Case Studies
Dec 29, 2023

Hydrogeomorphic Characterization of the Huallaga River for the Peruvian Amazon Waterway

Publication: Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 150, Issue 2

Abstract

The concession of the Peruvian Amazon Waterway (PAW) project seeks to strengthen commercial transport between Brazil and Peru by using four rivers: Amazon, Ucayali, Marañón, and Huallaga, in which the Peruvian Ministry of Transportation and Communications (MTC) was in charge of developing the Terms of Reference (TOR). At the end, the TOR did not specify the methodology for the hydrogeomorphic characterization of rivers. The PAW project was designed to meet specific geometric characteristics to ensure navigable conditions: minimum water depth of 2.44 m (8 ft) and channel width ranging from 44 to 56 m, approximately. The zones where the river bottom limits the layout and dimensions of the navigation channel are called shallow zones (SZs). Based on the PAW project’s TOR, the EIA-d (Detailed Environmental Impact Assessment) study was carried out using 14 SZs that required dredging 3.87 million m3 of sediments. In 2019, the EDI (Definitive Engineering Study) described 24 SZs with a total dredging volume of 4.39 million m3 of sediments. The number and locations of SZs and the volume of required dredging changed significantly, revealing a lack of understanding of meandering (i.e., Ucayali and Huallaga) and anabranching (i.e., Marañón and Amazon) river processes. This study presents an integral methodology for the hydrogeomorphic characterization of the meandering Huallaga River (the river with 56% of the total estimated volume to dredge) by using remote sensing and field measurements (hydrodynamic, sediment transport, and bathymetry). Geological confinement of river dynamics, together with the presence of anabranching structures, promote stable SZs. In regions where meandering rivers tend to develop ancient and modern geomorphic structures, SZs are temporarily and highly dependent of river dynamics. The present hydrogeomorphic characterization of the Huallaga River will support the Peruvian government to inform their technical guidelines (TOR), especially for infrastructure projects (e.g., PAW) in Amazonian rivers.

Practical Applications

Several river-related engineering projects lack a broad and comprehensive view to understand a river’s spatial and temporal dynamics. One of these projects is the Amazon Waterway (Hidrovía Amazónica in Spanish) which sought to strengthen commercial transport between Brazil and Peru using four rivers: Amazon, Ucayali, Marañón, and Huallaga. The Terms of Reference (TOR) for the Environmental Impact Study (EIA) did not specify the methodology for understanding river dynamics; however, the focus was mainly concentrated on the need to develop dredging activities. During the EIA evaluation stage, more than 400 technical observations were presented, several related to fluvial geomorphology. This article presents a synthesis of how proper river studies should be carried out and how river dynamics is related to aquatic biodiversity, highlighting the importance of understanding rivers before developing infrastructure projects.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The field data generated for this study along the Huallaga River can be provided upon request by emailing Dr. Abad at [email protected].

Acknowledgments

Thanks to the DAR and Gordon and Betty Moore Foundation (Grant GBMF7711, PI Abad) for funding the river characterization project in the Amazon River Basin. Thanks to CITA’s research assistants (Bryan Santillan, Flor Fuentes, Mishel Melendez, Lynn Marin) for helping out during the field collection campaign. Thanks to Dr. Lucas Dominguez and Dr. Francisco Latosinski from the Universidad Nacional del Litoral, Argentina for discussion on hydrogeomorphic measurements along the Huallaga River. Thanks to the two anonymous reviewers and the editor Andrew Kennedy for providing insightful comments and suggestions.

References

Abad, J. D., G. C. Buscaglia, and M. H. Garcia. 2008. “2D stream hydrodynamic, sediment transport and bed morphology model for engineering applications.” Hydrol. Processes 22 (10): 1443–1459. https://doi.org/10.1002/hyp.v22:10.
Abad, J. D., A. Mendoza, K. Arceo, Z. Torres, H. Valverde, G. Medina, C. Frias, and M. Berezowsky. 2022. “Planform dynamics and cut-off processes in the lower Ucayali River, Peruvian Amazon.” Water 14 (19): 3059. https://doi.org/10.3390/w14193059.
Abad, J. D., H. Montoro, C. Frias, J. Paredes, and B. Peralta. 2012. “The meandering Ucayali River, a cyclic adaptation of cutoff and planform migration.” In Vol. 1 of River Flow, Proc. Int. Conf. on Fluvial Hydraulics, 523–527. Boca Raton, FL: CRC Press.
Abad, J. D., D. Motta, L. Guerrero, M. Paredes, J. M. Kuroiwa, and M. H. Garcia. 2023. “Hydrogeomorphology of asymmetric meandering channels: Experiments and field evidence.” Water Resour. Res. 59 (7): e2022WR033904. https://doi.org/10.1029/2022WR033904.
Ancey, C., and I. Pascal. 2020. “Estimating mean bedload transport rates and their uncertainty.” J. Geophys. Res.: Earth Surf. 125 (7): e2020JF005534. https://doi.org/10.1029/2020JF005534.
APHA (American Public Health Association). 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC: APHA.
ASTM. 2023. Standard test method for particle-size analysis of soils. ASTM D422-63. West Conshohocken, PA: ASTM. Accessed August 17, 2023. https://www.astm.org/standards/d422/.
CAAAP (Centro Amazónico de Antropología y Aplicación Práctica). 2020. “Jorge abad, investigador de la utec: El proyecto hidrovía amazónica requiere de mejores estándares técnicos.” Accessed August 17, 2023. https://caaap.org.pe/2020/12/11/jorge-abad-investigador-de-la-utec-el-proyecto-hidrovia-amazonica-requiere-de-mejores-estandares-tecnicos/.
CITA (Centro de Investigación y Tecnología del Agua). 2019. “Mejores prácticas para el estudio de los ríos amazónicos frente al desarrollo de infraestructura, caso eia-d hidrovía amazónica.” Universidad De Ingenieria Y Tecnologia, Centro de Investigación y Tecnología del Agua, 20.
CITA (Centro de Investigación y Tecnología del Agua). 2021. “Recomendaciones técnicas para los términos de referencia de estudios ambientales de proyectos hidroviarios: caso hidrovía amazónica.” Universidad de Ingenieria y Tecnologia, Centro de Investigación y Tecnología del Agua, 44.
COHIDRO S.A. 2018. “Estudio de impacto ambiental detallado (EIA-D) del proyecto hidrovía amazónica: ríos marañón y amazonas, tramo saramiriza-iquitos-santa rosa; río huallaga, tramo yurimaguas-confluencia con el río marañón; río ucayali, tramo pucallpa-confluencia con el río marañón.” Concesionario Hidrovía Amazónica S.A (COHIDRO S.A.). Accessed August 17, 2023. https://www.senace.gob.pe/grandes-proyectos-estudio-de-impacto-ambiental-detallado-eia-d-del-proyecto-hidrovia-amazonica-rios-maranon-y-amazonas-tramo-saramiriza-iquitos-santa-rosa-rio-huallaga-tramo-yurimaguas-confluen/.
COHIDRO S.A. 2019. “Informe de avance 4 del edi. estudios básicos iniciales y cronograma de apertura.” Concesionario Hidrovía Amazónica S.A. (COHIDRO S.A.). Accessed August 17, 2023. http://portal.mtc.gob.pe/LAIPU/Documents/112774.zip.
Coomes, O. T., C. Abizaid, and M. Lapointe. 2009. “Human modification of a large meandering Amazonian river: Genesis, ecological and economic consequences of the Masisea cutoff on the central Ucayali, Peru.” AMBIO 38 (3): 130–134. https://doi.org/10.1579/0044-7447-38.3.130.
Daga, V., et al. 2020. “Water diversion in Brazil threatens biodiversity.” AMBIO 49 (1): 165–172. https://doi.org/10.1007/s13280-019-01189-8.
Dinehart, R., and J. R. Burau. 2005. “Averaged indicators of secondary flow in repeated acoustic doppler current profiler crossing of bends.” Water Resour. Res. 41 (9): 1–18. https://doi.org/10.1029/2005WR004050.
Edwards, T., and G. Glysson. 1999. Chap. C2 in Field methods for measurement of fluvial sediment, 97. Denver, CO: US Geological Survey Techniques of Water-Resources Investigations.
Fearnside, P. 2015. “Amazon dams and waterways: Brazil’s tapajós basin plans.” AMBIO 44 (5): 426–439. https://doi.org/10.1007/s13280-015-0642-z.
Frias, C. E., J. D. Abad, A. Mendoza, J. Paredes, C. Ortals, and H. Montoro. 2015. “Planform evolution of two anabranching structures in the Upper Peruvian Amazon River.” Water Resour. Res. 51 (4): 2742–2759. https://doi.org/10.1002/wrcr.v51.4.
Friedkin, J. F. 1945. A laboratory study of the meandering of alluvial rivers. Rep. No. Vicksburg, MI: United States Waterways Experimental Station.
Garcia, F. 2021. “El futuro incierto de la hidrovía amazónica peruana.” Mongabay. Accessed January 15, 2023. https://es.mongabay.com/2021/01/hidrovia-amazonia-peru-consulta-previa-pueblos-indigenas/.
Garcia, M. 2008. Sedimentation engineering. Reston, VA: ASCE. https://ascelibrary.org/doi/abs/10.1061/9780784408148.
Gottgens, J. F., J. E. Perry, R. H. Fortney, J. E. Meyer, M. Benedict, and B. E. Rood. 2001. “The Paraguay-Paraná Hidrovía: Protecting the Pantanal with Lessons from the Past: Large-scale channelization of the northern Paraguay-Paraná seems to be on hold, but an ongoing multitude of smaller-scale activities may turn the Pantanal into the next example of the “tyranny of small decisions”.” BioScience 51 (4): 301–308. https://doi.org/10.1641/0006-3568(2001)051[0301:TPPHAP]2.0.CO;2.
Gutierrez, R., and J. Abad. 2014. “On the analysis of the medium term planform dynamics of meandering rivers.” Water Resour. Res. 50 (5): 3714–3733. https://doi.org/10.1002/2012WR013358.
Gutierrez, R., J. Abad, M. Choi, and M. Montoro. 2014. “On the morphodynamics of free meanders confluences at the Upper Amazon Basin.” Geomorphology 220: 1–14. https://doi.org/10.1016/j.geomorph.2014.05.011.
Gutierrez, R., J. Abad, D. Parsons, and J. Best. 2013. “Discrimination of bedforms scales using robust spline and wavelet transforms: Methods and application to synthetic signals and the Parana river, Argentina.” J. Geophys. Res.: Earth Surf. 118: 1400–1419. https://doi.org/10.1002/jgrf.v118.3.
Gutierrez, R., J. Mallma, F. Nunez-Gonzalez, O. Link, and J. Abad. 2018. “Bedforms-atm, an open source software to analyze the scale-based hierarchies and dimensionality of natural bed forms.” SoftwareX 7: 184–189. https://doi.org/10.1016/j.softx.2018.06.001.
Hermoza, W., S. Brusset, P. Baby, W. Gil, M. Roddaz, N. Guerrero, and R. Bolanos. 2005. “The Huallaga Foreland Basin evolution: Thrust propagation in a deltaic environment, Northern Peruvian Andes.” J. South Am. Earth Sci. 19 (1): 21–34. https://doi.org/10.1016/j.jsames.2004.06.005.
Holmes, R. 2010. “Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods.” US Geological Survey Scientific Investigations Report 2010-5091. Reston, VA: US Geological Survey.
Hoorn, C., et al. 2010. “Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity.” Science 330 (6006): 927–931. https://doi.org/10.1126/science.1194585.
Hurtado, C., M. Roddaz, R. V. Santos, P. Baby, P.-O. Antoine, and E. L. Dantas. 2018. “Cretaceous-early Paleocene drainage shift of Amazonian rivers driven by Equatorial Atlantic Ocean opening and Andean uplift as deduced from the provenance of northern Peruvian sedimentary rocks (Huallaga basin).” Gondwana Res. 63: 152–168. https://doi.org/10.1016/j.gr.2018.05.012.
INGEMMET. 2020. Geocatmin sistema de información geológico y catastral minero. Instituto Geológico, Minero y Metalúrgico. https://geocatmin.ingemmet.gob.pe/geocatmin/.
Kleinhans, M. G., and J. H. van den Berg. 2011. “River channel and bar patterns explained and predicted by an empirical and a physics-based method.” Earth Surf. Processes Landforms 36 (6): 721–738. https://doi.org/10.1002/esp.v36.6.
Krumbein, W. C. 1934. “Size frequency distributions of sediments.” J. Sediment. Res. 4 (2): 65–77. https://doi.org/10.1306/74D7099D-2B21-11D7-8648000102C1865D.
Latosinski, F. G., R. N. Szupiany, C. M. García, M. Guerrero, and M. L. Amsler. 2014. “Estimation of concentration and load of suspended bed sediment in a large river by means of acoustic Doppler technology.” J. Hydraul. Eng. 140 (7): 04014023. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000859.
Li, Z., A. Mendoza, J. D. Abad, T. A. Endreny, B. Han, E. Carrisoza, and R. Dominguez. 2023. “High-resolution modeling of meander neck cutoffs: Laboratory and field scales.” Front. Earth Sci. 11: 1208782. https://doi.org/10.3389/feart.2023.1208782.
Lu, M. 2019. “Amazon waterway and fluvial transportation: Lessons from environmental planning and evaluation.” Collection: Chinese investments and sustainability, Derecho, Ambiente y Recursos Naturales DAR. https://repositorio.dar.org.pe/handle/20.500.13095/38.
McAlpin, T. O., D. G. Wren, K. E. Jones, D. D. Abraham, R. A. Kuhnle, and C. S. Willson. 2023. “Uncertainty for the ISSDOTV2 bedload measurement method.” J. Hydraul. Eng. 149 (9): 04023036. https://doi.org/10.1061/JHEND8.HYENG-13505.
Mendoza, A., J. D. Abad, C. E. Frias, O. Collin, J. Paredes, H. Montoro, J. Vizcarra, C. Simon, and G. Soto-Cortes. 2016. “Planform dynamics of the iquitos anabranching structure in the Peruvian Upper Amazon River.” Earth Surf. Processes Landforms 41 (7): 961–970. https://doi.org/10.1002/esp.v41.7.
Motta, D., E. J. Langendoen, J. D. Abad, and M. H. García. 2014. “Modification of meander migration by bank failures.” J. Geophys. Res.: Earth Surf. 119 (5): 1026–1042. https://doi.org/10.1002/2013JF002952.
MTC (Ministerio de Transportes y Comunicaciones). 2005. “Estudio de la navegabilidad del río huallaga en el tramo comprendido entre yurimaguas y la confluencia con el río marañón.” Consorcio Hidrovia Huallaga, Ministerio de Transportes y Comunicaciones, Volumen III: Estudio de Hidrología e Hidráulica fluvial, 140. Lima, Peru: MTC.
MTC (Ministerio de Transportes y Comunicaciones). 2015. “Resolución ministerial no 616-2015-mtc/01.02: Grupo de trabajo multisectorial encargado de promover el diálogo con los pueblos y comunidades indígenas del área de influencia del proyecto hidrovía amazónica.” Lima, Peru: MTC. Accessed August 17, 2023. https://busquedas.elperuano.pe/normaslegales/modifican-la-rm-n-616-2015-mtc0102-que-creo-grupo-de-t-resolucion-ministerial-no-732-2015-mtc0102-1324899-1/.
MTC (Ministerio de Transportes y Comunicaciones). 2017a. “Contrato de concesión, hidrovía amazónica.” Lima, Peru: MTC. Accessed December 24, 2022. https://portal.mtc.gob.pe/transportes/concesiones/documentos/contratos/CONTRATO_DE_CONCESION_DEL_7.9.17_ HIDROVIAS_AMAZONICAS.pdf.
MTC (Ministerio de Transportes y Comunicaciones). 2017b. “Hidrovía amazónica.” Lima, Peru: MTC. Accessed December 24, 2022. https://portal.mtc.gob.pe/transportes/concesiones/infraestructura_portuaria/hidrovias_amazonicas.html.
Mueller, D. S., and C. R. Wagner. 2007. “Correcting acoustic doppler current profiler discharge measurements biased by sediment transport.” J. Hydraul. Eng. 133 (12): 1329–1336. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1329).
Parsons, D. R., P. Jackson, J. A. Czuba, F. Engel, B. L. Rhoads, K. Oberg, J. L. Best, D. Mueller, K. Johnson, and J. Riley. 2013. “Velocity mapping toolbox (VMT): A processing and visualization suite for moving-vessel adcp measurements.” Earth Surf. Processes Landforms 38 (11): 1244–1260. https://doi.org/10.1002/esp.v38.11.
Pelicice, F., et al. 2021. “Large-scale degradation of the Tocantins-Araguaia river basin.” Environ. Manage. 68 (4): 445–452. https://doi.org/10.1007/s00267-021-01513-7.
Rojas, T. V., J. D. Abad, W. Roque, E. Latrubesse, and J. Shan. 2023. “Free and underfit-scavenger river dynamics dominate the large amazonian Pacaya-Samiria wetland structure.” Front. Environ. Sci. 11: 1082619. https://doi.org/10.3389/fenvs.2023.1082619.
Ruben-Dominguez, L., K. Naito, R. Gutierrez, R. Szupiany, and J. D. Abad. 2021. “Meander statistics toolbox (MSTAT): A toolbox for geometry characterization of bends in large meandering channels.” SoftwareX 14: 100674. https://doi.org/10.1016/j.softx.2021.100674.
Santini, W., et al. 2019. “An index concentration method for suspended load monitoring in large rivers of the amazonian foreland.” Earth Surf. Dyn. 7 (2): 515–536. https://doi.org/10.5194/esurf-7-515-2019.
Schwenk, J., and E. Foufoula-Georgiou. 2017. “Are process nonlinearities encoded in meandering river planform morphology?” J. Geophys. Res.: Earth Surf. 122 (8): 1534–1552. https://doi.org/10.1002/jgrf.v122.8.
SENACE (Servicio Nacional de Certificación Ambiental para las Inversiones Sostenibles). 2020. “Estudio de impacto ambiental detallado (eia-d) del proyecto hidrovía amazónica: ríos marañón y amazonas, tramo saramiriza-iquitos-santa rosa; río huallaga, tramo yurimaguas-confluencia con el río marañón; río ucayali, tramo pucallpa-confluencia con el río marañón.” Lima, Peru: SENACE. Accessed January 15, 2023. https://www.senace.gob.pe/grandes-proyectos-estudio-de-impacto-ambiental-detallado-eia-d-del-proyecto-hidrovia-amazonica-rios-maranon-y-amazonas-tramo-saramiriza-iquitos-santa-rosa-rio-huallaga-tramo-yurimaguas-confluen/.
Sequoia. 2023. “Lisst-portable XR.” Accessed August 17, 2023. https://www.sequoiasci.com/product/lisst-portable-xr/.
Servindi. 2019. “Hidrovía Amazónica: “Científicamente hay varios vacíos”.” Accessed August 17, 2023. https://www.servindi.org/actualidad-noticias/28/05/2019/jorge-abad-sobre-la-hidrovia-cientificamente-hay-varios-vacios/.
Sierra, Y. 2019. “Jorge abad: “me preocupa que la hidrovía amazónica se haga mal”.” Mongabay. Accessed January 15, 2023. https://es.mongabay.com/2019/05/peru-hidrovia-amazonica-jorge-abad/.
Simons, D. B., E. Richardson, and C. F. Nordin. 1965. “Unsteady movement of ripples and dunes related to bedload transport.” In Proc. IAHR (International Association for Hydraulic Research) Congress, 3.29, 1–8. Madrid, Spain: International Association for Hydraulic Research (IAHR).
Szupiany, R. N., M. L. Amsler, D. R. Parsons, and J. L. Best. 2009. “Morphology, flow structure, and suspended bed sediment transport at two large braid-bar confluences.” Water Resour. Res. 45 (5): W05415. https://doi.org/10.1029/2008WR007428.
Szupiany, R. N., C. Lopez Weibel, M. Guerrero, F. Latosinski, M. Wood, L. Dominguez Ruben, and K. Oberg. 2019. “Estimating sand concentrations using ADCP-based acoustic inversion in a large fluvial system characterized by bi-modal suspended-sediment distributions.” Earth Surf. Processes Landforms 44 (6): 1295–1308. https://doi.org/10.1002/esp.v44.6.
Torres, A. L. 2022. “Hidrovía amazónica: Contrato en fase de declararse en caducidad, según ositrán.” Gestion. Accessed July 30, 2023. https://gestion.pe/economia/hidrovia-amazonica-contrato-en-fase-de-declararse-en-caducidad-segun-ositran-noticia/.
van Dijk, W. M., W. I. van de Lageweg, and M. G. Kleinhans. 2012. “Experimental meandering river with chute cutoffs.” J. Geophys. Res.: Earth Surf. 117: F03023. https://doi.org/10.1029/2011JF002314.
Villard, P., and M. Church. 2003. “Dunes and associayed sand transport in a tidally influenced sand-bed channel: Fraser river, British Columbia.” Can. J. Earth Sci. 40 (1): 115–130. https://doi.org/10.1139/e02-102.
Viveen, W., P. Baby, J. Sanjurjo, and C. Hurtado Enriquez. 2020. “Fluvial terraces as quantitative markers of late quaternary detachment folding and creeping thrust faulting in the peruvian huallaga basin.” Geomorphology 367: 107315. https://doi.org/10.1016/j.geomorph.2020.107315.
WCS (Wildlife Conservation Service). 2019. “Análsis del proyecto hidrovía amazónica - ríos marañón, amazonas, huallaga y ucayali.” Wildlife Conservation Service, 266. https://peru.wcs.org/es-es/WCS-Peru/Noticias/articleType/ArticleView/articleId/11891/Lee-aqui-el-Analisis-del-Proyecto-Hidrovia-Amazonica--Rios-Maranon-Amazonas-Huallaga-y-Ucayali.aspx.
Yin, S., Y. Yi, Q. Liu, Q. Luo, and K. Chen. 2022. “A review on effects of human activities on aquatic organisms in the yangtze river basin since the 1950s.” River 1 (1): 104–119. https://doi.org/10.1002/rvr2.v1.1.

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 150Issue 2March 2024

History

Received: Apr 9, 2023
Accepted: Nov 27, 2023
Published online: Dec 29, 2023
Published in print: Mar 1, 2024
Discussion open until: May 29, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate School, Universidad de Ingenieria y Tecnologia - UTEC, Lima 15063, Peru. ORCID: https://orcid.org/0000-0001-8506-9645
Dept. of Research, Education and Development, RED YAKU, Lima 15084, Peru (corresponding author). ORCID: https://orcid.org/0000-0003-1571-9846. Email: [email protected]
Dept. of Geography and Anthropology, Louisiana State Univ., Baton Rouge, LA 70803; Centro de Investigacion y Tecnologia del Agua - CITA, Universidad de Ingenieria y Tecnologia - UTEC, Lima 15063, Peru. ORCID: https://orcid.org/0000-0001-6263-8331
Yulissa Estrada
Universidad Nacional Agraria de la Selva - UNAS, Tingo Maria, Huanuco 10131, Peru.
Christian Frias
Barr Engineering Company, Minneapolis, MN 55435.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share