Technical Papers
Feb 21, 2023

Experimental Investigation of Infragravity Wave Propagation on a Porous Reef

Publication: Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 149, Issue 3

Abstract

A laboratory experiment is carried out to study the generation mechanism and the evolution process of an infragravity wave (IG wave) on a typical permeable fringing reef. Fifteen capacitance wave gauges are installed along the reef model to record the water surface elevation under irregular wave action. Based on the experimental data, both IG wave generation and strong IG wave interaction are systematically analyzed. The experimental results indicate that the IG waves are generated by the time-varying breakpoint mechanism at the reef edge, and the tidal modulations on the IG wave height are mainly influenced by wave breaking and wave dissipation. Around the reef edge, the tidal modulation is controlled by wave breaking and the IG wave height monotonously decreases with the increase of the tide level. At the shoreline, the tidal modulation is controlled by wave dissipation at the low tide level and wave breaking at the high tide level. Therefore, the IG wave height first increases and then decreases with the increase of the tide level, and the maximum IG wave height occurs at the middle tide level.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author on reasonable request.
Acknowledgments

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52101312, 52031002, and 51979028), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LGJ19E090001), Ningbo Municipal Bureau of Water Conservancy (Grant No. NSKB202020), Ningbo University (Grant Nos. 432094460 and ZX2022000350), the Guangzhou Basic and Applied Basic Research Project (Grant No. 202201010240), and the Open Fund of the State Key Laboratory of Hydraulics and Mountain River Development and Protection, Sichuan University (Grant No. SKHL2108).

Notation

The following symbols are used in this paper:
B(f1, f2)
bicoherence between frequencies f1 and f2;
ds
median diameter;
f
wave frequency;
HIG
characteristic spectral wave height of IG wave;
HIG/HS
relative IG wave height;
Hin
incident IG wave height at shoreline;
Hre
reflected IG wave height at shoreline;
HS
significant wave height of incident wave;
HSS
characteristic spectral wave height of SS wave;
HSS/HS
relative SS wave height;
hr
still water depth on reef flat;
hs
height of porous layer;
ReI(τ)
cross correlation between incident wave envelope and IG wave surface;
Sf
wave spectral density;
TS
significant wave period of incident wave;
WT
continuous wavelet transform;
γ
wave decay coefficient;
ε
porosity;
η
wave surface elevation;
η¯
wave setup;
η¯/HS
relative wave setup;
ηenv
wave envelope;
ηIG
surface elevation of IG wave (f < 0.2 Hz in prototype);
η¯r
maximum wave setup on reef flat;
(η¯r+hr)/HS
dimensionless submergence depth;
ηSS
surface elevation of SS wave (f ≥ 0.2 Hz in prototype);
σenv
standard deviation of incident wave envelope; and
σIG
standard deviation of IG wave elevation.

References

Anderson, M. E., and J. M. Smith. 2014. “Wave attenuation by flexible, idealized salt marsh vegetation.” Coastal Eng. 83: 82–92. https://doi.org/10.1016/j.coastaleng.2013.10.004.
Baldock, T. E. 2012. “Dissipation of incident forced long waves in the surf zone-Implications for the concept of “bound” wave release at short wave breaking.” Coastal Eng. 60: 276–285. https://doi.org/10.1016/j.coastaleng.2011.11.002.
Baldock, T. E., B. Shabani, D. P. Callaghan, Z. Hu, and P. J. Mumby. 2020. “Two-dimensional modelling of wave dynamics and wave forces on fringing coral reefs.” Coastal Eng. 155: 103594. https://doi.org/10.1016/j.coastaleng.2019.103594.
Battjes, J. A., H. J. Bakkenes, T. T. Janssen, and A. R. van Dongeren. 2004. “Shoaling of subharmonic gravity waves.” J. Geophys. Res. 109: C02009.
Becker, J. M., M. A. Merrifield, and H. Yoon. 2016. “Infragravity waves on fringing reefs in the tropical Pacific: Dynamic setup.” J. Geophys. Res.: Oceans 121: 3010–3028. https://doi.org/10.1002/2015JC011516.
Beetham, E., P. S. Kench, J. O’Callaghan, and S. Popinet. 2016. “Wave transformation and shoreline water level on Funafuti Atoll, Tuvalu.” J. Geophys. Res.: Oceans 121 (1): 311–326. https://doi.org/10.1002/2015JC011246.
Bertin, X., et al. 2018. “Infragravity waves: From driving mechanisms to impacts.” Earth Sci. Rev. 177: 774–799. https://doi.org/10.1016/j.earscirev.2018.01.002.
Buckley, M. L., R. J. Lowe, J. E. Hansen, A. R. van Dongeren, and C. D. Storlazzi. 2018. “Mechanisms of wave-driven water level variability on reef-fringed coastlines.” J. Geophys. Res.: Oceans 123 (5): 3811–3831. https://doi.org/10.1029/2018JC013933.
Cabioch, G., P. Davies, T. Done, E. Gischler, I. G. Macintyre, R. Wood, and C. Woodroffe. 2010. Encyclopedia of modern coral reefs: Structure, form and process. New York: Springer.
Contardo, S., and G. Symonds. 2013. “Infragravity response to variable wave forcing in the nearshore.” J. Geophys. Res.: Oceans 118 (12): 7095–7106. https://doi.org/10.1002/2013JC009430.
De Bakker, A. T. M., M. F. S. Tissier, and B. G. Ruessink. 2015. “Beach steepness effects on nonlinear infragravity-wave interactions: A numerical study.” J. Geophys. Res. 121 (1): 554–570. https://doi.org/10.1002/2015JC011268.
Dong, G., Y. Ma, M. Perlin, X. Ma, B. Yu, and J. Xu. 2015. “Experimental study of wave–wave nonlinear interactions using the wavelet-based bicoherence.” Coastal Eng. 55 (9): 741–752. https://doi.org/10.1016/j.coastaleng.2008.02.015.
Falter, J. L., R. J. Lowe, Z. Zhang, and M. McCulloch. 2013. “Physical and biological controls on the carbonate chemistry of coral reef waters: Effects of metabolism, wave forcing, sea level, and geomorphology.” PLoS One 8 (1): e53303. https://doi.org/10.1371/journal.pone.0053303.
Ferrario, F., M. W. Beck, C. D. Storlazzi, F. Micheli, C. C. Shepard, and L. Airoldi. 2014. “The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.” Nat. Commun. 5: 3794. https://doi.org/10.1038/ncomms4794.
Gao, J., X. Ma, G. Dong, H. Chen, Q. Liu, and J. Zang. 2021. “Investigation on the effects of Bragg reflection on harbor oscillations.” Coastal Eng. 170: 103977. https://doi.org/10.1016/j.coastaleng.2021.103977.
Gao, J., X. Ma, J. Zang, G. Dong, X. Ma, Y. Zhu, and L. Zhou. 2020. “Numerical investigation of harbor oscillations induced by focused transient wave groups.” Coastal Eng. 158: 103670. https://doi.org/10.1016/j.coastaleng.2020.103670.
Gao, J., X. Zhou, L. Zhou, J. Zang, and H. Chen. 2019. “Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor.” Ocean. Eng. 172: 86–95. https://doi.org/10.1016/j.oceaneng.2018.11.048.
Gawehn, M., A. van Dongeren, A. van Rooijen, C. D. Storlazzi, O. M. Cheriton, and A. Reniers. 2016. “Identification and classification of very low frequency waves on a coral reef flat.” J. Geophys. Res.: Oceans 121 (10): 7560–7574. https://doi.org/10.1002/2016JC011834.
Gu, Z., and H. Wang. 1991. “Gravity waves over porous bottoms.” Coastal Eng. 15 (5–6): 497–524. https://doi.org/10.1016/0378-3839(91)90025-C.
Henderson, S. M., and A. J. Bowen. 2002. “Observations of surf beat forcing and dissipation.” J. Geophys. Res. 107 (C11): 3193. https://doi.org/10.1029/2000JC000498.
Janssen, T. T., J. A. Battjes, and A. R. van Dongeren. 2003. “Long waves induced by shortwave groups over a sloping bottom.” J. Geophys. Res.: Oceans 108 (C8): 3252. https://doi.org/10.1029/2002JC001515.
Karunarathna, H., A. Chadwick, and J. Lawrence. 2005. “Numerical experiments of swash oscillations on steep and gentle beaches.” Coastal Eng. 52 (6): 497–511. https://doi.org/10.1016/j.coastaleng.2005.02.003.
Kobayashi, N., A. W. Raichle, and T. Asano. 1993. “Wave attenuation by vegetation.” J. Waterway, Port, Coastal, Ocean Eng. 119 (1): 30–48. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:1(30).
Lentz, S. J., K. A. Davis, J. H. Churchill, and T. M. DeCarlo. 2017. “Coral reef drag coefficients–water depth dependence.” J. Phys. Oceanogr. 47 (5): 1061–1075. https://doi.org/10.1175/JPO-D-16-0248.1.
Liu, Y., S. Li, Z. Liao, and K. Liu. 2021a. “Physical and numerical modeling of random wave transformation and overtopping on reef topography.” Ocean Eng. 220: 108390. https://doi.org/10.1016/j.oceaneng.2020.108390.
Liu, Y., Z. Liao, K. Fang, and S. Li. 2021b. “Uncertainty of wave runup prediction on coral reef-fringed coasts using SWASH model.” Ocean Eng. 242: 110094. https://doi.org/10.1016/j.oceaneng.2021.110094.
Longuet-Higgins, M. S., and R. W. Stewart. 1962. “Radiation stress and mass transport in gravity waves, with application to surf beats.” J. Fluid Mech. 13: 481–504. https://doi.org/10.1017/S0022112062000877.
Losada, I. J., M. D. Patterson, and M. A. Losada. 1997. “Harmonic generation past a submerged porous step.” Coastal Eng. 31 (1–4): 281–304. https://doi.org/10.1016/S0378-3839(97)00011-2.
Lowe, R. J., J. L. Falter, M. D. Bandet, G. Pawlak, M. J. Atkinson, S. G. Monismith, and J. R. Koseffm. 2005. “Spectral wave dissipation over a barrier reef.” J. Geophys. Res. 110: C04001.
Lowe, R. J., U. Shavit, J. L. Falter, and S. G. Monismith. 2008. “Modeling flow in coral communities with and without waves: A synthesis of porous media and canopy flow approaches.” Limnol. Oceanogr. 53 (6): 2668–2680. https://doi.org/10.4319/lo.2008.53.6.2668.
Masselink, G., M. Tuck, R. McCall, A. Dongeren, M. Ford, and P. Kench. 2019. “Physical and numerical modeling of infragravity wave generation and transformation on coral reef platforms.” J. Geophys. Res.: Oceans 124 (3): 1410–1433. https://doi.org/10.1029/2018JC014411.
Monismith, S. G. 2007. “Hydrodynamics of coral reefs.” Annu. Rev. Fluid Mech. 39: 37–55. https://doi.org/10.1146/annurev.fluid.38.050304.092125.
Nakaza, E., S. Tsukayama, and M. Hino. 1991. “Bore-like surf beat on reef coasts.” Coastal Eng. 990: 743–756.
Ni, Y. L., T. Xie, and M. Gong. 2020. “Analytical solution for waves propagating over a local permeable seabed of constant water depth.” J. Coastal Res. 95 (SI): 294–298. https://doi.org/10.2112/SI95-057.1.
Osorio-Cano, J. D., J. C. Alcérreca-Huerta, A. F. Osorio, and H. Oumeraci. 2018. “CFD modelling of wave damping over a fringing reef in the Colombian Caribbean.” Coral Reefs 37 (4): 1093–1108. https://doi.org/10.1007/s00338-018-1736-4.
Péquignet, A. C., J. M. Becker, and M. A. Merrifield. 2014. “Energy transfer between wind waves and low-frequency oscillations on a fringing reef, Ipan Guam.” J. Geophys. Res.: Oceans 119 (10): 6709–6724. https://doi.org/10.1002/2014JC010179.
Péquignet, A. C. N., J. M. Becker, M. A. Merrifield, and J. Aucan. 2009. “Forcing of resonant modes on a fringing reef during tropical storm Man-Yi.” Geophys. Res. Lett. 36 (3): L03607.
Pomeroy, A., R. J. Lowe, G. Symonds, A. R. van Dongeren, and C. Moore. 2012. “The dynamics of infragravity wave transformation over a fringing reef.” J. Geophys. Res. 117: C11022.
Quataert, E., C. Storlazzi, A. van Rooijen, O. Cheriton, and A. van Dongeren. 2015. “The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines.” Geophys. Res. Lett. 42 (15): 6407–6415. https://doi.org/10.1002/2015GL064861.
Roeber, V., and J. D. Bricker. 2015. “Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan.” Nat. Commun. 6: 7854. https://doi.org/10.1038/ncomms8854.
Ruju, A., J. L. Lara, and I. J. Losada. 2012. “Radiation stress and low-frequency energy balance within the surf zone: A numerical approach.” Coastal Eng. 68: 44–55. https://doi.org/10.1016/j.coastaleng.2012.05.003.
Schäffer, H. A. 1993. “Infragravity waves induced by short-wave groups.” J. Fluid Mech. 247: 551–588. https://doi.org/10.1017/S0022112093000564.
Sénéchal, N., P. Bonneton, and H. Dupuis. 2001. “Field observations of irregular wave transformation in the surf zone.” In Proc., 4th Conf. on Coastal Dynamics. Reston, VA: ASCE.
Symonds, G., D. A. Huntley, and A. J. Bowen. 1982. “Two-dimensional surf beat: Long wave generation by a time-varying breakpoint.” J. Geophys. Res. 87: 492–498. https://doi.org/10.1029/JC087iC01p00492.
Tissier, M., P. Bonneton, H. Michallet, and B. G. Ruessink. 2015. “Infragravity-wave modulation of short-wave celerity in the surf zone.” J. Geophys. Res.: Oceans 120: 799–6814. https://doi.org/10.1002/2015JC010708.
van Dongeren, A., J. Battjes, T. Janssen, J. van Noorloos, K. Steenhauer, G. Steenbergen, and A. Reniers. 2007. “Shoaling and shoreline dissipation of low-frequency waves.” J. Geophys. Res. 112: C02011.
van Dongeren, A., M. De Jong, C. Van der Lem, A. Van Deyzen, and J. Den Bieman. 2016. “Review of long wave dynamics over reefs and into ports with implication for port operations.” J. Mar. Sci. Eng. 4 (1): 12. https://doi.org/10.3390/jmse4010012.
van Dongeren, A. P., R. Lowe, A. Pomeroy, D. M. Trang, D. Roelvink, G. Symonds, and R. Ranasinghe. 2013. “Numerical modeling of low-frequency wave dynamics over a fringing coral reef.” Coastal Eng. 73: 178–190. https://doi.org/10.1016/j.coastaleng.2012.11.004.
Wen, H., B. Ren, P. Dong, and G. Zhu. 2020b. “Numerical analysis of wave-induced current within the inhomogeneous coral reef using a refined SPH model.” Coastal Eng. 156: 103616. https://doi.org/10.1016/j.coastaleng.2019.103616.
Wen, H., B. Ren, G. Zhu, and G. Wang. 2020a. “SPH evaluation of the hydrodynamic consequences induced by reef degradation.” Wave Motion 2020 (96): 102579. https://doi.org/10.1016/j.wavemoti.2020.102579.
Yao, Y., S. Chen, J. Zheng, Q. Zhang, and S. Chen. 2020a. “Laboratory study on wave transformation and run-up in a 2DH reef-lagoon-channel system.” Ocean Eng. 215: 107907. https://doi.org/10.1016/j.oceaneng.2020.107907.
Yao, Y., M. Jia, C. Jiang, Q. Zhang, and Z. Tang. 2020b. “Laboratory study of wave processes over fringing reefs with a reef-flat excavation pit.” Coastal Eng. 158: 103700. https://doi.org/10.1016/j.coastaleng.2020.103700.
Zheng, J., Y. Yao, S. Chen, S. Chen, and Q. Zhang. 2020. “Laboratory study on wave-induced setup and wave-driven current in a 2DH reef-lagoon-channel system.” Coastal Eng. 162: 103772. https://doi.org/10.1016/j.coastaleng.2020.103772.
Zhu, G., B. Ren, P. Dong, G. Wang, and W. Chen. 2021. “Experimental investigation on the infragravity wave on different reef systems under irregular wave action.” Ocean Eng. 226: 108851. https://doi.org/10.1016/j.oceaneng.2021.108851.
Zhu, G., B. Ren, H. Wen, Y. Wang, and C. Wang. 2019. “Analytical and experimental study of wave setup over permeable coral reef.” Appl. Ocean Res. 90: 101859. https://doi.org/10.1016/j.apor.2019.101859.

Information & Authors

Information

Published In

Go to Journal of Waterway, Port, Coastal, and Ocean Engineering
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume 149Issue 3May 2023

History

Received: Jun 20, 2022
Accepted: Dec 3, 2022
Published online: Feb 21, 2023
Published in print: May 1, 2023
Discussion open until: Jul 21, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Gancheng Zhu [email protected]
Postdoctoral Fellow, School of Civil and Environmental Engineering, Ningbo Univ., Ningbo 315211, China; Postdoctoral Fellow, Institute of Ocean Engineering, Ningbo Univ., Ningbo 315211, China. Email: [email protected]
Hongjie Wen [email protected]
Associate Professor, School of Civil Engineering and Transportation, South China Univ. of Technology, Guangzhou 510641, China (corresponding author). Email: [email protected]
Professor, School of Engineering, Univ. of Liverpool, Liverpool L69 3BX, UK. Email: [email protected]
Professor, School of Civil and Environmental Engineering, Ningbo Univ., Ningbo 315211, China; Professor, Institute of Ocean Engineering, Ningbo Univ., Ningbo 315211, China. Email: [email protected]
Professor, State Key Laboratory of Coastal and Offshore Engineering, Dalian Univ. of Technology, Dalian 116024, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share