding of disaster resilience during Hurricane Florence.” Int. J. Inf. Manage. 57 (Apr): 102289. https://doi.org/10.1016/j.ijinfomgt.2020.102289.
Yuan, F., and R. Liu. 2020. “Mining social media data for rapid damage assessment during Hurricane Matthew: Feasibility study.” J. Comput. Civ. Eng. 34 (3): 05020001. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000877.
Yue, L., W. Chen, X. Li, W. Zuo, and M. Yin. 2019. “A survey of sentiment analysis in social media.” Knowledge Inf. Syst. 60 (2): 617–663. https://doi.org/10.1007/s10115-018-1236-4.
Zhang, C., C. Fan, W. Yao, X. Hu, and A. Mostafavi. 2019a. “Social media for intelligent public information and warning in disasters: An interdisciplinary review.” Int. J. Inf. Manage. 49 (Dec): 190–207. https://doi.org/10.1016/j.ijinfomgt.2019.04.004.
Zhang, C., W. Yao, Y. Yang, R. Huang, and A. Mostafavi. 2020. “Semiautomated social media analytics for sensing societal impacts due to community disruptions during disasters.” Comput.-Aided Civ. Infrastruct. Eng. 35 (12): 1331–1348. https://doi.org/10.1111/mice.12576.
Zhang, L., J. Wei, and L. Zhu. 2019b. “Analysis and research on factors affecting information dissemination of emergencies in social media environment.” In Proc., WHICEB, 71. New York: Association for Information Systems.
Zhang, Y., R. Jin, and Z.-H. Zhou. 2010. “Understanding bag-of-words model: A statistical framework.” Int. J. Mach. Learn. Cybern. 1 (1): 43–52. https://doi.org/10.1007/s13042-010-0001-0.
Zhao, H., D. Phung, V. Huynh, Y. Jin, L. Du, and W. Buntine. 2021. “Topic modelling meets deep neural networks: A survey.” Preprint submitted February 28, 2021. http://arxiv.org/abs/2103.00498.
Zhou, S., P. Kan, Q. Huang, and J. Silbernagel. 2023. “A guided latent Dirichlet allocation approach to investigate real-time latent topics of Twitter data during Hurricane Laura.” J. Inf. Sci. 49 (2): 465–479. https://doi.org/10.1177/01655515211007724.
Zou, L., N. S. N. Lam, H. Cai, and Y. Qiang. 2018. “Mining Twitter data for improved understanding of disaster resilience.” Ann. Am. Assoc. Geogr. 108 (5): 1422–1441. https://doi.org/10.1080/24694452.2017.1421897.
Zou, L., N. S. N. Lam, S. Shams, H. Cai, M. A. Meyer, S. Yang, K. Lee, S.-J. Park, and M. A. Reams. 2019. “Social and geographical disparities in Twitter use during Hurricane Harvey.” Int. J. Digital Earth 12 (11): 1300–1318. https://doi.org/10.1080/17538947.2018.1545878.
Zuo, F., A. Kurkcu, K. Ozbay, and J. Gao. 2018. “Crowdsourcing incident information for emergency response using open data sources in smart cities.” Transp. Res. Rec. 2672 (1): 198–208. https://doi.org/10.1177/0361198118798736.

Information & Authors

Information

Published In

Go to Natural Hazards Review
Natural Hazards Review
Volume 25Issue 4November 2024

History

Published online: Aug 26, 2024
Published in print: Nov 1, 2024
Discussion open until: Jan 26, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Zihui Ma, Aff.M.ASCE [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Univ. of Maryland, College Park, MD 20742. Email: [email protected]
Postdoctoral, School of Information, Univ. of Michigan, Ann Arbor, MI 48109. Email: [email protected]
Yujie Mao, S.M.ASCE [email protected]
Ph.D. Candidate, Center for Technology and Systems Management, Dept. of Civil and Environmental Engineering, Univ. of Maryland, College Park, MD 20742. Email: [email protected]
Dept. of Civil and Environmental Engineering, Univ. of Maryland, College Park, MD 20742. ORCID: https://orcid.org/0000-0002-8768-1093. Email: [email protected]
Olivia Grace Patsy [email protected]
Researcher, Dept. of Civil and Environmental Engineering, Univ. of Maryland, College Park, MD 20742. Email: [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Maryland, College Park, MD 20742 (corresponding author). ORCID: https://orcid.org/0000-0001-6449-1812. Email: [email protected]
Libby Hemphill [email protected]
Associate Professor, School of information, Univ. of Michigan, Ann Arbor, MI 48109. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of Maryland, College Park, MD 20742. ORCID: https://orcid.org/0000-0002-9571-9282. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share