Technical Papers
Oct 26, 2023

Performance Comparison of Landslide Susceptibility Maps Derived from Logistic Regression and Random Forest Models in the Bolaman Basin, Türkiye

Publication: Natural Hazards Review
Volume 25, Issue 1

Abstract

Landslides often cause significant economic and human losses, and therefore landslide susceptibility mapping (LSM) has become increasingly important. Accurate assessment of LSM is important for appropriate land use management and risk assessment. The aim of this study is to define and compare the results of applying the random forest (RF) and logistic regression (LR) models for estimating landslide susceptibility, and also to confirm the accuracy of the resulting susceptibility maps in the Ordu-Bolaman River micro-basin. The study area was selected because it is one of the most landslide-prone areas in Türkiye. First, a total of 231 landslide locations were identified. Then 12 landslide-influencing factors were selected to generate landslide susceptibility maps. These maps were produced using the landslide influencing factors based on the RF and LR models in a geographical information system (GIS) environment. Finally, area under the curve (AUC) analysis, sensitivity, specificity, and accuracy were considered to assess and compare the performance of the two models. In addition, the maps were retested with large landslides not included in the training and test data sets, using general accuracy criteria. The results of the present study will be helpful for future landslide risk mitigation efforts in the research area.

Practical Applications

Landslide susceptibility mapping is crucial in adequately mitigating hazards and provides guidelines for landslide-prone areas to avoid hazards in the future. Therefore, landslide susceptibility assessment is of the utmost significance to ensure the safety of human life, mitigate the negative impacts on the economy, and prevent landslide hazards. Government agencies, policymakers, local authorities, and urban planners can use landslide susceptibility maps to plan effective management strategies for landslide prevention and mitigation and to make informed decisions regarding land use zoning and development. By identifying areas with very high and high landslide susceptibility, constructing critical infrastructure and buildings in hazardous zones can be avoided, reducing the risk of damage and loss during potential landslide events. Furthermore, landslide susceptibility maps play a crucial role in disaster risk management and emergency response planning. Authorities can use these maps to prioritize areas for early warning systems, evacuation routes, and disaster response teams. Farmers and landowners can benefit from the maps by being made aware of landslide-prone areas on their property. In addition, insurance companies can use landslide susceptibility maps to assess the risk of landslides in certain regions and adjust their insurance policies accordingly. By implementing these practical applications, landslide susceptibility maps can have a significant impact on reducing the vulnerability of communities and infrastructure to landslides, ultimately contributing to safer and more resilient environments. Consequently, this study is an example of landslide susceptibility mapping efforts for an agriculturally important area.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study is part of the PhD research of Zehra Kaya Topacli. The authors would like to express gratitude to the General Directorate of Combating Desertification and Erosion of Türkiye for its support.

References

AFAD (Ministry of Internal Affairs Disaster and Emergency Management Presidency). 2020. “AFAD reports.” Accessed April 2, 2020. https://www.afad.gov.tr/.
Akgun, A., E. A. Sezer, H. A. Nefeslioglu, C. Gokceoglu, and B. Pradhan. 2012. “An easy-to-use MATLAP program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm.” Comput. Geosci. 38 (1): 23–34. https://doi.org/10.1016/j.cageo.2011.04.012.
Aktas, C., and M. Bahadir. 2022. “Cam Burnu (Ordu) ile Gül Burnu (Giresun) Arasi Kiyi Cizgisinin Zamansal Degisimi ve Kiyi Kullanimi.” Int. J. Geogr. Geogr. Educ. (45): 320–348. https://doi.org/10.32003/igge.1016311.
Argyriou, A. V., C. Polykretis, R. M. Teeuw, and N. Papadopoulos. 2022. “Geoinformatic analysis of rainfall-triggered landslides in Crete (Greece) based on spatial detection and hazard mapping.” Sustainability 14 (7): 3956. https://doi.org/10.3390/su14073956.
Aristizábal, E., and O. Sánchez. 2020. “Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes.” Disasters 44 (3): 596–618. https://doi.org/10.1111/disa.12391.
Arnone, E., A. Francipane, L. V. Noto, A. Scarbaci, and G. La Loggia. 2014. “Strategies investigation in using artificial neural network for landslide susceptibility mapping: Application to a Sicilian catchment.” J. Hydroinf. 16 (2): 502–515. https://doi.org/10.2166/hydro.2013.191.
Atkinson, P. M., and R. Massari. 1998. “Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy.” Comput. Geosci. 24 (4): 373–385. https://doi.org/10.1016/S0098-3004(97)00117-9.
Ayalew, L., and H. Yamagishi. 2005. “The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan.” Geomorphology 65 (1–2): 15–31. https://doi.org/10.1016/j.geomorph.2004.06.010.
Baharvand, S., J. Rahnamarad, S. Soori, and N. Saadatkhah. 2020. “Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS.” Environ. Earth Sci. 79 (May): 1–10. https://doi.org/10.1007/s12665-020-08957-w.
Bai, S., G. Lü, J. Wang, P. Zhou, and L. Ding. 2011. “GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China.” Environ. Earth Sci. 62 (1): 139–149. https://doi.org/10.1007/s12665-010-0509-3.
Bars, B. 2020. “Fındık Ürün Raporu.” Accessed April 15, 2022. https://arastirma.tarimorman.gov.tr/.
Beguería, S. 2006. “Validation and evaluation of predictive models in hazard assessment and risk management.” Nat. Hazards 37 (Mar): 315–329. https://doi.org/10.1007/s11069-005-5182-6.
Bektas, O., C. Yilmaz, and K. Tasli. 1998. “Dogu Pontid yay gerisi havzasinda derin yayilma cukurlarinin olusumu (KD Türkiye): Neo-Tethis’in pasif kita kenari evrimi, KTÜ Jeoloji Mühendisliği Bölümü 30.” In Proc., Yıl Sempozyumu Bildirileri, 263–273. Trabzon, Turkey: Karadeniz Technical Univ.
Breiman, L. 2001. “Random forests.” Mach. Learn. 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
Bui, D. T., O. Lofman, I. Revhaug, and O. Dick. 2011. “Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression.” Nat. Hazards 59 (Dec): 1413–1444. https://doi.org/10.1007/s11069-011-9844-2.
Cayir, A. 2014. “Performance comparison of locality sensitive hashing and random forest algorithms for handwritten digits recognition.” Master’s thesis, Kadir Has Univ.
Chen, W., X. Chen, J. Peng, M. Panahi, and S. Lee. 2021. “Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer.” Geosci. Front. 12 (1): 93–107. https://doi.org/10.1016/j.gsf.2020.07.012.
Chen, W., and Y. Li. 2020. “GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models.” Catena 195 (Dec): 104777. https://doi.org/10.1016/j.catena.2020.104777.
Chen, W., X. Xie, J. Peng, H. Shahabi, H. Hong, D. T. Bui, and A.-X. Zhu. 2018. “GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method.” Catena 164 (May): 135–149. https://doi.org/10.1016/j.catena.2018.01.012.
Chen, W., X. Xie, J. Wang, B. Pradhan, H. Hong, D. T. Bui, Z. Duan, and J. Ma. 2017. “A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility.” Catena 151 (Apr): 147–160. https://doi.org/10.1016/j.catena.2016.11.032.
Chu, L., L.-J. Wang, J. Jiang, X. Liu, K. Sawada, and J. Zhang. 2019. “Comparison of landslide susceptibility maps using random forest and multivariate adaptive regression spline models in combination with catchment map units.” Geosci. J. 23 (Apr): 341–355. https://doi.org/10.1007/s12303-018-0038-8.
Chudý, F., M. Slámová, J. Tomaštík, R. Prokešová, and M. Mokroš. 2019. “Identification of micro-scale landforms of landslides using precise digital elevation models.” Geosciences 9 (3): 117. https://doi.org/10.3390/geosciences9030117.
Conforti, M., S. Pascale, G. Robustelli, and F. Sdao. 2014. “Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy).” Catena 113 (Feb): 236–250. https://doi.org/10.1016/j.catena.2013.08.006.
Dai, F. C., and C. F. Lee. 2002. “Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong.” Geomorphology 42 (3–4): 213–228. https://doi.org/10.1016/S0169-555X(01)00087-3.
Dang, V.-H., N.-D. Hoang, L.-M.-D. Nguyen, D. T. Bui, and P. Samui. 2020. “A novel GIS-based random forest machine algorithm for the spatial prediction of shallow landslide susceptibility.” Forests 11 (1): 118. https://doi.org/10.3390/f11010118.
Das, G., and K. Lepcha. 2019. “Application of logistic regression (LR) and frequency ratio (FR) models for landslide susceptibility mapping in Relli Khola river basin of Darjeeling Himalaya, India.” SN Appl. Sci. 1 (Nov): 1–22. https://doi.org/10.1007/s42452-019-1499-8.
Dehnavi, A., I. N. Aghdam, B. Pradhan, and M. H. M. Varzandeh. 2015. “A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran.” Catena 135 (Nov): 122–148. https://doi.org/10.1016/j.catena.2015.07.020.
Dou, J., A. P. Yunus, D. T. Bui, A. Merghadi, M. Sahana, Z. Zhu, C. W. Chen, K. Khosravi, Y. Yang, and B. T. Pham. 2019. “Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan.” Sci. Total Environ. 662 (Apr): 332–346. https://doi.org/10.1016/j.scitotenv.2019.01.221.
Dou, J., A. P. Yunus, D. T. Bui, A. Merghadi, M. Sahana, Z. Zhu, C.-W. Chen, Z. Han, and B. T. Pham. 2020. “Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan.” Landslides 17 (Mar): 641–658. https://doi.org/10.1007/s10346-019-01286-5.
Du, J., T. Glade, T. Woldai, B. Chai, and B. Zeng. 2020. “Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas.” Eng. Geol. 270 (Jun): 105572. https://doi.org/10.1016/j.enggeo.2020.105572.
Ercanoglu, M., and C. Gokceoglu. 2004. “Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey).” Eng. Geol. 75 (3–4): 229–250. https://doi.org/10.1016/j.enggeo.2004.06.001.
Erener, A., and H. S. B. Duzgun. 2010. “Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway).” Landslides 7 (Mar): 55–68. https://doi.org/10.1007/s10346-009-0188-x.
Erener, A., A. Mutlu, and H. S. Duzgun. 2016. “A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM).” Eng. Geol. 203 (Mar): 45–55. https://doi.org/10.1016/j.enggeo.2015.09.007.
Gelisli, K., T. Kaya, and A. E. Babacan. 2015. “Assessing the factor of safety using an artificial neural network: Case studies on landslides in Giresun, Turkey.” Environ. Earth Sci. 73 (12): 8639–8646. https://doi.org/10.1007/s12665-015-4027-1.
Glade, T. 2003. “Landslide occurrence as a response to land use change: A review of evidence from New Zealand.” Catena 51 (3–4): 297–314. https://doi.org/10.1016/S0341-8162(02)00170-4.
Gomez, H., and T. Kavzoglu. 2005. “Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela.” Eng. Geol. 78 (1–2): 11–27. https://doi.org/10.1016/j.enggeo.2004.10.004.
Gong, Q.-H., J.-X. Zhang, and J. Wang. 2018. “Application of GIS-based back propagation artificial neural networks and logistic regression for shallow landslide susceptibility mapping in South China taking Meijiang River basin as an example.” Open Civ. Eng. J. 12 (1): 21–34. https://doi.org/10.2174/1874149501812010021.
Gorum, T., and S. Fidan. 2021. “Spatiotemporal variations of fatal landslides in Turkey.” Landslides 18 (5): 1691–1705. https://doi.org/10.1007/s10346-020-01580-7.
Goyes-Peñafiel, P., and A. Hernandez-Rojas. 2021. “Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in Popayan, Colombia.” Eng. Geol. 280 (Jan): 105958. https://doi.org/10.1016/j.enggeo.2020.105958.
Gultekin, F., and E. H. Temizel. 2020. “Effects of urban activities on coastal aquifers: Case study in the Eastern black sea basin.” Geol. Bul. Turkey 63 (1): 69–82. https://doi.org/10.25288/tjb.571382.
Guzzetti, F., M. Cardinali, P. Reichenbach, and A. Carrara. 2000. “Comparing landslide maps: A case study in the Upper Tiber River basin, Central Italy.” Environ. Manage. 25 (3): 247–263. https://doi.org/10.1007/s002679910020.
Habumugisha, J. M., N. Chen, M. Rahman, M. M. Islam, H. Ahmad, A. Elbeltagi, and A. Dewan. 2022. “Landslide susceptibility mapping with deep learning algorithms.” Sustainability 14 (3): 1734. https://doi.org/10.3390/su14031734.
Haque, U., P. Blum, P. F. Da Silva, P. Andersen, J. Pilz, S. R. Chalov, and D. Keellings. 2016. “Fatal landslides in Europe.” Landslides 13 (6): 1545–1554. https://doi.org/10.1007/s10346-016-0689-3.
Hong, H., Y. Miao, J. Liu, and A.-X. Zhu. 2019. “Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping.” Catena 176 (May): 45–64. https://doi.org/10.1016/j.catena.2018.12.035.
Islam, F., et al. 2022. “Landslide susceptibility mapping (LSM) of Swat District, Hindu Kush Himalayan region of Pakistan, using GIS-based bivariate modeling.” Front. Environ. Sci. 10 (Oct): 1027423. https://doi.org/10.3389/fenvs.2022.1027423.
Juang, C. H., D. H. Lee, and C. Sheu. 1992. “Mapping slope failure potential using fuzzy sets.” J. Geotech. Eng. 118 (3): 475–494. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:3(475).
Kanungo, D. P., M. K. Arora, S. Sarkar, and R. P. Gupta. 2006. “A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas.” Eng. Geol. 85 (3–4): 347–366. https://doi.org/10.1016/j.enggeo.2006.03.004.
Karakas, G., S. Kocaman, and C. Gokceoglu. 2022. “On the effect of DEM quality for landslide susceptibility mapping.” ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 3 (May): 525–531. https://doi.org/10.5194/isprs-annals-V-3-2022-525-2022.
Kavzoglu, T., I. Colkesen, and E. K. Sahin. 2019. “Machine learning techniques in landslide susceptibility mapping: A survey and a case study.” In Landslides: Theory, practice and modelling, 283–301. Cham, Switzerland: Springer.
Kavzoglu, T., E. K. Sahin, and I. Colkesen. 2015. “Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm.” Eng. Geol. 192 (Jun): 101–112. https://doi.org/10.1016/j.enggeo.2015.04.004.
Kim, J.-C., S. Lee, H.-S. Jung, and S. Lee. 2018. “Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea.” Geocarto Int. 33 (9): 1000–1015. https://doi.org/10.1080/10106049.2017.1323964.
Kocaman, S., B. Tavus, H. A. Nefeslioglu, G. Karakas, and C. Gokceoglu. 2020. “Evaluation of floods and landslides triggered by a meteorological catastrophe (Ordu, Turkey, August 2018) using optical and radar data.” Geofluids 2020 (Dec): 1–18. https://doi.org/10.1155/2020/8830661.
Komac, M., and M. Ribičič. 2006. “Landslide susceptibility map of Slovenia at scale 1:250,000.” Geologija 49 (2): 295–309. https://doi.org/10.5474/geologija.2006.022.
Lee, C. F., H. Ye, M. R. Yeung, X. Shan, and G. Chen. 2001. “AIGIS-based methodology for natural terrain landslide susceptibility mapping in Hong Kong.” Episodes J. Int. Geosci. 24 (3): 150–159. https://doi.org/10.18814/epiiugs/2001/v24i3/001.
Lee, S., and B. Pradhan. 2007. “Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models.” Landslides 4 (1): 33–41. https://doi.org/10.1007/s10346-006-0047-y.
Lee, S., J.-S. Won, S. W. Jeon, I. Park, and M. J. Lee. 2015. “Spatial landslide hazard prediction using rainfall probability and a logistic regression model.” Math. Geosci. 47 (Jul): 565–589. https://doi.org/10.1007/s11004-014-9560-z.
Louppe, G., L. Wehenkel, A. Sutera, and P. Geurts. 2013. “Understanding variable importance in forests of randomized trees.” In Vol. 26 of Advances in neural information processing systems. Liège, Belgium: Univ. of Liege.
Lucchese, L. V., G. G. de Oliveira, and O. C. Pedrollo. 2020. “Attribute selection using correlations and principal components for artificial neural networks employment for landslide susceptibility assessment.” Environ. Monit. Assess. 192 (2): 129. https://doi.org/10.1007/s10661-019-7968-0.
Ma, S., H. Qiu, S. Hu, Y. Pei, W. Yang, D. Yang, and M. Cao. 2020. “Quantitative assessment of landslide susceptibility on the Loess Plateau in China.” Phys. Geogr. 41 (6): 489–516. https://doi.org/10.1080/02723646.2019.1674559.
Marjanović, M., M. Kovačević, B. Bajat, S. Mihalić Arbanas, and B. Abolmasov. 2011. “Landslide assessment of the Strača basin (Croatia) using machine learning algorithms.” Acta Geotech. Slov. 8 (2): 45–55.
Meinhardt, M., M. Fink, and H. Tünschel. 2015. “Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: Comparison of a new method to calculate weighting factors by means of bivariate statistics.” Geomorphology 234 (Apr): 80–97. https://doi.org/10.1016/j.geomorph.2014.12.042.
Mersha, T., and M. Meten. 2020. “GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia.” Geoenviron. Disasters 7 (1): 1–22. https://doi.org/10.1186/s40677-020-00155-x.
Mohammady, M., H. R. Pourghasemi, and B. Pradhan. 2012. “Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models.” J. Asian Earth Sci. 61 (Nov): 221–236. https://doi.org/10.1016/j.jseaes.2012.10.005.
Moharrami, M., A. Naboureh, T. Gudiyangada Nachappa, O. Ghorbanzadeh, X. Guan, and T. Blaschke. 2020. “National-scale landslide susceptibility mapping in Austria using fuzzy best-worst multi-criteria decision- making.” ISPRS Int. J. Geo-Inf. 9 (6): 393. https://doi.org/10.3390/ijgi9060393.
Nandi, A., and A. Shakoor. 2010. “A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses.” Eng. Geol. 110 (1–2): 11–20. https://doi.org/10.1016/j.enggeo.2009.10.001.
Nefeslioglu, H. A., and C. Gokceoglu. 2011. “Probabilistic risk assessment in medium scale for rainfall-induced earthflows: Catakli catchment area (Cayeli, Rize, Turkey).” Math. Probl. Eng. 2011 (Jan): 280431. https://doi.org/10.1155/2011/280431.
Nefeslioglu, H. A., C. Gokceoglu, and H. Sonmez. 2008. “An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps.” Eng. Geol. 97 (3–4): 171–191. https://doi.org/10.1016/j.enggeo.2008.01.004.
Nhu, V. H., A. Mohammadi, H. Shahabi, B. B. Ahmad, N. Al-Ansari, A. Shirzadi, and H. Nguyen. 2020. “Landslide detection and susceptibility modeling on Cameron Highlands (Malaysia): A comparison between random forest, logistic regression and logistic model tree algorithms.” Forests 11 (8): 830. https://doi.org/10.3390/f11080830.
Orhan, O., S. S. Bilgilioglu, Z. Kaya, A. K. Ozcan, and H. Bilgilioglu. 2022. “Assessing and mapping landslide susceptibility using different machine learning methods.” Geocarto Int. 37 (10): 2795–2820. https://doi.org/10.1080/10106049.2020.1837258.
Ozer, B. C., B. Mutlu, H. A. Nefeslioglu, E. A. Sezer, M. Rouai, A. Dekayir, and C. Gokceoglu. 2020. “On the use of hierarchical fuzzy inference systems (HFIS) in expert-based landslide susceptibility mapping: The central part of the Rif Mountains (Morocco).” Bull. Eng. Geol. Environ. 79 (Jan): 551–568. https://doi.org/10.1007/s10064-019-01548-5.
Pal, S. C., and I. Chowdhuri. 2019. “GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India.” SN Appl. Sci. 1 (Apr): 416. https://doi.org/10.1007/s42452-019-0422-7.
Panchal, S., and A. K. Shrivastava. 2022. “Landslide hazard assessment using analytic hierarchy process (AHP): A case study of National Highway 5 in India.” Ain Shams Eng. J. 13 (3): 101626. https://doi.org/10.1016/j.asej.2021.10.021.
Park, H. J., J. H. Lee, and I. K. Woo. 2013. “Assessment of rainfall-induced shallow landslide susceptibility using a GIS-based probabilistic approach.” Eng. Geol. 161 (Jul): 1–15. https://doi.org/10.1016/j.enggeo.2013.04.011.
Phong, T. V., T. T. Phan, I. Prakash, S. K. Singh, A. Shirzadi, K. Chapi, H. B. Ly, L. S. Ho, N. K. Quoc, and B. T. Pham. 2021. “Landslide susceptibility modeling using different artificial intelligence methods: A case study at Muong Lay district, Vietnam.” Geocarto Int. 36 (15): 1685–1708. https://doi.org/10.1080/10106049.2019.1665715.
Piralilou, S. T., H. Shahabi, B. Jarihani, O. Ghorbanzadeh, T. Blaschke, K. Gholamnia, and J. Aryal. 2019. “Landslide detection using multi-scale image segmentation and different machine learning models in the higher Himalayas.” Remote Sens. 11 (21): 2575. https://doi.org/10.3390/rs11212575.
Pourghasemi, H. R., and N. Kerle. 2016. “Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran.” Environ. Earth Sci. 75 (3): 1–17. https://doi.org/10.1007/s12665-015-4950-1.
Pourghasemi, H. R., and O. Rahmati. 2018. “Prediction of landslide susceptibility: Which algorithm, which precision?” Catena 162 (Mar): 177–192. https://doi.org/10.1016/j.catena.2017.11.022.
Pradhan, B., S. Lee, and M. F. Buchroithner. 2009. “Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping.” Appl. Geomatics 1 (1): 3–15. https://doi.org/10.1007/s12518-009-0001-5.
Razifard, M., G. Shoaei, and M. Zare. 2019. “Application of fuzzy logic in the preparation of hazard maps of landslides triggered by the twin Ahar-Varzeghan earthquakes (2012).” Bull. Eng. Geol. Environ. 78 (1): 223–245. https://doi.org/10.1007/s10064-018-1235-4.
Roccati, A., F. Faccini, F. Luino, A. Ciampalini, and L. Turconi. 2019. “Heavy rainfall triggering shallow landslides: A susceptibility assessment by a GIS-approach in a Ligurian Apennine Catchment (Italy).” Water 11 (3): 605. https://doi.org/10.3390/w11030605.
Roccati, A., G. Paliaga, F. Luino, F. Faccini, and L. Turconi. 2021. “GIS-based landslide susceptibility mapping for land use planning and risk assessment.” Land 10 (2): 162. https://doi.org/10.3390/land10020162.
Saleem, N., M. E. Huq, N. Y. D. Twumasi, A. Javed, and A. Sajjad. 2019. “Parameters derived from and/or used with digital elevation models (DEMs) for landslide susceptibility mapping and landslide risk assessment: A review.” ISPRS Int. J. Geo-Inf. 8 (12): 545. https://doi.org/10.3390/ijgi8120545.
Sevgen, E., S. Kocaman, H. A. Nefeslioglu, and C. Gokceoglu. 2019. “A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random forest.” Sensors 19 (18): 3940. https://doi.org/10.3390/s19183940.
Shirvani, Z. 2020. “A holistic analysis for landslide susceptibility mapping applying geographic object- based random forest: A comparison between protected and non-protected forests.” Remote Sens. 12 (3): 434. https://doi.org/10.3390/rs12030434.
Suzen, M. L., and V. Doyuran. 2004. “Data driven bivariate landslide susceptibility assessment using geographical information systems: A method and application to Asarsuyu catchment, Turkey.” Eng. Geol. 71 (3–4): 303–321. https://doi.org/10.1016/S0013-7952(03)00143-1.
Swets, J. A. 1988. “Measuring the accuracy of diagnostic systems.” Science 240 (4857): 1285–1293. https://doi.org/10.1126/science.3287615.
Taalab, K., T. Cheng, and Y. Zhang. 2018. “Mapping landslide susceptibility and types using random forest.” Big Earth Data 2 (2): 159–178. https://doi.org/10.1080/20964471.2018.1472392.
Terlemez, İ., and A. Yılmaz. 1980. Ünye-Ordu-Koyulhisar-Reşadiye arasında kalan yörenin stratigrafisi., 179–191. Ankara, Türkiye: Maden Tetkik Arama Enstitüsü.
Tien Bui, D., T. A. Tuan, H. Klempe, B. Pradhan, and I. Revhaug. 2016. “Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree.” Landslides 13 (2): 361–378. https://doi.org/10.1007/s10346-015-0557-6.
Tsangaratos, P., and I. Ilia. 2016. “Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size.” Catena 145 (Oct): 164–179. https://doi.org/10.1016/j.catena.2016.06.004.
Tseng, C. W., C. E. Song, S. F. Wang, Y. C. Chen, J. Y. Tu, C. J. Yang, and C. W. Chuang. 2020. “Application of high-resolution radar rain data to the predictive analysis of landslide susceptibility under climate change in the Laonong Watershed, Taiwan.” Remote Sens. 12 (23): 3855. https://doi.org/10.3390/rs12233855.
Tyagi, A., R. K. Tiwari, and N. James. 2022. “A review on spatial, temporal and magnitude prediction of landslide hazard.” J. Asian Earth Sci.: X 7 (Jun): 100099. https://doi.org/10.1016/j.jaesx.2022.100099.
Uvaraj, S., and R. Neelakantan. 2018. “Fuzzy logic approach for landslide hazard zonation mapping using GIS: A case study of Nilgiris.” Model. Earth Syst. Environ. 4 (2): 685–698. https://doi.org/10.1007/s40808-018-0447-8.
Uzundumlu, A. S., A. Bilgiç, and N. Ertek. 2019. “Türkiye’nin fındık üretiminde önde gelen illerin 2019-2025 yılları arasındaki fındık üretimlerinin ARIMA modeliyle tahmin edilmesi.” Akademik Ziraat Dergisi 8 (Özel Sayı): 115–126. https://doi.org/10.29278/azd.591588.
Van Westen, C. J., N. Rengers, and R. Soeters. 2003. “Use of geomorphological information in indirect landslide susceptibility assessment.” Nat. Hazards 30 (3): 399–419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e.
Waltham, A. C. 1994. Foundations of engineering geology. London: Blackie Academic & Professional Publisher.
Wang, G., X. Lei, W. Chen, H. Shahabi, and A. Shirzadi. 2020. “Hybrid computational intelligence methods for landslide susceptibility mapping.” Symmetry 12 (3): 325. https://doi.org/10.3390/sym12030325.
Wu, Y., W. Li, Q. Wang, Q. Liu, D. Yang, M. Xing, Y. Pei, and S. Yan. 2016. “Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China.” Arabian J. Geosci. 9 (Jan): 84. https://doi.org/10.1007/s12517-015-2112-0.
Yan, F., Q. Zhang, S. Ye, and B. Ren. 2019. “A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with the cloud model.” Geomorphology 327 (Feb): 170–187. https://doi.org/10.1016/j.geomorph.2018.10.024.
Youssef, A. M., and H. R. Pourghasemi. 2021. “Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia.” Geosci. Front. 12 (2): 639–655. https://doi.org/10.1016/j.gsf.2020.05.010.
Youssef, A. M., H. R. Pourghasemi, Z. S. Pourtaghi, and M. M. Al-Katheeri. 2016. “Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia.” Landslides 13 (5): 839–856. https://doi.org/10.1007/s10346-015-0614-1.
Yu, L., C. Zhou, Y. Wang, Y. Cao, and D. J. Peres. 2022. “Coupling data- and knowledge-driven methods for landslide susceptibility mapping in human-modified environments: A case study from Wanzhou County, Three Gorges Reservoir Area, China.” Remote Sens. 14 (3): 774. https://doi.org/10.3390/rs14030774.
Zhang, T., L. Han, J. Han, X. Li, H. Zhang, and H. Wang. 2019. “Assessment of landslide susceptibility using integrated ensemble fractal dimension with kernel logistic regression model.” Entropy 21 (2): 218. https://doi.org/10.3390/e21020218.
Zhao, P., Z. Masoumi, M. Kalantari, M. Aflaki, and A. Mansourian. 2022. “A GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods.” Remote Sens. 14 (1): 211. https://doi.org/10.3390/rs14010211.
Zhao, Y., R. Wang, Y. Jiang, H. Liu, and Z. Wei. 2019. “GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China.” Eng. Geol. 259 (Sep): 105147. https://doi.org/10.1016/j.enggeo.2019.105147.
Zhao, Z., Z. Y. Liu, and C. Xu. 2021. “Slope unit-based landslide susceptibility mapping using certainty factor, support vector machine, random forest, CF-SVM and CF-RF models.” Front. Earth Sci. 9 (Mar): 589630. https://doi.org/10.3389/feart.2021.589630.
Zhu, A.-X., Y. Miao, R. Wang, T. Zhu, T. Deng, J. Liu, L. Yang, C. Z. Qin, and H. Hong. 2018. “A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping.” Catena 166 (Jul): 317–327. https://doi.org/10.1016/j.catena.2018.04.003.
Zhu, A.-X., R. Wang, J. Qiao, C.-Z. Qin, Y. Chen, J. Liu, F. Du, Y. Lin, and T. Zhu. 2014. “An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic.” Geomorphology 214 (Jun): 128–138. https://doi.org/10.1016/j.geomorph.2014.02.003.

Information & Authors

Information

Published In

Go to Natural Hazards Review
Natural Hazards Review
Volume 25Issue 1February 2024

History

Received: Oct 6, 2022
Accepted: Aug 24, 2023
Published online: Oct 26, 2023
Published in print: Feb 1, 2024
Discussion open until: Mar 26, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Student, Graduate School of Science and Engineering, Hacettepe Univ., Beytepe, Ankara 06800, Türkiye (corresponding author). ORCID: https://orcid.org/0000-0002-7594-5522. Email: [email protected]; [email protected]
Geological Engineer, Republic of Türkiye Ministry of Environment, Urbanization, and Climate Change, General Directorate of Combating Desertification and Erosion, Ankara 06510, Türkiye. ORCID: https://orcid.org/0000-0001-9335-1747
Candan Gokceoglu
Professor, Dept. of Geological Engineering, Engineering Faculty, Hacettepe Univ., Beytepe, Ankara 06800, Türkiye.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share