Research Article
Dec 1981

Vertical Round Buoyant Jet in Shallow Water

Publication: Journal of the Hydraulics Division
Volume 107, Issue 12

Abstract

The stability and bulk mixing characteristics of an axisymmetric turbulent buoyant jet discharging vertically into a stagnant waterbody of large horizontal extent is studied theoretically and experimentally. A stable discharge configuration is defined as one in which a buoyant surface layer is formed which spreads radially from the source and does not communicate with the initial buoyant jet region. On the other hand, the discharge configuration is unstable when recirculation cells exist around the jet efflux. A semi-empirical theory shows the discharge stability is only dependent on the dynamic interaction of three near-field regions—the buoyant jet region, surface impingement region, and radial internal hydraulic jump region. A series of laboratory experiments were performed with a half-jet, using heat as source of buoyancy, and inserting a plane of symmetry in a large model basin. The experimental results are in good agreement with the theoretical predictions, both as regards the stability criterion and the near field mixing characteristics.

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

Journal of the Hydraulics Division
Volume 107Issue 12December 1981
Pages: 1651 - 1675

History

Published in print: Dec 1981
Published online: Feb 3, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Joseph H. W. Lee, AM.ASCE
Asst. Prof., Dept. of Civ. Engrg., Univ. of Delaware, Newark, Del. 19711
Gerhard H. Jirka, M.ASCE
Associate Prof., School of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y. 14853

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share