Technical Papers
Jul 18, 2024

Evaluating Aquifer Management Objectives against Socioeconomic Indicators to Understand Differential Impacts on Communities across Multiple Scales

Publication: Journal of Water Resources Planning and Management
Volume 150, Issue 10

Abstract

Urban groundwater supply planning is often achieved at the regional scale while the effects of aquifer exploitation are experienced on a local scale. In the Mexico City metropolitan area, land and water use changes have caused massive overdraft and subsidence, threatening water supply in marginalized communities. While spatially distributed groundwater models have been developed to test model uncertainty and policy interventions, there is little understanding of how regional aggregation of planning objectives can exacerbate existing social inequities. This study develops socially informed spatial analysis to evaluate differential impacts of groundwater pumping policies at multiple scales. We compare four planning objectives at three spatial resolutions to determine if policy preference shows a relationship with socioeconomic indicators. We find that the multiobjective performance of pumping policies can neglect marginalized communities according to multiple indicators. Further, clustering model grid cells according to socioeconomic indicators allows for more accurate analysis of this effect. Finally, multiscale analysis of policy preference considering subregional socioeconomic characteristics can aid in equitable selection of aquifer management alternatives.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code generated or used during the study are available in a GitHub repository online at https://github.com/mrlmautner/Spatial-GW-Planning in accordance with funder data retention policies (last access: February 15, 2023) (DOI: 10.5281/zenodo.7644920; Mautner and Herman 2023).

Acknowledgments

This work has been supported by the Ford Foundation Predoctoral Fellowship Program of the National Academies of Science, Engineering, and Medicine. Research trips to Mexico City were funded in part by the University of California Davis Henry A. Jastro Graduate Research Award. We thank the Organismo de Cuencas: Aguas del Valle de México (OCAVM) of the National Water Commission (CONAGUA) of Mexico and the Instituto de Geofísica of the Universidad Nacional Autónoma de México (UNAM) for their input on initial model development and pumping data.

References

Bach, P. M., W. Rauch, P. S. Mikkelsen, D. T. McCarthy, and A. Deletic. 2014. “A critical review of integrated urban water modelling–Urban drainage and beyond.” Environ. Modell. Software 54 (Mar): 88–107. https://doi.org/10.1016/j.envsoft.2013.12.018.
Bakker, M., V. Post, C. D. Langevin, J. D. Hughes, J. T. White, J. J. Starn, and M. N. Fienen. 2016. “Scripting MODFLOW model development using Python and FloPy.” Ground Water 54 (5): 733–739. https://doi.org/10.1111/gwat.12413.
Barthel, R., S. Foster, and K. G. Villholth. 2017. “Interdisciplinary and participatory approaches: The key to effective groundwater management.” Hydrogeol. J. 25 (7): 1923–1926. https://doi.org/10.1007/s10040-017-1616-y.
Becker, A., and P. Braun. 1999. “Disaggregation, aggregation and spatial scaling in hydrological modelling.” J. Hydrol. 217 (3): 239–252. https://doi.org/10.1016/S0022-1694(98)00291-1.
Candido, L. A., G. A. G. Coêlho, M. M. G. A. de Moraes, and L. Florêncio. 2021. “Review of decision support systems and allocation models for integrated water resources management focusing on joint water quantity-quality.” J. Water Resour. Plann. Manage. 148 (2): 03121001. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001496.
Chahim, D. 2022. “Governing beyond capacity: Engineering, banality, and the calibration of disaster in Mexico City.” Am. Ethnologist 49 (1): 20–34. https://doi.org/10.1111/amet.13052.
Chen, Y., and A. M. Bilton. 2022. “Water Stress, peri-urbanization, and community-based water systems: A reflective commentary on the metropolitan area of Mexico City.” Front. Sustainable Cities 4 (Mar): 790633. https://doi.org/10.3389/frsc.2022.790633.
Ciullo, A., J. H. Kwakkel, K. M. De Bruijn, N. Doorn, and F. Klijn. 2020. “Efficient or fair? Operationalizing ethical principles in flood risk management: A case study on the Dutch-German Rhine.” Risk Anal. 40 (9): 1844–1862. https://doi.org/10.1111/risa.13527.
CONAPO (Consejo Nacional de Población). 2021. “Índice de marginación urbana 2020.” Accessed February 4, 2024. https://www.gob.mx/conapo/documentos/indices-de-marginacion-2020-284372.
Dahlke, H. E., G. T. LaHue, M. R. Mautner, N. P. Murphy, N. K. Patterson, H. Waterhouse, F. Yang, and L. Foglia. 2018. “Managed aquifer recharge as a tool to enhance sustainable groundwater management in California: Examples from field and modeling studies.” In Advances in chemical pollution, environmental management and protection, edited by J. Friesen and L. Rodríguez-Sinobas. Amsterdam, Netherlands: Elsevier.
de Graaf, I. E., T. Gleeson, L. P. H. Van Beek, E. H. Sutanudjaja, and M. F. Bierkens. 2019. “Environmental flow limits to global groundwater pumping.” Nature 574 (7776): 90–94. https://doi.org/10.1038/s41586-019-1594-4.
Esri (Environmental Systems Research Institute, Inc.). 2009. “ESRI satellite [basemap].” Accessed June 26, 2017. https://server.arcgisonline.com/ArcGIS/rest/services/Worldunderline_Imagery/MapServer/tile/z/y/x.
Fletcher, S., A. Hadjimichael, J. Quinn, K. Osman, M. Giuliani, D. Gold, A. J. Figueroa, and B. Gordon. 2022. “Equity in water resources planning: A path forward for decision support modelers.” J. Water Resour. Plann. Manage. 148 (7): 2522005. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001573.
Foster, S. 2020. “Global policy overview of groundwater in urban development–A tale of 10 cities!” Water 12 (2): 456. https://doi.org/10.3390/w12020456.
Galán-Breth, R. I. 2018. “Modelación matemática de nitratos en el agua subterránea en la región Sur de la Ciudad de México.” Ph.D. thesis, Ciencias de la tierra, Universidad Nacional Autónoma de México.
Garcia Ferrari, S., E. R. Morales, and A. A. Bain. 2022. “Mexico City-Ambitions and challenges of integrated risk management in a fractured urban planning context.” Earth Sci. Syst. Soc. 2 (Mar): 10059. https://doi.org/10.3389/esss.2022.10059.
Geleijnse, J., M. Rutten, D. de Villiers, J. T. Bamwenda, and E. Abraham. 2023. “Enhancing water access monitoring through mapping multi-source usage and disaggregated geographic inequalities with machine learning and surveys.” Sci. Rep. 13 (1): 1–23. https://doi.org/10.1038/s41598-023-39917-6.
Gutiérrez-Pulido, H., and V. Gama-Hernández. 2010. “Limitantes de los índices de marginación de Conapo y propuesta para evaluar la marginación municipal en México.” Papeles de población 16 (66): 227–257.
Hadjimichael, A., J. Quinn, E. Wilson, P. Reed, L. Basdekas, D. Yates, and M. Garrison. 2020. “Defining robustness, vulnerabilities, and consequential scenarios for diverse stakeholder interests in institutionally complex river basins.” Earth Future 8 (7): e2020EF001503. https://doi.org/10.1029/2020EF001503.
Hashimoto, T., J. R. Stedinger, and D. P. Loucks. 1982. “Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation.” Water Resour. Res. 18 (1): 14–20. https://doi.org/10.1029/WR018i001p00014.
Hernández Aguilar, B., A. M. Lerner, D. Manuel-Navarrete, and J. M. Siqueiros-García. 2021. “Persisting narratives undermine potential water scarcity solutions for informal areas of Mexico City: The case of two settlements in Xochimilco.” Water Int. 46 (6): 919–937. https://doi.org/10.1080/02508060.2021.1923179.
Herrera-Zamarrón, G., et al. 2005. Estudio para obtener la disponibilidad del acuífero de la Zona Metropolitana de la Ciudad de México. Mexico: Secretaría del Medio Ambiente del Gobierno del Distrito Federal, Sistema de Aguas de la Ciudad de México, and Instituto Mexicano de Tecnología del Agua.
Huberts, A., D. Palma, A. C. Bernal García, F. Cole, and E. F. S. Roberts. 2023. “Making scarcity ‘enough’: The hidden household costs of adapting to water scarcity in Mexico City.” PLoS Water 2 (3): e0000056. https://doi.org/10.1371/journal.pwat.0000056.
Hund, S. V., D. M. Allen, L. Morillas, and M. S. Johnson. 2018. “Groundwater recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought.” J. Hydrol. 563 (Mar): 1119–1134. https://doi.org/10.1016/j.jhydrol.2018.05.069.
INEGI (Instituto Nacional de Estadística y Geografía). 2016. “Principales resultados por AGEB y manzana urbana.” Accessed April 4, 2022. https://www.inegi.org.mx/app/scitel/Default?ev=10.
Jacobson, C. R. 2011. “Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review.” J. Environ. Manage. 92 (6): 1438–1448. https://doi.org/10.1016/j.jenvman.2011.01.018.
Jafino, B. A., J. H. Kwakkel, and B. Taebi. 2021. “Enabling assessment of distributive justice through models for climate change planning: A review of recent advances and a research agenda.” Wiley Interdiscip. Rev. Clim. Change 12 (4): 1–23. https://doi.org/10.1002/wcc.721.
La Rosa, D., and V. Pappalardo. 2020. “Planning for spatial equity—A performance based approach for sustainable urban drainage systems.” Sustainable Cities Soc. 53 (Oct): 101885. https://doi.org/10.1016/j.scs.2019.101885.
Lerner, D. N. 2002. “Identifying and quantifying urban recharge: A review.” Hydrogeol. J. 10 (1): 143–152. https://doi.org/10.1007/s10040-001-0177-1.
Lilburne, L., and S. Tarantola. 2009. “Sensitivity analysis of spatial models.” Int. J. Geogr. Inf. Sci. 23 (2): 151–168. https://doi.org/10.1080/13658810802094995.
Lopez-Alvis, J. 2014. “Calibración de un modelo de flujo del Acuífero de la Zona Metropolitana de la Ciudad de México (AZMCM).” Ph.D. thesis, Ingeniería Geofísica, Universidad Nacional Autónoma de México.
Mautner, M. R., L. Foglia, G. S. Herrera, R. Galán, and J. D. Herman. 2020. “Urban growth and groundwater sustainability: Evaluating spatially distributed recharge alternatives in the Mexico City Metropolitan Area.” J. Hydrol. 586 (Apr): 124909. https://doi.org/10.1016/j.jhydrol.2020.124909.
Mautner, M. R. L., L. Foglia, and J. D. Herman. 2022. “Coupled effects of observation and parameter uncertainty on urban groundwater infrastructure decisions.” Hydrol. Earth Syst. Sci. 26 (5): 1319–1340. https://doi.org/10.5194/hess-26-1319-2022.
Mautner, M. R. L., and J. D. Herman. 2023. “mrlmautner/Spatial-GW-planning: Publication version.” Accessed February 12, 2024. https://zenodo.org/records/7644920.
Megdal, S. B., A. K. Gerlak, R. G. Varady, and L. Y. Huang. 2015. “Groundwater governance in the United States: Common priorities and challenges.” Ground Water 53 (5): 677–684. https://doi.org/10.1111/gwat.12294.
Mooers, E. W., R. C. Jamieson, J. L. Hayward, J. Drage, and C. B. Lake. 2018. “Low-impact development effects on aquifer recharge using coupled surface and groundwater models.” J. Hydrol. Eng. 23 (9): 04018040. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001682.
Moreno-Carranco, M., and B. McElvain. 2020. “Life above, rubble below: A case of historically produced risk and perception in Mexico City.” Ardeth (6): 153. https://doi.org/10.17454/ARDETH06.12.
Neal, M. J., F. Greco, D. Connell, and J. Conrad. 2016. “The social-environmental justice of groundwater governance.” In Integrated groundwater management, edited by A. J. Jakeman, O. Barreteau, R. J. Hunt, J.-D. Rinaudo, and A. Ross, 253–272. New York: Springer.
OCAVM (Organismo de Cuenca Aguas del Valle de México). 2014. Programa Hídrico Regional 2014-2018: Region Administrativo Hidrológico XIII, Aguas del Valle de México. Mexico: Comisión Nacional del Agua.
Polemio, M., and L. E. Zuffianò. 2020. “Review of utilization management of groundwater at risk of salinization.” J. Water Resour. Plann. Manage. 146 (9): 03120002. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001278.
Quinn, J. D., P. M. Reed, M. Giuliani, and A. Castelletti. 2017. “Rival framings: A framework for discovering how problem formulation uncertainties shape risk management trade-offs in water resources systems.” Water Resour. Res. 53 (8): 7208–7233. https://doi.org/10.1002/2017WR020524.
Ray, I. 2007. “Women, water, and development.” Annu. Rev. Environ. Resour. 32 (Nov): 421–449. https://doi.org/10.1146/annurev.energy.32.041806.143704.
Razavi, S., et al. 2021. “The future of sensitivity analysis: An essential discipline for systems modeling and policy support.” Environ. Modell. Software 137 (Dec): 104954. https://doi.org/10.1016/j.envsoft.2020.104954.
Re, V., R. Manzione, T. Abiye, A. Mukherji, and A. MacDonald. 2022. Groundwater for sustainable livelihoods and equitable growth. London: CRC Press.
Reed, P. M., D. M. Hadka, J. D. Herman, J. R. Kasprzyk, and J. B. Kollat. 2013. “Evolutionary multiobjective optimization in water resources: The past, present, and future.” Adv. Water Resour. 51 (Dec): 438–456. https://doi.org/10.1016/j.advwatres.2012.01.005.
Rittel, H. W., and M. M. Webber. 1973. “Dilemmas in a general theory of planning.” Policy Sci. 4 (2): 155–169. https://doi.org/10.1007/BF01405730.
SACMEX (Sistema de Aguas de la Ciudad de México) and Gobierno de la Ciudad de México. 2019. “Cumbre de Fondos de Agua: No hay agua que perder, Mexico City, Alianza Latinoamericana de Fondos de Agua.” Accessed April 15, 2023. https://www.fondosdeagua.org/content/dam/tnc/nature/en/documents/latin-america/aguas.pdf.
Sandoval-Solis, S., D. C. McKinney, and D. P. Loucks. 2010. “Sustainability index for water resources planning and management.” J. Water Resour. Plann. Manage. 137 (5): 381–390. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000134.
Schirmer, M., S. Leschik, and A. Musolff. 2013. “Current research in urban hydrogeology—A review.” Adv. Water Resour. 51 (Dec): 280–291. https://doi.org/10.1016/j.advwatres.2012.06.015.
Sepúlveda, C. D. Í., T. B. Salasar, and J. P. M. Osuna. 2015. “Correlación entre índices urbanos: La gestión del agua de uso urbano y la marginación urbana.” In Urbano, 50–59. Santiago, Chile: Universidad del Bío Bío.
Smith, J. D., L. Lin, J. D. Quinn, and L. E. Band. 2022. “Guidance on evaluating parametric model uncertainty at decision-relevant scales.” Hydrol. Earth Syst. Sci. 26 (9): 2519–2539. https://doi.org/10.5194/hess-26-2519-2022.
Tellman, B., J. C. Bausch, H. Eakin, J. M. Anderies, M. Mazari-Hiriart, D. Manuel-Navarrete, and C. L. Redman. 2018. “Adaptive pathways and coupled infrastructure: Seven centuries of adaptation to water risk and the production of vulnerability in Mexico city.” Ecol. Soc. 23 (1): 1. https://doi.org/10.5751/ES-09712-230101.
Tortajada, C. 2008. “Challenges and realities of water management of megacities: The case of Mexico City metropolitan area.” J. Int. Aff. 61 (2): 147–166.
UNESCO. 2015. Sex-disaggregated indicators for water assessment, monitoring and reporting Sex-disaggregated indicators for water assessment, monitoring and reporting, 47. London: UNESCO.
Walker, W., P. Harremoës, J. Rotmans, J. van der Sluijs, M. van Asselt, P. Janssen, and M. Krayer von Krauss. 2003. “Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support.” Integr. Assess. 4 (1): 5–17. https://doi.org/10.1076/iaij.4.1.5.16466.
Wang, H., N. Wanakule, and T. Asefa. 2021. “Examining effectiveness of optimal groundwater management at multiple timescales in Tampa Bay region.” J. Water Resour. Plann. Manage. 147 (12): 04021085. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001486.
Wigle, J. 2020. “Fast-track redevelopment and slow-track regularization: The uneven geographies of spatial regulation in Mexico City.” Lat. Am. Perspect. 47 (6): 56–76. https://doi.org/10.1177/0094582X19898199.
Wurl, J., A. E. Gámez, A. Ivanova, M. A. Imaz Lamadrid, and P. Hernández-Morales. 2018. “Socio-hydrological resilience of an arid aquifer system, subject to changing climate and inadequate agricultural management: A case study from the Valley of Santo Domingo, Mexico.” J. Hydrol. 559 (Mar): 486–498. https://doi.org/10.1016/j.jhydrol.2018.02.050.
Yang, G., M. Giuliani, and A. Castelletti. 2023. “Operationalizing equity in multipurpose water systems.” Hydrol. Earth Syst. Sci. 27 (1): 69–81. https://doi.org/10.5194/hess-27-69-2023.
Yoon, J., et al. 2021. “A coupled human-natural system analysis of freshwater security under climate and population change.” Proc. Natl. Acad. Sci. 118 (14): e2020431118. https://doi.org/10.1073/pnas.2020431118.
Zagonari, F. 2010. “Sustainable, just, equal, and optimal groundwater management strategies to cope with climate change: Insights from Brazil.” Water Resour. Manage. 24 (13): 3731–3756. https://doi.org/10.1007/s11269-010-9630-z.
Zhou, Y. 2009. “A critical review of groundwater budget myth, safe yield and sustainability.” J. Hydrol. 370 (1–4): 207–213. https://doi.org/10.1016/j.jhydrol.2009.03.009.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 150Issue 10October 2024

History

Received: Sep 29, 2023
Accepted: Apr 15, 2024
Published online: Jul 18, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 18, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Scientist, Stockholm Environment Institute, US Center, 11 Curtis Ave., Somerville, MA 02144 (corresponding author). ORCID: https://orcid.org/0000-0001-5206-4389. Email: [email protected]
Jonathan D. Herman, Ph.D. https://orcid.org/0000-0002-4081-3175
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of California, Davis, CA 95616. ORCID: https://orcid.org/0000-0002-4081-3175

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share